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The effects of variable fluid properties on thin film stability
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A theoretical investigation has been conducted to study the impact of variable fluid
properties on the stability of gravity-driven flow of a thin film down a heated incline.
The incline is maintained at a uniform temperature which exceeds the temperature
of the ambient gas above the fluid and is thus responsible for heating the thin fluid
layer. The variable fluid properties are allowed to vary linearly with temperature. It
is assumed that long-wave perturbations are most unstable. Based on this, a stability
analysis was carried out whereby the governing linearized perturbation equations were
expanded in powers of the wavenumber which is a small parameter. New interesting
results illustrating how the critical Reynolds number and perturbation phase speed
depend on the various dimensionless parameters have been obtained. C 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4904095]

I. INTRODUCTION

It is well known that the gravity-driven flow of a thin fluid layer down an inclined surface is
prone to interfacial instabilities which become manifest as waves propagating along the free surface.
This was first observed experimentally by Kapitza and Kapitza.1 The first theoretical investigations
to predict the onset of instability for isothermal flows were conducted by Benjamin2 and Yih.3

In these studies, the stability of the uniform flow was determined by linearizing the governing
perturbation equations. To make analytical progress, an asymptotic expansion in the wavenumber
was carried out since long-wave perturbations are most unstable.

For non-isothermal flows, it is well known that variations in surface tension give rise to thermo-
capillary effects which act to destabilize the flow; this phenomenon is referred to as the Marangoni
effect. The Marangoni number is a dimensionless parameter which measures variations in sur-
face tension. Previous studies4,5 focusing on long-wave perturbations have successfully established
the relationship between the critical Reynolds number and the Marangoni number. The general
consensus is that for sufficiently thin fluid layers, the influence of density and viscosity variations
is negligible in comparison with those in surface tension. Indeed, Ogden et al.6 have shown that if
the variations in density and viscosity are small, and in particular of the same order of magnitude
as the wavenumber of unstable perturbations, then the critical Reynolds number for the onset of
instability is unaffected by these variations. However, for larger variations, one can no longer make
the simplifying assumption of ignoring variations in density and viscosity. Larger variations have
been considered by Goussis and Kelly7 and later by Hwang and Weng.8 However, these investi-
gations only consider the temperature variation in viscosity, and furthermore assume a constant
temperature at the free surface which eliminates the Marangoni effect. Kabova and Kuznetsov,9 on
the other hand, include both variable viscosity and the Marangoni effect, but they only consider the
steady-state problem.
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Recently, Pascal et al.10 examined the stability of the flow when the fluid properties were
allowed to vary linearly with temperature. Asymptotic expansions for the critical Reynolds number
predicting the onset of instability in the limit of small parameter values were constructed. The pres-
ent research represents an extension of that reported in Ref. 10 where we again limit our attention
to a planar substrate. As we will see the problem is sufficiently complicated, and extending it to a
non-planar surface would make the problem intractable. In contrast to Ref. 10, exact expressions
for the critical Reynolds number have been derived having no restrictions on the values of the
parameters.

The paper is organized as follows. In Sec. II, we present the mathematical formulation, govern-
ing equations, and boundary conditions. Then in Sec. III, we perform a linear stability analysis. New
interesting results are presented and discussed in Sec. IV. Finally, the research is summarized in the
concluding Sec. V.

II. GOVERNING EQUATIONS

We consider the laminar two-dimensional flow of a thin viscous fluid layer down an imperme-
able planar surface which is inclined at an angle β with the horizontal. The adopted (x, z) Cartesian
coordinate system is oriented so that the x-axis points down the incline and the z-axis points into
the fluid layer. The velocity components in the x, z directions are denoted by u, w, respectively,
while the position of the free surface is given by z = h(x, t). The incline is maintained at a constant
temperature, Tb, which exceeds the temperature of the ambient gas, Ta, above the fluid layer. The
temperature difference ∆T = Tb − Ta is responsible for heating the thin fluid layer.

In the absence of viscous dissipation, the governing equations for a Newtonian fluid possessing
variable fluid properties are given by11

Dρ

Dt
+ ρ

(
∂u
∂x
+
∂w

∂z

)
= 0 , (1)

ρ
Du
Dt
= −∂p

∂x
+ gρ sin β +

∂

∂x


2µ

∂u
∂x
− 2

3
µ

(
∂u
∂x
+
∂w

∂z

)
+

∂

∂z


µ

(
∂u
∂z
+
∂w

∂x

)
, (2)

ρ
Dw

Dt
= −∂p

∂z
− gρ cos β +

∂

∂z


2µ

∂w

∂z
− 2

3
µ

(
∂u
∂x
+
∂w

∂z

)
+

∂

∂x


µ

(
∂u
∂z
+
∂w

∂x

)
, (3)

ρ
De
Dt
=

∂

∂x

(
K
∂T
∂x

)
+

∂

∂z

(
K
∂T
∂z

)
− p

(
∂u
∂x
+
∂w

∂z

)
, (4)

where D
Dt

denotes the two-dimensional material derivative, p is the pressure, T is the temperature, g
is the acceleration due to gravity, µ is the dynamic viscosity, ρ is the mass density, K is the thermal
conductivity, and e is the internal energy.

A standard approach is to allow the fluid properties to vary linearly with temperature as
follows:

ρ = ρ0 − α̂(T − Ta) ,
µ = µ0 − λ̂(T − Ta) ,

K = K0 + Λ̂(T − Ta) ,
σ = σ0 − γ(T − Ta) ,

where σ is the surface tension, and α̂, γ, λ̂, Λ̂ are positive parameters measuring the rate of change
with respect to temperature. Here, ρ0, µ0, K0, and σ0 represent values of the density, viscosity,
thermal conductivity, and surface tension, respectively, at the reference temperature T = Ta. The
study by Hwang and Weng8 considered viscosity variations governed by an Arrhenius-type relation
given in dimensionless form by

µ

µ0
= exp


−Ar

(T − Ta)
Ta


,
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where Ar is the Arrhenius number. Although this may provide a more accurate description of vis-
cosity variations with temperature, the problem becomes far more complicated. As we will shortly
see, even the linear relation makes the problem quite difficult.

Using the first law of thermodynamics and applying standard thermodynamic relationships, the
energy equation (4) can be rewritten as12

ρcp
DT
Dt
− α̂T

ρ0

Dp
Dt
=

∂

∂x

(
K
∂T
∂x

)
+

∂

∂z

(
K
∂T
∂z

)
, (5)

where cp is the specific heat at constant pressure. Unlike ρ, µ,K , and σ which are allowed to vary
linearly with temperature, cp is taken to remain constant in this study. Outlined in Ref. 12 is a
careful scaling analysis which specifies when the Boussinesq approximation applies and also when
the term α̂T

ρ0

Dp
Dt

in Eq. (5) can be ignored; the condition

ε =
α̂gLT0

ρ0cp∆T
≪ 1

guarantees both of these. Here, L is a length scale, T0 denotes Ta measured in Kelvin, and ∆T is a
temperature difference scale. For flows of interest in this study, it turns out that ε is indeed small.
For example, for a thin layer of water having L = 5 mm and ∆T = 5 K with Ta at room temperature,
we find that ε ≈ 2 × 10−7.

To cast the equations in dimensionless form, we choose the Nusselt thickness, H , correspond-
ing to a uniform steady isothermal flow given by

H =
(

3µ0Q
gρ0 sin β

)1/3

,

as the length scale, where Q denotes the constant volume flux. The pressure is scaled using ρ0U2

with U = Q/H being the velocity scale. The time scale is taken to be H/U and the scaled temper-
ature difference is T∗ = (T − Ta)/∆T , where ∆T = Tb − Ta. Using the Boussinesq approximation,
the dimensionless equations, with the asterisk removed from the scaled temperature for notational
convenience, become

∂u
∂x
+
∂w

∂z
= 0 , (6)

Re
Du
Dt
= −Re

∂p
∂x
+ 3(1 − αT) + ∂

∂x

(
(1 − λT) ∂u

∂x

)
+

∂

∂z

(
(1 − λT)∂u

∂z

)
− λ∂T

∂x
∂u
∂x
− λ∂T

∂z
∂w

∂x
,

(7)

Re
Dw

Dt
= −Re

∂p
∂z
− 3 cot β(1 − αT) + ∂

∂x

(
(1 − λT)∂w

∂x

)
+

∂

∂z

(
(1 − λT)∂w

∂z

)
−λ∂T

∂x
∂u
∂z
− λ∂T

∂z
∂w

∂z
, (8)

Pr Re
DT
Dt
=

∂

∂x


(1 + ΛT)∂T

∂x


+

∂

∂z


(1 + ΛT)∂T

∂z


, (9)

where the Reynolds number is Re = ρ0UH/µ0, the Prandtl number is Pr = µ0cp/K0, and α

= α̂∆T/ρ0, λ = λ̂∆T/µ0, and Λ = Λ̂∆T/K0.
The dynamic conditions along the free surface, z = h(x, t), are

p =
2(1 − λT)

ReF
*
,


∂h
∂x

2
∂u
∂x
+
∂w

∂z
− ∂h

∂x
∂u
∂z
− ∂h

∂x
∂w

∂x
+
-
− (We − MaT)

F3/2

∂2h
∂x2 (10)

and

− MaRe
√

F
(
∂T
∂x
+
∂h
∂x

∂T
∂z

)
= (1 − λT)


G

(
∂u
∂z
+
∂w

∂x

)
− 4

∂h
∂x

∂u
∂x


, (11)
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where

F = 1 +

∂h
∂x

2

, G = 1 −

∂h
∂x

2

,

We = σ0/(ρ0U2H) is the Weber number and Ma = γ∆T/(ρ0U2H) is the Marangoni number.
Based on Newton’s law of cooling, the heat transfer across the free surface in non-dimensional

form can be expressed as

− Bi
√

FT = (1 + ΛT)
(
∂T
∂z
− ∂h

∂x
∂T
∂x

)
, (12)

where Bi = αgH/K0 is the Biot number while αg denotes the heat transfer coefficient across the
liquid-air interface.

Ignoring the evaporation of fluid along the free surface, z = h(x, t), leads to the following
kinematic condition:

w =
∂h
∂t
+ u

∂h
∂x

.

A no-slip condition is applied at the impermeable inclined planar surface which gives us

u = w = 0 at z = 0 . (13)

Finally, the constant bottom temperature condition is given by

T = 1 at z = 0 . (14)

III. STABILITY ANALYSIS

We begin by denoting the steady-state flow by u = us(z), w = ws(z), p = ps(z), and T = Ts(z).
With the adopted scaling, the uniform film thickness is hs ≡ 1 and it also follows that ws(z) ≡ 0. We
next proceed to determine exact expressions for us(z), ps(z), and Ts(z) and introduce the differential
operator D where D ≡ d/dz.

The steady-state temperature, Ts(z), satisfies

D[(1 + ΛTs)DTs] = 0 , (15)

subject to the heat transfer condition along the interface

(1 + ΛTs)DTs + BiTs = 0 at z = 1 , (16)

and the constant bottom temperature condition

Ts(0) = 1 . (17)

The solution is given by

Ts(z) =
√

a − bz − 1
Λ

,

where

a =
(1 + Λ)2
Λ2 , b =

2Bi(1 + Bi)
Λ2




1 +

((1 + Λ)2 − 1)
(1 + Bi)2 − 1


.

It is worth noting that the above solution collapses to known solutions for special cases. For example, when
Λ = 0, the above simplifies to

Ts(z) = 1 − Bi
1 + Bi

z .

Thus, when Bi = 0, we have Ts(z) = 1, while when Bi → ∞, we obtain Ts(z) = 1 − z. The physical interpre-
tations associated with these cases are as follows. For constant thermal conductivity (i.e., Λ = 0), the case
when Bi = 0 corresponds to an insulated fluid layer having a uniform temperature equal to that of the bottom
(Tb). On the other hand, as Bi → ∞, this corresponds to an infinite rate of heat transfer across the interface
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which means that the interface temperature will remain at the ambient temperature (Ta) resulting in a linear
temperature profile.

The steady-state streamwise velocity, us(z), satisfies

D[(1 − λTs)Dus] + 3(1 − αTs) = 0 (18)

and is subject to the stress-free condition along the interface

Dus = 0 at z = 1 (19)

and the no-slip condition on the bottom

us(0) = 0 . (20)

The solution is given by

us(z) = a0 ln
(

A − λ
√

a − bz
A − λ

√
a

)
+ a1z − α

λ
z2 + a2(

√
a − bz −

√
a) + a3[(a − bz)3/2 − a3/2] ,

where

a0 =
2AB
bλ2
+

6AC(1 + α
Λ
)

b2λ2
− 4αA4

b2λ5
, a1 =

2α
bλ

(C + 2a) − 3A(1 + α
Λ
)

bλ2
, a2 =

6C(1 + α
Λ
)

b2λ
+

2B
bλ
− 4αA3

b2λ4
,

a3 =
2(1 + α

Λ
)

b2λ
− 4αA

3b2λ2
, A = 1 +

λ

Λ
, B = 3

(
1 +

α

Λ

)
+

2α
b
(a − b)3/2 , C =

A2

λ2
− a .

For the special case, when Bi = 0, the above collapses to

us(z) = 3
(

1 − α

1 − λ

)
z
(
1 − z

2

)
,

while when Bi → ∞ together with Λ = 0, we obtain

us(z) = 3
4λ3


−α z2

λ
2 − 4 zλ2 + 2 α zλ2 + 2 α zλ + 4 ln (zλ + 1 − λ) λ

−2 ln (zλ + 1 − λ) α − 4 ln (1 − λ) λ + 2 ln (1 − λ) α] .

Another special case occurs when λ = Λ = 0; here, the above simplifies to

us(z) = − z
2


3(1 − α)z − 6 +

αBi
1 + Bi

z2 +
3α(2 + Bi)

1 + Bi


.

Finally, in the isothermal limit we expect the above expression to recover the familiar parabolic profile given
by us(z) = 3z(1 − z/2).

Finally, the steady-state pressure, ps(z), can be obtained by solving

ReDps = −3 cot β(1 − αTs) , (21)

subject to

ps(1) = 0 . (22)

The solution is easily found to be

ps(z) = 3 cot β
Re

(
1 +

α

Λ

)
(1 − z) + 2α cot β

bRe
[(a − b)3/2 − (a − bz)3/2] .

To investigate the stability of the steady-state flow, we perturb the flow by introducing infinitesimal
disturbances and then monitor how the disturbances evolve in time. The perturbed flow is expressed as

u = us(z) + ũ(x, z, t) , w = w̃(x, z, t) , p = ps(z) + p̃(x, z, t) , T = Ts(z) + T̃(x, z, t) , h = 1 + η̃(x, t) ,
where η̃ is the imposed perturbation in the fluid thickness while the tilde denotes perturbations in the other
quantities. The perturbations are assumed to have the form

(ũ, w̃, p̃,T̃ , η̃) = (û(z), ŵ(z), p̂(z),T̂(z), η̂)eik(x−ct) ,
which represent waves propagating in the x direction with z-dependent amplitudes. Here, k denotes the
wavenumber and is taken to be real and positive, while c is a complex quantity where the real part is the phase
speed and the imaginary part, denoted by Im(c), is related to the growth rate.
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Substituting the perturbed flow into the governing equations and linearizing leads to the following
equations for the z-dependent amplitudes:

Dŵ + ikû = 0 , (23)

Re[ik(us − c)û + ŵDus] = −ikRep̂ + k2(λTs − 1)û+
D[(1 − λTs)Dû] − λT̂ D2us − λDusDT̂ − ikλŵDTs − 3αT̂ , (24)

ikRe(us − c)ŵ = −ReDp̂ + 3α cot β T̂ − k2(1 − λTs)ŵ+
D[(1 − λTs)Dŵ] − ikλT̂ Dus − λDTsDŵ , (25)

Pr Re[ik(us − c)T̂ + ŵDTs] = −k2(1 + ΛTs)T̂ + D2[(1 + ΛTs)T̂] . (26)

Expanding the boundary conditions at z = 1 + η̃ about z = 1 and linearizing yields the conditions

p̂ = −η̂Dps +
2

Re
(1 − λTs)Dŵ + k2(We − MaTs)η̂ , (27)

(1 − λTs)(η̂D2us + Dû + ik ŵ) = −ik MaRe(T̂ + η̂DTs) , (28)

D[(1 + ΛTs)T̂] + η̂D[(1 + ΛTs)DTs + BiTs] + BiT̂ = 0 , (29)
ŵ = ik(us − c)η̂ (30)

at z = 1. At z = 0, we have

û(0) = ŵ(0) = T̂(0) = 0 . (31)

The system of equations (23)-(31) is posed as an eigenvalue problem with c denoting the eigenvalue. We
next take advantage of the fact that small wavenumber perturbations are expected to be most unstable, and
consequently an asymptotic analysis as k → 0 predicts the onset of instability. While this is obviously true for
the isothermal case, numerical solutions for the non-isothermal case with constant fluid properties also reveal
that small wavenumber perturbations are the most unstable.13 Based on this, we proceed by expanding the
perturbations in powers of k as follows:

û = û0(z) + kû1(z) +O(k2) ,
ŵ = ŵ0(z) + k ŵ1(z) +O(k2) ,
p̂ = p̂0(z) + k p̂1(z) +O(k2) ,
T̂ = T̂0(z) + kT̂1(z) +O(k2) ,

η̂ = η̂0 + k η̂1 +O(k2) .
The eigenvalue is similarly expanded as

c = c0 + kc1 +O(k2)
with the understanding that the growth rate is given by kIm(c), and neutral stability occurs when Im(c) = 0.
Without loss of generality, we normalize the eigenvalue problem by setting η̂0 = 1 and η̂1 = 0.14 When the
above are substituted into (23)-(31), we obtain a hierarchy of problems at various orders of k.

The leading-order problem satisfies

Dŵ0 = 0 , (32)

D2[(1 + ΛTs)T̂0] = 0 , (33)

ReDp̂0 = 3α cot βT̂0 , (34)

D[(1 − λTs)Dû0] = 3αT̂0 + λD(T̂0Dus) , (35)

subject to

ŵ0(0) = 0 , (36)

D[(1 + ΛTs)T̂0] + BiDTs = −BiT̂0 at z = 1 , T̂0(0) = 0 , (37)
p̂0 = −Dps at z = 1, (38)

Dû0 = −D2us at z = 1 , û0(0) = 0 . (39)
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The system (32)-(34) has the solution

ŵ0(z) = 0 ,

T̂0(z) = e0z
√

a − bz
,

p̂0(z) = e1 −
6αe0 cot β

bRe
z
√

a − bz − 4αe0 cot β
b2Re

(a − bz)3/2 ,

where

e0 =

Bi2


(1 + Bi)2 + (1 + Λ)2 − 1 − (1 + Bi)


Λ2

(1 + Bi)2 + (1 + Λ)2 − 1

,

e1 =
3 cot β

Re

(
1 +

α

Λ

)
− 3α cot β

Re

(
1 − 2e0

b

) √
a − b +

4αe0 cot β
b2Re

(a − b)3/2 .

The solution to (35) has the form

û0(z) = b0 + b1z + b2(a − bz)3/2 + b3 ln(a − bz) + b4
√

a − bz +
b5

A − λ
√

a − bz
+ b6 ln(A − λ√a − bz) ,

where the constants b j ( j = 0,1, . . . ,6) are lengthy expressions involving many of the previously defined
constants.

At O(k), the problem becomes

Dw1 = −û0 , (40)

D2[(1 + ΛTs)T1] = Pr Re[(us − c0)T̂0 + w1DTs] , (41)
D[(1 − λTs)Du1] = 3αT1 + λD(T1Dus) + Re[p̂0 + (us − c0)û0 + w1Dus] , (42)

subject to

w1(0) = 0 , (43)
D[(1 + ΛTs)T1] = −BiT1 at z = 1 , T1(0) = 0 , (44)

(1 − λTs)Du1 = −MaRe(T̂0 + DTs) at z = 1 , u1(0) = 0 , (45)

where ŵ1(z) = iw1(z), T̂1(z) = iT1(z), and û1(z) = iu1(z) are complex-valued functions while w1(z), T1(z), and
u1(z) are real-valued functions. The solution to (40) has the form

w1(z) = d0 + d1z + d2z2 + d3(a − bz)3/2 + d4(a − bz)5/2 + d5z ln(a − bz)
+d6 ln(a − bz) + d7

√
a − bz + d8(a − bz) ln(A − λ√a − bz) + d9 ln(A − λ√a − bz) ,

where the constants dl (l = 0,1, . . . ,9) are related to b j ( j = 0,1, . . . ,6). Solutions to (41) and (42) were
obtained with the help of the Maple Computer Algebra System but are very lengthy and hence not worth
presenting explicitly; instead, we include the Maple code.15 The expression for u1 involves the dilogarithm
(dilog(z)) and the general polylogarithm of index m (polylog(m, z)) functions defined by

dilog(z) =
 z

1

ln(ξ)
(1 − ξ) dξ , polylog(m, z) =

∞
n=1

zn

nm
.

We point out that the phase speed corresponding to the most unstable disturbance occurs when k = 0
(i.e., infinitely long wavelength) and hence is given by c0. From the kinematic condition, it follows that:

c0 = us(1) − w1(1) (46)

and is a real quantity. To obtain the condition for neutral stability, we proceed to the O(k2) problem and
examine the equation

Dŵ2 = −iû1 (47)

and the corresponding impermeability condition

ŵ2(0) = 0 . (48)

Since û1(z) is imaginary, it follows that ŵ2(z) will be a real-valued function. Applying the kinematic condition
yields

c1 = iŵ2(1) .
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Thus, the condition Im(c) = 0 for neutral stability reduces to c1 = 0 or 1

0
u1(ξ)dξ = 0 . (49)

Solving (49) generates a dispersion relation for the scaled critical Reynolds number, Re∗crit = Recrit/ cot β,
having the functional form

Re∗crit = f (α,λ,Λ,Pr,Ma,Bi) ,
which predicts the onset of instability. Turning off the heating recovers the familiar isothermal result
Re∗crit = 5/6. Also, just as in the isothermal case, for Weber numbers of order unity, the critical Reynolds
number does not depend on We. Apart from the two special cases corresponding to Bi = 0 and λ = Λ = 0
outlined in Ref. 10, the analytical expression for Re∗crit is extremely lengthy and complicated. Fortunately,
with the help of the Maple Computer Algebra System, we are able to produce plots illustrating how the scaled
critical Reynolds number, Re∗crit, and perturbation phase speed, c0, depend on the various dimensionless
parameters. This is the focus of Sec. IV.

IV. RESULTS AND DISCUSSION

Based on the dimensionless formulae
ρ

ρ0
= 1 − αT ,

µ

µ0
= 1 − λT ,

and the fact that the scaled temperature, T , attains a maximum value of unity, it immediately follows that
α,λ ∈ [0,1).

We begin by making comparisons with previous research. Pascal et al.10 derived asymptotic expansions
for Re∗crit for cases when Bi → 0 and when λ,Λ → 0. Contrasted in Figure 1 are exact and asymptotic
variations in Re∗crit with Bi. Two different asymptotic expansions are captured in this plot, one for small Bi
and the other for small λ,Λ. As expected good agreement is found in the small Bi limit. Since the values of
λ,Λ are fairly small, we also see good agreement over the entire range of Bi shown. The extent of validity
of the asymptotic expansions is clearly demonstrated in Figure 2. Again, two different asymptotic expansions
are illustrated here. The asymptotic expansion for small Bi agrees well with the exact solution provided Bi is
small, while the other shows poor agreement since the values of λ,Λ are larger in this case.

In interpreting our results, we first consider the case with Bi = 0. This corresponds to the idealized
case where no heat escapes through the surface of the fluid layer, and consequently the steady temperature
distribution is uniform. In this case, the scaled critical Reynolds number reduces to

Re∗crit =
5
6
(1 − λ)2
(1 − α) .

FIG. 1. Comparison between exact and asymptotic Re∗crit values with α = 0.5, λ = 0.2, Λ = 0.25, Ma = 1, and Pr = 7.
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FIG. 2. Comparison between exact and asymptotic Re∗crit values with α = 0.5, λ = 0.7, Λ = 0.7, Ma = 1, and Pr = 7.

Thus, Re∗crit increases with α and decreases with λ. This can be explained by examining how the flow rate, Q,
is influenced. Recall that for a steady uniform isothermal flow,

Q =
ρg sin βH3

3µ
.

We immediately see that increasing α decreases ρ, and hence, decreases the flow rate which stabilizes the
flow when µ is kept constant. Likewise, if we fix ρ and increase λ, then µ decreases which increases the
flow rate, and thus destabilizes the flow. Alternatively, increasing λ reduces the viscosity and gives rise to a
less viscous fluid which will result in a greater flow rate. It is interesting to note that if λ varies according to
λ = 1 −

√
1 − α, then Re∗crit remains constant.

If we now let Bi increase from zero the temperature distribution in the fluid begins to develop a negative
z gradient and if the free surface is non-planar, then the temperature along the free surface will no longer be
constant. One important consequence will of course be the generation of thermocapillarity. We can isolate this
effect by setting λ = Λ = α = 0, i.e., allowing surface tension to be the only fluid property that varies with
temperature. In this case, the expression for the scaled critical Reynolds number is given by

Re∗crit =
10(1 + Bi)2

5Ma Bi + 12(1 + Bi)2 ,

which coincides with the result obtained in previous research.5 This formula clearly shows that thermocap-
illarity is destabilizing since Re∗crit decreases with Ma. As a function of Bi, the scaled critical Reynolds
number attains a minimum at Bi = 1, given by Re∗crit,min = 40/(48 + 5Ma), and the limit as Bi tends to
infinity is equal to the value at Bi = 0 which is given by Re∗crit = 5/6; this corresponds to the well known
theoretical result for the isothermal case. This dependence on Bi can be explained as follows. When Bi = 0,
the steady-state temperature within the fluid layer is constant, and thus the free-surface temperature is uniform
which neutralizes the Marangoni effect. As Bi is increased, a variation in free-surface temperature develops
and thermocapillary forces are strengthened. However, for large Bi, the temperature along the free surface
approaches that of the ambient medium which is constant, and as such the Marangoni effect is again weak-
ened. Consequently, there exists a optimal value of Bi for which thermocapillarity is maximized resulting in a
minimum value for Re∗crit.

We next examine the impact of variation in the density with respect to z, which occurs when the Biot
number is in the range of 0 < Bi < ∞. For positive and finite Bi, a negative temperature gradient within
the fluid layer ensues which establishes a gravitationally unstable top-heavy density gradient within the fluid
layer. We expect an amplification in the temperature gradient to be a contributor to flow instability since it af-
fects the density gradient (i.e., ∂/∂z(ρ/ρ0) = −α∂T/∂z). Furthermore, changes in surface elevation will cause
changes in the flow rate which will accentuate surface undulations and lead to instability. Finally, the variation
in free-surface temperature is maximized at an optimal value of Bi which maximizes the variation in density
along an undulating surface which in turn plays a destabilizing role similar to a variable surface tension. The
physical interpretation is that a variable free-surface density will lead to variations in momentum which will
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FIG. 3. Re∗crit versus Bi for selected values of α with λ = Λ = Ma = 0, and Pr = 7.

generate impulses and create surges. Now, increasing the parameter α amplifies the density gradient and thus
magnifies the instability mechanisms listed above. However, the density decreases as α is increased and this
will lower the flow rate. Thus, increasing α triggers competing stability mechanisms. This competition is also
reflected in the Rayleigh number, Ra, which for our formulation and flow configuration can be expressed as

Ra =
α̂g cos βH3∆T

ρ0
(
µ
ρ

) (
K
ρcp

) = 3 cot β *
,

αcpρ2Q
ρ0K

+
-
.

In the classical Rayleigh-Bénard problem,16,17 the Rayleigh number represents the ratio of the destabilizing
effect of the buoyancy force to the stabilizing effect of the viscous force. Here, we clearly see that increasing α

does not necessarily increase Ra since both ρ and Q decrease while holding cp and K constant. The outcome
of this interaction will be further influenced by the other parameters, which we now investigate.

We begin by setting all the temperature variation parameters equal to zero except α, i.e., λ = Λ = Ma = 0.
In this case, the scaled critical Reynolds number will only depend on α, Bi, and Pr . The dependence on these
parameters is illustrated in Figures 3 and 4. Figure 3 shows Re∗crit as a function of Bi for different values of α
with Pr = 7, while in Figure 4, the Prandtl number is fixed at a value of 30. It can be seen that in all cases,

FIG. 4. Re∗crit versus Bi for selected values of α with λ = Λ = Ma = 0, and Pr = 30.
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FIG. 5. Re∗crit versus α for selected values of Ma with λ = Λ = 0, Bi = 1, and Pr = 7.

Re∗crit attains a minimum at an intermediate value of Bi. This behaviour is similar to that associated with ther-
mocapillarity as explained above and is related to variations in density along the surface as well as variations
in flow rate. An interesting difference, however, is the fact that as Bi tends to infinity, Re∗crit does not approach
the value corresponding to Bi = 0. Instead, it approaches a value that varies with α and Pr according to the
formula

Re∗crit =
1008(40 − 11 α)

48384 + 7285 α2 − 1575 α Pr + 465 α2Pr − 37863 α
.

It can be shown that for Pr < Prc, the limit is less than the value at Bi = 0 which is Re∗crit =
5

6(1−α) , while for
Pr > Prc, the opposite is true. The value of Prc is given by

Prc =
119133 − 30103 α

75(105 − 31 α) .

For 0 < α < 1, the value of Prc ranges between 1891/125 ≈ 15 and 8903/555 ≈ 16.
Regarding the outcome of increasing α, the results in Figure 3 reveal that for fixed values of Bi and Pr ,

the scaled critical Reynolds number increases. The rise in Re∗crit is particularly dramatic for small values of
Bi since in this range, the stratification is weak and the free-surface temperature is nearly uniform; thus all

FIG. 6. Re∗crit versus α for selected values of Bi with λ = Λ = 0, Ma = 10, and Pr = 7.
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FIG. 7. Re∗crit as a function of Bi for selected values of Ma with λ = 0.5, α = Λ = 0, and Pr = 7.

the destabilizing factors are minimized. However, as it can be seen in Figure 4, if Pr is sufficiently large then
increasing α can destabilize the flow for a specific range of Bi values.

Now, we proceed to study the interaction with the Marangoni effect. Figure 5 portrays plots of Re∗crit as
a function of α for different values of Ma with Bi = 1 and Pr = 7. It can be seen that if Ma is sufficiently
large, increasing α destabilizes the flow. This suggests that the Marangoni effect couples with the destabilizing
effects associated with a variable density, and if sufficient, it can reverse the outcome of the competition
between stabilizing and destabilizing factors.

In Figure 6, we display Re∗crit as a function of α for various values of Bi with Ma = 10. For sufficiently
large Bi, the free-surface temperature has little variation, and thermocapillarity is weak despite the large
Marangoni number. Therefore, increasing α acts as a stabilizing factor as in the case for small Ma. As Bi
is decreased and approaches the optimal value for which the Marangoni effect is maximized, the stabilizing
influence of α diminishes and eventually succumbs to thermocapillarity.

Varying λ in conjunction with other parameters has a more complicated outcome. Figure 7 plots varia-
tions in Re∗crit with Bi for selected values of Ma with λ = 0.5. In contrast to the case with λ = 0 illustrated
in Figures 3 and 4, it is evident that if λ is sufficiently large and Ma sufficiently small, then Re∗crit becomes
an increasing function of Bi. This phenomenon is explained as follows. If Bi = 0, then Ts(z) ≡ 1 and the

FIG. 8. Re∗crit as a function of α for different λ with Bi = 0.5, Λ = 0.5, Ma = 10, and Pr = 7.
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FIG. 9. Re∗crit as a function of Bi for different values of Λ with Ma = 1 and Pr = 7. In the top panel, α = 0.2 and λ = 0,
while in the bottom panel, α = 0 and λ = 0.2.

viscosity is reduced by the maximum amount throughout the fluid layer yielding a maximum flow rate. As
Bi increases, Ts becomes a decreasing function of z, and thus the reduction in viscosity is less which leads
to a decrease in flow rate and hence an increase in Re∗crit. Although the Marangoni effect is strengthened as
Bi increases from zero, for sufficiently small Ma, it is not enough to counterbalance the stabilizing effect
associated with the increase in viscosity. For larger Ma, the variation in Re∗crit with Bi possesses a minimum.
As previously explained, the reason for this minimum is because there exists an optimal value of Bi where the
Marangoni effect is maximized. In addition, the variation in viscosity along a non-planar surface will lead to
changes in flow speed which will cause wave steepening that reinforces the Marangoni effect. Thus, these two
effects combine to yield a significant decrease in Re∗crit as seen in Figure 7.

Plotted in Figure 8 is Re∗crit as a function of α for different values of λ. These results reveal that for
small values of λ, the scaled critical Reynolds number is a decreasing function of α, whereas for larger λ,
the distribution attains a maximum at an α value which increases with λ. As expected, for a fixed value of
α, increasing λ destabilizes the flow since the fluid becomes less viscous. However, for a fixed value of λ
increasing α can actually stabilize the flow if λ is sufficiently large. Again, we have competing effects which,
depending on the parameter values, will dominate one over the other.

FIG. 10. c0 versus α for selected values of Bi with λ = 0.5 and Λ = 0.5.
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FIG. 11. c0 versus Bi for selected values of α with λ = 0.5 and Λ = 0.7.

The rate of change in thermal conductivity with temperature is measured by Λ. As illustrated in Figure 9,
the effect of this parameter on the onset of instability is dependent on the values of the other parameters.
When plotted as a function of Bi, the results reveal that depending on the values of α and λ, the role played by
increasing Λ can be reversed.

The last two figures attempt to reveal the dependence of the phase speed, c0, on the various parameters.
Analysing our expression for c0, we have determined that it is independent of Ma and Pr . Furthermore, c0
varies linearly with α; this feature is portrayed in Figure 10 for various values of Bi. Figures 10 and 11
indicate that the phase speed deviates significantly from the isothermal value c0 = 3. Figure 11 which shows
c0 as a function of Bi, c0(Bi), for different values of α is particularly interesting; it illustrates that as α is
increased, c0(Bi) changes from a function possessing a minimum to one that is strictly increasing.

V. CONCLUSIONS

Presented here was a theoretical investigation into the effects of variable fluid properties on thin film
stability. The fluid properties were allowed to vary linearly with temperature. Heating takes place as a result
of a temperature difference between the incline and the ambient gas. We carried out a linear stability analysis
based on the assumption that long-wave perturbations are the most unstable. With the aid of the Maple
Computer Algebra System, we were able to obtain exact solutions and compute the dependence of the
critical Reynolds number and perturbation phase speed on the various dimensionless parameters controlling
the problem. Previously, only asymptotic solutions to this problem were obtained that were restricted to small
values of certain parameters. The present study is not subject to any of these restrictions; we were able to
analyse the problem for the full range of parameter values and thus performed a more thorough investigation
and drew new quantitative and qualitative conclusions.

More specifically, we studied in detail the effect of the density variation. Increasing α intensifies two
competing effects regarding the onset of instability. One is a decrease in density throughout the fluid, which
has a stabilizing effect since it reduces the flow rate. The other is related to the fact that the rate of reduction
in density is height dependent resulting in a top-heavy stratification. This leads to a wave-breaking tendency
which couples with thermocapillarity to amplify surface waviness and thus contributes to interfacial insta-
bility. We have illustrated how various other parameters affect the competition between these two effects. Most
notably, we have discovered that if the increase in viscosity with height (due to a decrease in temperature)
is sufficiently rapid, then the increase in flow rate with height is reduced allowing a decrease in density to
stabilize the flow.

Another interesting observation that we discovered regards the coupling of variations in viscosity with
the Marangoni effect. We found that if the viscosity variation is sufficiently large and Ma is sufficiently small,
then the scaled critical Reynolds number becomes a strictly increasing function of Bi. However, for large
enough values of Ma, the dependence of the scaled critical Reynolds number with Bi takes on a very different
behaviour whereby the Re∗crit curve possesses a minimum.
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Finally, the formula obtained for the perturbation phase speed reveals that it is independent of Ma,Pr ,
and varies linearly with α.
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