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The method of weighted residuals for thin film flow down an inclined plane is extended to include

the effects of bottom waviness, heating, and permeability in this study. A bottom slip condition is

used to account for permeability and a constant temperature bottom boundary condition is applied.

A weighted residual model (WRM) is derived and used to predict the combined effects of bottom

waviness, heating, and permeability on the stability of the flow. In the absence of bottom

topography, the results are compared to theoretical predictions from the corresponding Benney

equation and also to existing Orr-Sommerfeld predictions. The excellent agreement found indicates

that the model does faithfully predict the theoretical critical Reynolds number, which accounts for

heating and permeability, and these effects are found to destabilize the flow. Floquet theory is

used to investigate how bottom waviness influences the stability of the flow. Finally, numerical

simulations of the model equations are also conducted and compared with numerical solutions of

the full Navier-Stokes equations for the case with bottom permeability. These results are also

found to agree well, which suggests that the WRM remains valid even when permeability is

included. VC 2011 American Institute of Physics. [doi:10.1063/1.3667267]

I. INTRODUCTION

Gravity-driven flow down an inclined plane has been

studied extensively on various levels: experimentally, theo-

retically, and numerically.1–42 Film flow down an inclined

plane with bottom heating has also been reported in several

investigations.43–53 In addition, the stability associated with

flow down a porous inclined plane with and without heating

was studied in Refs. 54–60.

Several recent studies have investigated the interaction

of thermocapillary and inertial instabilities on thin fluid film

flow down a heated impermeable incline. The common

approach is to assume a linear variation in surface tension

with temperature, while the other fluid properties are taken

to be constant. Kalliadasis et al.46 made this assumption and

used a first-order integral-boundary-layer model to study

flow over an even incline having a constant bottom tempera-

ture that exceeds that of the surrounding fluid. Following

that work, Ruyer-Quil et al.50 and Scheid et al.52 applied a

more accurate second-order weighted residual model

(WRM) to the even bottom problem, improving the critical

Reynolds number predictions for the flow. Later, Trevelyan

et al.53 considered both constant temperature and constant

heat flux bottom boundary conditions using a weighted resid-

ual model, and concluded that in the long wave limit, heating

has a destabilizing effect on the flow in both cases. Most

recently, the problem with both bottom heating and topogra-

phy, with a constant temperature bottom boundary condition,

was analyzed by D’Alessio et al.43 using a second-order

weighted residual model.

In an innovative early study of flow along a porous

boundary, Beavers and Joseph61 proposed, and experimen-

tally verified, effective conditions to be prescribed at the

fluid-porous interface of Poiseuille flow and Darcyan

filtration. Pascal55 made use of these conditions to carry out

a linear stability analysis of inclined flow. In that study,

under the assumption of sufficiently low permeability, the fil-

tration velocity was deemed relatively negligible, resulting

in a one-sided model for the inclined flow, with the effect of

substrate filtration being captured by a slip-velocity condi-

tion prescribed at the fluid-porous interface. The accuracy of

the one-sided model was recently investigated by Liu and

Liu54 who compared the results with those from equations

that coupled the flow with Darcyan filtration through the po-

rous medium. They found that the one-sided approach is

qualitatively correct, and in fact quite accurate in a wide

range of cases involving low to moderate permeability,

particularly if the porous substrate layer is not too thick. A

similar confirmation was obtained by Thiele et al.58 whose

two-sided model implements the Darcy-Brinkman equation

and also involves the thermal effects associated with a heated

substrate. The one-sided method has been implemented in

several investigations. For example, Pascal56 incorporated a

non-Newtonian rheology into the one-sided model and

employed a depth-integrating strategy in order to facilitate

linear and nonlinear stability analyses of the flow. Sadiq and

Usha,60 on the other hand, concentrated on the Newtonian

case and established a Benney-type equation on which a

weakly nonlinear stability analysis was performed. Thermal

effects were included by Sadiq et al.,59 while Pascal and

D’Alessio57 adjusted the fluid-porous interface conditions to

non-planar geometry and implemented a one-sided model

for isothermal flow which encompasses the effects of uneven

bottom topography.
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Previous investigations concerning the effect of thermo-

capillarity on the stability of inclined flow have discovered a

strong dependence of the critical Reynolds number on the

Marangoni number, the parameter measuring the magnitude

of the applied temperature difference and the influence of

temperature on surface tension. The decrease in the critical

Reynolds number is significant even if the value of the Mar-

angoni number is small; therefore, thermocapillarity is a rel-

evant factor in many situations involving the instability of

inclined non-isothermal flow. The objective of the present

work is to establish and implement a theoretical model which

incorporates thermocapillary effects combined with both bot-

tom topography and bottom permeability. This model would

thus provide a more realistic description of a greater number

of practical problems. In the manufacturing processes, one

often finds objects with uneven surfaces which undergo coat-

ing applications with thin fluid films. Undulations may be

associated with a required surface pattern for the object or

can be an unintended consequence of a fabrication flaw. In

other circumstances involving free-surface flows, it is impor-

tant to design a special shape of the substrate that will result

in the desired effect with regard to the occurrence of flow

instability.9 In a heat exchanger, for example, the formation

of interfacial waves would be welcomed since this would

increase the surface area of the liquid-gas interface which

facilitates the transfer of heat. The additional inclusion of

substrate permeability into the flow model would further

broaden the range of possible applications. A permeable bot-

tom condition can very effectively describe flow over rough

surfaces59 as well as cases where the substrate is an outright

porous material, as is often the case in printing and painting

processes and in the coating of textiles.9 A thorough under-

standing of the effect of bottom undulations and permeability

on flow instability would be instrumental in determining the

optimal design of the substrate. Corrugated substrates can

potentially be made more effective in their role as flow stabi-

lizing or destabilizing agents if constructed from porous ma-

terial or with a rough surface.

This investigation assumes that heating occurs as a

result of a temperature difference between the bottom sur-

face and the ambient air. A one-sided model is adopted

whereby the effect of the porous medium is replaced by the

Beavers and Joseph61 slip condition. The derived model

equations for film flow, expressed in terms of the flow rate,

film thickness, and free-surface temperature, are then used to

predict the critical Reynolds number for the onset of instabil-

ity over an even bottom. In addition, the corresponding Ben-

ney equation4,62–64 is also derived and used to determine the

instability threshold. The results are compared with those

obtained by Sadiq et al.,59 who used a perturbation solution

to the Orr-Sommerfeld equation to find the critical Reynolds

number for flow over a heated, porous, even bottom. For the

case of a sinusoidal bottom, Floquet theory is applied to ana-

lyze the influence of bottom topography on the stability of

the flow.

An important advantage offered by the model equations

over the complete set of equations and boundary conditions

is that the model equations can be solved numerically much

faster than the full equations. A fractional step method is

implemented to numerically advance the model equations in

time. Nonlinear numerical simulations are carried out to ver-

ify the predictions of the linear theory and also to compute

the evolution of the interfacial waves for unstable flows.

Lastly, numerical solutions of the full Navier-Stokes equa-

tions, obtained using the CFX software package, are con-

ducted and contrasted with the model solutions.

The remainder of the article is organized as follows. The

governing equations along with the non-dimensionalization

procedure are described in Sec. II, while the mathematical

formulation of the model is described in Sec. III. Steady-

state solutions are discussed in Sec. IV and analyses of the

stability of the flow are presented in Secs. V and VI. Numeri-

cal solutions for unstable cases are reported in Sec. VII,

while the conclusions of the work are summarized in

Sec. VIII. Finally, an Appendix has been included to investi-

gate the consequences of including a temperature-dependent

density and viscosity.

II. GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

The flow configuration is shown in Fig. 1. The x-z coor-

dinate system is defined so that the x-axis is directed down

the incline with the z-axis pointing into the fluid layer. The

surface is inclined at an angle b with the horizontal. The

thickness of the fluid layer is given by h(x, t) and the bottom

topography is denoted by f(x).

The flow is assumed to be two dimensional and laminar,

and the fluid is taken to be viscous, incompressible, and New-

tonian. All the fluid properties are assumed to be constant

with the exception of surface tension which varies linearly

with temperature. In the Appendix we consider, in addition,

temperature variations in density and viscosity for flow down

an impermeable even incline and demonstrate that even if

these variations are relatively significant, only the variation in

surface tension affects the instability threshold.

The equations governing the problem are the continuity,

momentum, and energy equations. Non-dimensional parame-

ters appearing in the equations include

Re ¼ Q

�
; We ¼ rH

qQ2
; Bi ¼ agH

qCpjT
;

Ma ¼ cDT

qU2H
; Pr ¼ �

jT
; Pe ¼ PrRe;

FIG. 1. Problem setup for the case with bottom topography.
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and are known as the Reynolds, Weber, Biot, Marangoni,

Prandtl, and Peclet numbers, respectively. Additional param-

eters are

d ¼ H

l
; ab;

which are the shallowness and the dimensionless bottom am-

plitude for the case of a wavy bottom. In dimensionless

form, the bottom topography will vary according to

fðxÞ ¼ ab cosð2pxÞ:

In this study, d is assumed to be small, while ab can be of

order unity. It should be emphasized that ab has been scaled

with H, that is, ab¼Ab/H where Ab is the dimensional

bottom amplitude. Although ab¼O(1), the bottom waviness

is small relative to the wavelength of the bottom undulations,

as Ab¼Hab¼ dabl, so that the bottom amplitude is O(d)

compared to the wavelength. This means that the bottom

undulations are slowly varying in the direction of flow. Here,

Q is the characteristic volume flow rate, U is the characteris-

tic velocity, H is the characteristic fluid layer thickness, and

l is a characteristic length in the flow direction. For a wavy

bottom, l will be taken to be the wavelength of the bottom to-

pography. The fluid properties �, q, ag, cp, jT, and r denote

the kinematic viscosity, density, interface heat transfer coef-

ficient, specific heat, thermal diffusivity, and surface tension,

respectively. Measuring the rate of decrease in surface ten-

sion with increasing temperature is the parameter c. The

change in temperature between the ambient surroundings

(Ta) and the bottom surface (Tb) is given by DT¼Tb� Ta.

For an impermeable, even bottom, the scales for the flow

rate, Q, and the velocity, U, are related to the fluid thickness,

H, through

Q ¼ H3g sin b
3�

; U ¼ Q

H
¼ H2g sin b

3�
:

This relation between Q and H is assumed in general, not

just for the impermeable even bottom case. Lastly, the pres-

sure scale is taken to be qU2.

With these non-dimensional parameters and scalings in

place, the conservation equations can be simplified by

assuming that Re¼O(1) and retaining terms up to second

order in d. It is well known that for isothermal flow along an

even impermeable incline the instability threshold is given

by Recrit¼ 5 cot b/6; thus, it is expected that the resulting

governing equations will be suitable for investigating the sta-

bility of flows along sufficiently steep inclines. For suffi-

ciently gentle inclinations, cot b becomes of order 1/d and

large values of Re would have to be considered, which would

render some of the discarded terms non-negligible. Further,

for large Reynolds numbers, the flow becomes unstable with

respect to shear waves of finite wavelength which is the dom-

inant mode of instability if the inclination is small enough.65

Under the assumption that the Reynolds numbers is O(1) the

non-dimensional governing equations, to O(d2), are43

@u

@x
þ @w

@z
¼ 0; (1)

dRe
@u

@t
þ u

@u

@x
þ w

@u

@z

� �
¼ �dRe

@p

@x
þ 3þ @

2u

@z2
þ d2 @

2u

@x2
;

(2)

d2Re
@w

@t
þ u

@w

@x
þ w

@w

@z

� �
¼ �Re

@p

@z
� 3 cot bþ d

@2w

@z2
;

(3)

dPe
@T

@t
þ u

@T

@x
þ w

@T

@z

� �
¼ @

2T

@z2
þ d2 @

2T

@x2
; (4)

which describe mass, x-momentum, z-momentum, and

energy conservation, respectively. The non-dimensional

dynamic conditions at the interface, g¼ hþ f, including

terms to O(d2) are43

p� 2d
Re

@w

@z
þ d2ðWe�MaTÞ @

2ðhþ fÞ
@x2

¼ 0

@u

@z
� 4d2 @ðhþ fÞ

@x

@u

@x
þMaRed

@T

@x
þ @ðhþ fÞ

@x

@T

@z

� �
¼ 0

9>>>=
>>>;

at z ¼ g: (5)

The first expression ensures continuity of normal stress

across the interface, while the second ensures a continuous

tangential stress along the interface. The kinematic

condition at the interface, z¼ g, is given non-dimensionally

by

@h

@t
¼ w� u f0 þ @h

@x

� �
: (6)

Heat transfer at the interface occurs through convection and

is described in dimensional form by

~rT � n̂ ¼ � ag

qcpjT
ðT � TaÞ at z ¼ g;

where n̂ is the outward pointing normal to the surface. Tem-

perature is non-dimensionalized using ~T¼ðT�TaÞ=ðTb�TaÞ.
This boundary condition, when non-dimensionalized and

suppressing the tildes, yields

� BiT 1þ d2

2

@ðhþ fÞ
@x

� �2
 !

¼ @T

@z
� d2 @ðhþ fÞ

@x

@T

@x

at z ¼ g; (7)

to O(d2).
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The bottom boundary conditions include two expres-

sions proposed by Beavers and Joseph.61 For non-planar

surfaces these have been extended by Saffman.66 For exam-

ple, the bottom slip condition as derived by Saffman in

dimensional form is given by

@vjj

@N̂
¼ ~rvjj � N̂ ¼ affiffiffi

j
p ðvjj � vjjpÞ;

where vjj is the tangential component of the velocity along

the bottom surface, N̂ is the normal vector to the bottom sur-

face, and the subscript p denotes a quantity in the porous me-

dium. The permeability of the porous medium is denoted by

j, and a is a dimensionless parameter introduced by Beavers

and Joseph.61 In an attempt to simplify this condition, the ra-

tio of the characteristic velocity scale in the porous medium,

denoted by Up, to that in the fluid layer is considered. Using

Up¼O(jq sin b/�) then yields

Up

U
¼ O

ffiffiffi
j
p

H

� �2
 !

¼ Oða2d2
1Þ;

where

d1 ¼
ffiffiffi
j
p

rH
;

and is also assumed to be small. The experiments of Beavers

and Joseph61 suggest that we can assume that a2¼O(d). If

it is further assumed that d1¼O(d), then it follows that

Up/U¼O(d3). Since the model is second order in d, this

means that the velocities in the porous medium can

be neglected. Thus, the above condition when non-

dimensionalized simplifies to

d1

@u

@z
¼ uþ d2f0w at z ¼ f: (8)

Condition (8) can be interpreted as a “slip-velocity” at the

porous interface and is illustrated in Fig. 2. In reality there

will be a boundary layer formed in the porous medium,

which will guarantee that the velocity in the porous layer

matches that in the fluid layer along the interface. The

other bottom boundary condition comes from the continuity

of normal velocity across the fluid – porous interface. This

condition can be expressed as v? ¼ v?p at z¼ f where v?

denotes the velocity component normal to the bottom sur-

face. When non-dimensionalized this boundary condition

becomes

w ¼ uf0 at z ¼ f; (9)

to second order.

A condition for the temperature at the bottom surface is

also required. If the surface is maintained at a constant tem-

perature of Tb, then it is clear from the proposed scaling that

the condition becomes

T ¼ 1 at z ¼ f: (10)

Trevelyan et al.53 consider both constant temperature and

specified heat flux boundary conditions, and note that spec-

ifying the heat flux is more appropriate when modeling

flows along a wall that loses heat to both the fluid and the

ambient air. However, there are other applications where

the constant temperature boundary condition may be more

appropriate, such as in the problem considered by Nong

et al.68 involving a tear layer flowing over a contact lens.

In this case, the eye would be maintained at a constant

temperature as a result of the body heating the eye. This

represents a prime example whereby a wavy, heated, po-

rous bottom is combined with temperature dependent sur-

face tension effects. Permeability is important because

contact lenses are permeable. Heating affects the flow

because the eye is heated by the body to a temperature

greater than the surrounding air, and bottom topography

comes into play through the curvature of the eye. There-

fore, a model that combines all of these factors describes

this flow more accurately than any of the previous models

that only account for one or two of these factors. This is

an important problem because instability and rupture of the

tear layer over a contact lens is undesirable and uncomfort-

able for the contact lens wearer; therefore, the impact on

stability presented by the degree of permeability, the tem-

perature difference between the permeable layer and the

surroundings, and the shape of the bottom topography are

important in determining whether a particular design of

contact lens will allow the tear layer to remain stable.

III. MODEL DEVELOPMENT

The method of weighted residuals, proposed by Ruyer-

Quil and Manneville,26 has been successfully applied to a

host of problems involving heating and bottom topography.

The goal here is to extend this method to include heating,

permeability, and bottom topography.

First, the pressure is eliminated from Eqs. (2) and (3).

This is easily accomplished by integrating the z-momentum

equation from z to the free surface and applying the normal

stress condition given by Eq. (5). The expression obtained

for the pressure is then substituted into the x-momentum

Equation (3). This leaves the continuity equation, a single

momentum equation and the energy equation. Next, velocity

and temperature profiles are assumed; as suggested by the

steady-state solution, the velocity profile is chosen to have a

parabolic shape given byFIG. 2. Beavers and Joseph model for flow over a porous layer.67
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uðx; z; tÞ ¼ 3q

2ðh3 þ 3d1h2Þ bþ
dMaRe

4h

@h
@x

b1 where

b ¼ ðz� fÞð2h� zþ fÞ þ 2d1h and

b1 ¼ ðz� fÞð2h� 3ðz� fÞÞ:

(11)

It is worth noting that the parabolic profile stems from

flow over an even bottom. The justification for applying it

to a wavy bottom hinges on the fact that the bottom undu-

lations are slowly varying in the direction of flow. Because

of this, the deviation from the parabolic profile is expected

to be small. In fact, D’Alessio et al.43 have computed the

steady-state profile to O(d2) and have found that the

assumed parabolic profile matches the leading-order term

exactly. The correction due to bottom waviness is O(abd)

and also takes on a similar parabolic profile. Thus, the

deviation from the parabolic profile is indeed small, espe-

cially for small bottom amplitudes. The assumed parabolic

profile satisfies the boundary conditions to O(d) and the

integral constraint,

ðhþf

f
uðx; z; tÞdz ¼ qðx; tÞ; (12)

where q is the dimensionless flow rate. Since it is not possi-

ble to simultaneously satisfy the bottom slip condition (8) to

O(dd1) and condition (12), the slip condition is only satisfied

to O(d); this is acceptable because d1 is assumed to be O(d),

so the error is approximately O(d2). The temperature profile,

on the other hand, is chosen to be linear to match its steady-

state solution and is given by

T ¼ 1þ h� 1

h
ðz� fÞ; (13)

where h(x, t)¼T(z¼ hþ f, x, t) is the interface temperature.

As explained in connection with the assumed velocity pro-

file, the deviation from the linear profile resulting from bot-

tom waviness will be small. This profile satisfies the bottom

temperature boundary condition, but not the interface condi-

tion (7). However, the interface condition is used in the de-

velopment of the model when the equations are integrated in

z, so its effect is included in the model. The momentum and

energy equations are then multiplied by weight functions

before integrating in z. In the spirit of the Galerkin method,

the weight functions used are b from Eq. (11) for the mo-

mentum equation, and (z� f) for the energy equation. The

last step involves integrating the equations across the fluid

layer to eliminate the z-dependence. The final form of the

model equations are

@h

@t
þ @q

@x
¼ 0;

dðhþ 2d1Þ
@q

@t
¼ d3hWe

5

2
d1 þ

5

6
h

� �
f000 þ @

3h

@x3

� �
þ d2

Re

9

2
h
@2q

@x2
� 9

2

@q

@x

@h

@x
� 6q

@2h

@x2
� 15

4
qf00

�

þ q

h
4
@h

@x

� �2

�5ðf0Þ2 � 5

2

@h

@x
f0

 !!
þ d2hReMa

1

48
h2 @

2h
@x@t

þ 15

224
hq
@2h
@x2
þ 19

336
h
@q

@x

@h
@x
þ 5

112
q
@h
@x

@h

@x

� �

þ d
9

7

q2

h

@h

@x
� 45

16
d1

q2

h2
f0 � 5

2
Ma

@h
@x

h

2
þ d1

� �
� 17

7
q
@q

@x
1þ d1

h
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þ d � 5

2

h cotðbÞ
Re

@h

@x
þ f0

� �
ðhþ 3d1Þ

� �

þ 5

2

h

Re
ðhþ 3d1Þ �

5

2

q

hRe
; (14)

dh
@h
@t
¼ d2 � 3

2

Bi

Pe
h f0 þ @h

@x

� �2

þ 3

40
MaReh2 @h

@x

� �2

þ h

Pe

@2h
@x2
þ 1

Pe

@h
@x

@h

@x

 !
þ d2ðh� 1Þ

� 3

80
MaReh h

@2h
@x2
þ 2

@h
@x

@h

@x

� �
þ 3

Peh
f0
@h

@x
þ 2

Peh

@h

@x

� �2

� 3

2Pe
f00� 1

Pe

@2h

@x2

 !

þ dðh� 1Þ d1

h

21

40

@q

@x
� 21

40

q

h

@h

@x
þ 9

2

q

h
f0

� �
� 7

40

@q

@x

� �
þ d

q

20

@h
@x

21
d1

h
� 27

� �
� 3

Peh
ðh� 1Þ � 3

Bi

Pe
h;

with the prime denoting differentiation with respect to x.

Although these equations appear to be more complicated

than the original set of equations, they are easier to work

with from analytical and numerical points of view since the

boundary conditions are imbedded in these equations. Lastly,

the even bottom case corresponds to f¼ 0, the isothermal

case can be recovered by setting Bi¼Ma¼ 0, and the imper-

meable case can be generated by setting d1¼ 0.

IV. STEADY-STATE SOLUTIONS

The steady-state solutions for the even bottom case can

be easily found from the model equations. From the continu-

ity equation, q must be constant; in order to prescribe this

value the scaling for q must be chosen. Two logical options

exist. If q¼ qs¼ 1 is chosen, then the momentum and energy

equations give
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hs ¼ 1� d1 þ d2
1 þ Oðd3

1Þ;

hs ¼
1

1þ Bi
þ Bi

ð1þ BiÞ2
d1 �

Bi

ð1þ BiÞ3
d2

1 þ Oðd3
1Þ:

(15)

Alternatively, qs can be chosen so that hs¼ 1; in this case,

the steady-state solution for flow over an even bottom is

hs ¼ 1; qs ¼ 1þ 3d1; hs ¼
1

1þ Bi
: (16)

The expressions for hs, qs, and hs correspond to constant

steady-state solutions for flow over an even incline. For vari-

able bottom topography, the steady-state solution for q is still

constant and equal to either qs¼ 1 or qs¼ 1þ 3d1; however,

the steady-state solutions for h and h will vary with position.

The periodic steady-state solution for flow over a wavy

bottom can be found using the Matlab routine bvp4c. Typical

plots over one bottom wavelength showing the effect of heat-

ing and permeability on the fluid thickness and interface tem-

perature are presented in Fig. 3 using the scaling hs¼ 1. The

basic case plotted in the top two panels represents the corre-

sponding isothermal, impermeable case. The top panel shows

the effect of adding a permeable bottom on the fluid layer

thickness, which is to increase the overall variation. This is

mainly driven by pressure and occurs because the fluid can

penetrate the bottom boundary; fluid tends to flow into the

boundary where the fluid layer is thinnest, and out of the

bottom boundary where the fluid layer is thickest, thus exag-

gerating these extremes. This also explains why the tempera-

ture variation is greater for the porous bottom case, as seen

in the bottom panel. Since bottom permeability increases the

variation in fluid thickness, the interface temperature will

also vary more across one bottom wavelength. Finally, the

middle panel of Fig. 3 shows an impermeable case and

reveals that heating has a negligible effect on the fluid

thickness.

Shown in Fig. 4 is the effect of permeability on the

alignment of the peaks and troughs between h and h for the

scaling qs¼ 1. For a stationary fluid, the interface tempera-

ture would be greatest where the fluid layer is thinnest

because this is where the interface is closest to the heated

bottom. Similarly, the interface temperature would be lowest

where fluid layer is thickest. For a fluid in motion, though,

these curves are shifted slightly so that the peak in interface

temperature occurs slightly after the trough in fluid thick-

ness, as illustrated in the plots. Adding permeability, how-

ever, shifts the h curve even more, resulting in a greater gap

between the point at which the fluid layer is thickest and the

point at which the interface temperature is lowest. This find-

ing makes sense since permeability has the effect of increas-

ing the flow velocity. In this case, the gap increases by about

0.07 bottom wavelengths. This feature is also apparent in the

unsteady numerical solutions to be presented in Sec. VII.

V. LINEAR STABILITY FOR AN EVEN BOTTOM

The critical Reynolds number for the even bottom prob-

lem with both bottom heating and permeability is determined

using two different methods. One method involves deriving

the Benney equation corresponding to this problem and then

performing a linear stability analysis on this equation. Alter-

natively, a stability analysis of the WRM equations can also

be carried out. The results from these two methods are com-

pared to each other and also to the results obtained by Sadiq

et al.59 From these comparisons, the performance of the

weighted residual model can be assessed. The expressions

for the critical Reynolds number are also used to establish

the impact of heating and bottom permeability on the stabil-

ity of the flow.

FIG. 3. Fluid thickness h and interface temperature h over one bottom

wavelength for ab¼ 0.1, d¼ 0.1, cot b¼ 1, We¼ 5, and Re¼ 1; d1¼ 0.1 for

cases with permeability parameter d1¼ 0.1 while for cases with heating

Ma¼Bi¼ 1.

FIG. 4. Fluid thickness h and interface temperature h over one bottom

wavelength for ab¼ 0.1, d¼ 0.1, cot b¼ 1, We¼ 100, Bi¼Ma¼ 1, and

Re¼ 1; for the cases with permeability parameter d1¼ 0.1.
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A. Linear stability using the Benney equation

Deriving the Benney equation makes use of the govern-

ing equations (1)–(4) and accompanying boundary conditions

(5)–(10) to generate an evolution equation for the fluid thick-

ness, h(x, t). In keeping with the expansion procedure intro-

duced by Benney,4 each of the primitive variables, u, w, p,

and T, is expanded in powers of the shallowness parameter d;

for example, u is expanded in the series u¼ u0þ du1þO(d2).

For the purposes of this analysis, only d is treated as a small

parameter. The smallness of d1 will not be exploited here; it

was used mainly to simplify the bottom boundary conditions.

Substituting these expansions into the governing equations

and boundary conditions leads to a hierarchy of problems at

each order of d. The first-order Benney equation requires only

the O(1) and O(d) problems. Outlined below is the solution of

the O(1) problem. The governing equations at leading order are

@u0

@x
þ @w0

@z
¼ 0;

3þ @
2u0

@z2
¼ 0;

Re
@p0

@z
þ 3 cot b ¼ 0;

@2T0

@z2
¼ 0

(17)

The dynamic conditions at the free surface become

p0 ¼ 0

@u0

@z
¼ 0

9=
; at z ¼ hþ f; (18)

and the free surface heat transfer condition gives

@T0

@z
¼ �BiT0 at z ¼ hþ f: (19)

Lastly, the bottom boundary conditions are

w0 ¼ f0u0

u0 ¼ d1

@u0

@z
T0 ¼ 1

9>>=
>>; at z ¼ f: (20)

Equations (17)–(20) can be easily solved for u0, w0, p0, and

T0 and the solutions are

u0 ¼
�3

2
ðz2 þ f2Þ þ 3zðhþ fÞ � 3hfþ 3hd1;

w0 ¼
�3

2
f0 þ @h

@x

� �
ðz� fÞ2

þ 3 f0h� d1

@h

@x

� �
ðz� fÞ þ 3f0hd1;

p0 ¼
3 cot b

Re
ðz� f� hÞ;

T0 ¼ 1þ ðf� zÞ Bi

1þ hBi
:

(21)

Continuing this procedure for the O(d) problem yields

expressions for u1, w1, p1, and T1. The first-order Benney

equation is then obtained from the kinematic condition to

which O(d) is

@h

@t
¼ w0 � ðu0 þ du1Þ

@h

@x
þ f0

� �
þ dw1: (22)

The final Benney equation for the even bottom problem

including both heating and bottom permeability is

@h

@t
þ 6d1h

@h

@x
þ @h3

@x
þ d

@

@x

6

5
Re h6 @h

@x
þ 6d1h5 @h

@x

��

þ 25

2
d2

1h4 @h

@x

��
þ d

@

@x

 
MaReBi

ð1þ hBiÞ2
h
@h

@x

h

2
þ d1

� �

� cot bð3d1h2 þ h3Þ @h

@x

!
¼ 0: (23)

The fluid thickness h is next perturbed about the steady-

state solution according to h ¼ hs þ ĥ where the perturba-

tion, ĥ, is assumed to have the form, ĥ ¼ h0eikðx�ctÞ.
Substituting this into the Benney equation and linearizing in

the perturbation produces a dispersion equation. The critical

Reynolds number, ReBen
crit , is found from =ðcÞ ¼ 0 where

=ðcÞ denotes the imaginary part of c. This leads to

ReBen
crit ¼

5

6
cotb

� 3d1h2
s þh3

s

h6
s þ6d1h5

s þ
25

2
d2

1h4
s þ

5

6

MaBi

ð1þhsBiÞ2
hs

hs

2
þd1

� �
2
6664

3
7775:

(24)

For the scaling qs¼ 1, the expression becomes

ReBen
crit ¼

5

6
cot b

1þ 5MaBi

12ð1þ Bið1� d1 þ d2
1ÞÞ

2
ðd2

1 þ 1Þ þ 7

2
d2

1

;

(25)

while for the scaling hs¼ 1, the critical Reynolds number is

given by

ReBen
crit ¼

5

6
cot b

1þ 3d1

1þ 6d1 þ
25

2
d2

1 þ
5MaBi

12ð1þ BiÞ2
ð1þ 2d1Þ

2
6664

3
7775:

(26)

This result has a similar form to the critical Reynolds

number for flow over an isothermal impermeable surface

given by 5 cot b/6 (Refs. 3, 4, and 41), to the critical Reynolds

number for flow over a heated impermeable surface given by43

5

6
cot b

1þ 5MaBi

12ð1þ BiÞ2
;
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and also to that for isothermal flow over a permeable surface

given by55,57

5

6
cot b

1þ 3d1

1þ 6d1 þ
25

2
d2

1

2
64

3
75:

Expressions (25) and (26) account for the combined influ-

ence of heating and permeability, and it can be seen that

heating and permeability acting either together or individu-

ally cause the critical Reynolds number to fall below the

isothermal impermeable threshold of 5 cot b/6, and hence

destabilize the flow.

Lastly, presented in the Appendix is an extension of the

problem considered in this section that includes a

temperature-dependent density and viscosity, in addition to

variable surface tension. The impact of these variable fluid

properties on the stability of the flow is deduced using a sim-

ilar analysis based on the corresponding Benney equation.

B. Linear stability using the model equations

An alternative method for determining the critical Reyn-

olds number takes advantage of the WRM equations. Each

flow variable in the model equations, h, q, and h, is perturbed

about its steady-state value as follows:

q ¼ qs þ q0eikðx�ctÞ; h ¼ hs þ h0eikðx�ctÞ;

h ¼ hs þ h0eikðx�ctÞ:

These are then substituted into the model equations and line-

arized in the perturbations. The three equations are then

combined to yield a dispersion equation. For neutral stabil-

ity, the imaginary part of c is set to zero, whereas the real

part is found to be s¼ 3hs(hsþ 2d1). It is noted that the phase

speed is close to 3, which is the value for isothermal, imper-

meable flow. The impact of permeability is seen to slightly

increase the speed which is consistent with the general obser-

vation that permeability tends to increase the flow velocity.

The critical Reynolds number is found to be

ReWRM
crit ¼

5

6
cotb

h2
s ðhs þ 3d1Þ

h3
s ðhs þ 2d1Þ3 þ

1

7
q2

s �
17

7
hsðhs þ 2d1Þðhs þ d1Þqs þ

5

12

MaBiðhs þ 2d1Þ
1þ hsBi

hshs

2
664

3
775: (27)

For the scaling qs¼ 1, the critical Reynolds number is

ReWRM
crit

¼
5

6
cotb

1þ 5MaBi

12ð1þ BiÞ2
1þ 2Bi

1þ Bi
d1 þ

1þ 2Bi2

ð1þ BiÞ2
d2

1

 !
þ 29

7
d2

1

;

(28)

while for the scaling hs¼ 1, the critical Reynolds number is

ReWRM
crit ¼

5

6
cotb

1þ 3d1

1þ 6d1 þ
92

7
d2

1 þ
5MaBið1þ 2d1Þ

12ð1þ BiÞ2

2
6664

3
7775:
(29)

The critical Reynolds numbers obtained using this method

are again similar in form to the isothermal, impermeable

result, with a correction term to account for heating and per-

meability. They are also very similar to the corresponding

expressions obtained using the Benney equation.

TABLE I. Comparison of critical Reynolds numbers for limiting cases to Orr-Sommerfeld results.

Limiting case ReWRM
crit ReBen

crit ReTheory
crit

Isothermal and impermeable Bi¼Ma¼ d1¼ 0 5

6
cot b

5

6
cot b

5

6
cot b

Impermeable d1¼ 0 5

6
cot b

1þ 5MaBi

12ð1þ BiÞ2

5

6
cot b

1þ 5MaBi

12ð1þ BiÞ2

5

6
cot b

1þ 5MaBi

12ð1þ BiÞ2

Isothermal Bi¼Ma¼ 0
5

6
cot b

1þ 3d1

1þ 6d1 þ
92

7
d2

1

2
64

3
75 5

6
cot b

1þ 3d1

1þ 6d1 þ
25

2
d2

1

2
64

3
75 5

6
cot b

1þ 3d1

1þ 6d1 þ
25

2
d2

1

2
64

3
75
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C. Comparison of linear stability results

The expressions for the critical Reynolds number

obtained from the two methods can be compared to theoreti-

cal values for various limiting cases. This is done in Table I.

The theoretical values, Retheor
crit , have been obtained from

perturbation expansion solutions of the Orr-Sommerfeld

equation from previously published studies.3,41,53,55,57 The

scaling hs¼ 1 is used for the case with permeability because

the theoretical results were found using this scaling. The

table shows that in the isothermal, impermeable limit, both

the Benney and the WRM expressions reproduce the theoret-

ical result. They also both yield the theoretical result in the

impermeable limit. In the isothermal limit, the Benney equa-

tion gives the same result as that found by Pascal55 and by

Sadiq et al.59 using the Orr-Sommerfeld equation; this is

expected, though, as both the Benney and Orr-Sommerfeld

equations emanate from the same governing equations and

boundary conditions, without making any profile assump-

tions as was done in deriving the WRM. The weighted resid-

ual result differs only to second order in the small parameter

d1. Because the WRM is second order in d, this level of

agreement is expected.

Sadiq et al.59 also consider the problem with both heat-

ing and permeability, and obtain the following expression

for the critical Reynolds number:

ReSad
crit ¼

5

6
cot b

1þ 3d1

1þ 6d1 þ
25

2
d2

1 þ
15

2
d3

1 þ
5MaBið1þ 2d1Þ

12ð1þ BiÞ2

2
6664

3
7775:

(30)

They derive this result from a perturbation solution to the

Orr-Sommerfeld equation using the scaling hs¼ 1. This

expression comes in close agreement with those given by

Eqs. (26) and (29).

D. Effect of heating and porosity on stability

The effects of heating and permeability on the critical

Reynolds number are illustrated in Figures 5–7. The critical

Reynolds numbers using the scaling qs¼ 1 as obtained from

expressions (25) and (28) are plotted. Fig. 5 shows how

increasing the permeability of the bottom surface affects the

critical Reynolds number. The curves correspond to a partic-

ular case with bottom heating, although the same trend

would be observed for other values of the Biot and Maran-

goni numbers, as well as for the isothermal case. The plot

reveals that increasing the permeability of the bottom desta-

bilizes the flow and hence decreases the critical Reynolds

number. Increasing the permeability allows for slip along the

bottom and, therefore, increases the overall velocity and vol-

ume flow rate, and the flow is therefore destabilized.

It can be seen from Fig. 6 that increasing the Marangoni

number also decreases the critical Reynolds number. The

Marangoni number measures the variation in surface tension

due to the temperature difference between the bottom surface

and the surroundings. This result indicates that heating

causes a variation in surface tension, which results in a less

stable flow. The variation in surface tension causes fluid to

be drawn to areas of higher surface tension. Since surface

tension increases with decreasing temperature, the peaks of

the disturbances will have higher surface tension since they

are further from the bottom. Hence, fluid is drawn toward the

peaks, causing the disturbances to grow and therefore desta-

bilizing the flow.

Fig. 7 shows how varying the Biot number, while hold-

ing the Marangoni number and permeability parameter con-

stant, affects the stability of the flow. In this case, there is a

specific value of the Biot number, denoted by ReWRM
crit;min and

ReBen
crit;min, at which the flow is most unstable; increasing the

FIG. 5. Effect of increasing d1 on the critical Reynolds number.

FIG. 6. Effect of increasing Ma on the critical Reynolds number.

FIG. 7. Effect of increasing Bi on the critical Reynolds number.
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Biot number from zero to that value destabilizes the flow,

whereas increasing the Biot number beyond that value

increases the critical Reynolds number bringing it closer to

the isothermal limit.

The effect of heating and permeability on the stability of

the flow can also be determined by differentiating the expres-

sion for the critical Reynolds number with respect to the pa-

rameters. For example, using the expression (25) gives

@ReBen
crit

@Ma
¼ � 5

12

Biðd2
1 þ 1Þ

1þ 5

12

MaBiðd2
1 þ 1Þ

ð1þ Bið1� d1 þ d2
1Þ

2 þ 7

2
d2

1

0
B@

1
CA

2

ð1þ Bið1� d1 þ d2
1ÞÞ

2

< 0;

and so increasing the Marangoni number clearly decreases the critical Reynolds number. Similarly,

@ReBen
crit

@d1

¼ �

5

6

MaBid1

ð1þ Bið1� d1 þ d2
1ÞÞ

2
� 5

6

MaBi2ðd2
1 þ 1Þð2d1 � 1Þ

ð1þ Bið1� d1 þ d2
1ÞÞ

3
þ 7d1

1þ 5

12

MaBiðd2
1 þ 1Þ

ð1þ Bið1� d1 þ d2
1Þ

2 þ 7

2
d2

1

0
B@

1
CA

2
< 0;

provided d1< 0.5; because d1 is assumed to be small and of

order d, this is expected to hold. Considering changes in the

Biot number, however, it is easily shown that for the expres-

sion (25),

@ReBen
crit

@Bi
¼ 0 when Bi ¼ 1

1� d1 þ d2
1

;

and attains a minimum value of

ReBen
crit;min ¼

5

6
cot b

1þ 7

2
d2

1 þ
5Mað1þ d2

1Þ
48ð1� d1 þ d2

1Þ

:

This agrees with Fig. 7 which shows a minimum occurring

near Bi¼ 1. A similar, but more complicated, result emerges

for ReWRM
crit;min.

The critical Reynolds number is a minimum for a Biot

number near unity because the interface temperature changes

the most with changes in fluid thickness for that value. When

the Biot number is much less than unity, the interface tem-

perature is very close to the bottom surface temperature;

therefore, changes in fluid thickness result in small interface

temperature variations. On the other hand, when the Biot

number is much larger than unity, the interface temperature

is close to the ambient temperature, and again, changes in

the fluid thickness cause only small changes in the interface

temperature. Thus, in both of these cases, the variation in

surface tension is small, and the destabilizing Marangoni

effect is minimized. However, for a Biot number near unity,

the temperature variation is largest and so surface tension

varies the most along the interface; thus, the Marangoni

effect is most pronounced. The Biot number at which this

occurs varies slightly from unity in the presence of bottom

permeability. However, this is simply due to the scaling. If

the scaling hs¼ 1 is used, then the value of the critical Biot

number is exactly unity.

VI. LINEAR STABILITY WITH BOTTOM TOPOGRAPHY

To determine how bottom topography alters the instabil-

ity threshold we analyze the system of Eq. (14) for the scal-

ing qs¼ 1 using

h ¼ hsðxÞ þ ĥ; q ¼ 1þ q̂; h ¼ hsðxÞ þ ĥ;

where hs(x) and hs(x) denote the steady-state solutions. The

linearized perturbation equations then take the form,

@ĥ

@t
þ @q̂

@x
¼ 0; (31)

@q̂

@t
þ f1

@2q̂

@x2
þ f2

@q̂

@x
þ f3q̂þ f4

@3ĥ

@x3
þ f5

@2ĥ

@x2
þ f6

@ĥ

@x

þ f7ĥþ f8
@2h
@xt
þ f9

@2ĥ
@x2
þ f10

@ĥ
@x
¼ 0; (32)

@ĥ
@t
þ g1

@2ĥ
@x2
þ g2

@ĥ
@x
þ g3ĥþ g4

@q̂

@x
þ g5q̂þ g6

@2ĥ

@x2

þ g7

@ĥ

@x
þ g8ĥ ¼ 0; (33)

where the coefficients f1(x)–f10(x) and g1(x)–g8(x) appearing

in Eqs. (32) and (33) involve the steady-state solutions. For

periodic bottom topography, these coefficients will also be

periodic functions and this permits the use of Floquet theory

to conduct the stability analysis. The perturbations are

expanded in the truncated series given by
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ĥ ¼ exteiKx
XN

n¼�N

ĥnei2pnx; q̂ ¼ exteiKx
XN

n¼�N

q̂nei2pnx;

ĥ ¼ exteiKx
XN

n¼�N

ĥnei2pnx:

where K is the Bloch wavenumber of the perturbation. The

coefficients f1(x)–f10(x) and g1(x)–g8(x) are expanded in a

likewise truncated Fourier series. When these series are sub-

stituted into the linearized perturbation equations a system of

equations results, which can be expressed as a generalized

eigenvalue problem given by

A~V ¼ xB~V;

where A and B are (6Nþ 3)� (6Nþ 3) matrices and ~V is a

vector of length (6Nþ 3) containing the coefficients ĥn, q̂n,

ĥn for n ¼ �N;…;N. The eigenvalues associated with

this algebraic problem can be solved numerically using the

MATLAB routine eig(A, B) to determine the temporal growth

rate given by the real part of x. This allows the critical

Reynolds number for the onset of instability to be computed

for specified values of the various parameters.

Figures 8–13 show the impact of varying the flow pa-

rameters on the neutral stability curve, plotted as K versus

Re, with the scaling qs¼ 1. In Fig. 8, neutral stability curves

are shown for various angles of inclination for two bottom

amplitudes. The curves show that decreasing the angle of in-

clination, which corresponds to increasing cot b, increases

the critical Reynolds number, and shifts the entire curve to

the right, toward higher Reynolds numbers. This is expected

based on the expression for the critical Reynolds number for

the basic case, Reeven
crit ¼ 5 cot b=6. Furthermore, increasing

FIG. 10. Effect of increasing We for the isothermal, impermeable case

where d¼ 0.05 and cot b¼ 4, with ab¼ 0 (top) and ab¼ 0.4 (bottom).

FIG. 11. Effect of increasing d for the isothermal, impermeable case where

We¼ 5 and cot b¼ 4, with ab¼ 0.3 (top) and ab¼ 0.4 (bottom).

FIG. 9. Effect of increasing ab for the isothermal, impermeable case where

d¼ 0.05 and We¼ 5, with cot b¼ 3 (top) and cot b¼ 5 (bottom).

FIG. 8. Effect of increasing cot b for the isothermal, impermeable case

where d¼ 0.05 and We¼ 5, with even bottom (top) and ab¼ 0.4 (bottom).
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cot b, combined with a large bottom amplitude, changes the

shape of the neutral stability curve, as seen in the bottom

panel of Fig. 8. The critical Reynolds number is shifted away

from the long-wave limit up to a non-zero wavenumber,

resulting in shorter waves being the most unstable. This is

most pronounced in the curve corresponding to cot b¼ 5 in

the bottom panel of Fig. 8; here, the critical Reynolds num-

ber corresponds to a perturbation having a wavelength

approximately equal to twice the bottom wavelength, which

is unity for the scaling applied.

The effect of bottom topography is shown in Fig. 9, in

which the curves from Fig. 8 have been rearranged to high-

light the impact of varying the bottom topography. It can be

seen that for each of the inclinations shown, increasing the

bottom amplitude stabilizes the flow by shifting the curve to

the right and therefore increasing the critical Reynolds

number. The plots also show how increasing both the bottom

amplitude and cot b changes the shape of the curve, as men-

tioned above.

The combined effect of surface tension and bottom to-

pography on the stability of the flow is shown in Fig. 10.

Shown in the top panel is a case with an even bottom; as

expected surface tension does not affect the critical Reynolds

number in the absence of bottom topography. However, the

shape of the neutral stability curve is altered when surface

tension is increased. The range of unstable wavelengths is

reduced as surface tension is increased. The case with bot-

tom topography shows that increasing the Weber number

from We¼ 5 to We¼ 10 shifts the neutral stability curve to

the right, which increases the critical Reynolds number and

hence stabilizes the flow. This agrees with the predictions of

the asymptotic analysis of D’Alessio et al.,43 which indicated

that when bottom topography and weak surface tension are

combined, the flow rate is decreased, thereby stabilizing the

flow. However, further increasing the Weber number

actually reverses the combined effect of bottom topography

and surface tension by destabilizing the flow. This result is

also consistent with the reversal in stability reported in

Ref. 43.

Shown in Fig. 11 is the effect of increasing the shallow-

ness parameter d, or increasing the fluid thickness relative to

the wavelength of the bottom topography. Results are shown

for two different values of bottom amplitude. For both

amplitudes shown in the figure, increasing d stabilizes the

flow; that is, bottom topography having a shorter wavelength

stabilizes the flow compared to that having a longer bottom

wavelength. However, it must also be remembered that the

underlying assumption that d� 1 puts a restriction on the

bottom wavelength allowed since the bottom wavelength

must be long compared to the fluid thickness. As already

noted in Fig. 9, increasing the bottom amplitude stabilizes

the flow for the small Weber number considered in this case.

The effect of bottom permeability on the stability of the

flow is shown in Fig. 12. It can be seen that adding perme-

ability decreases the critical Reynolds number, and thus,

destabilizes the flow. Adding permeability also changes the

shape of the neutral stability curve by increasing the wave-

number corresponding to the most unstable disturbance.

Finally, the Marangoni effect on the stability of the flow

is shown in Fig. 13. Two sets of neutral stability curves are

shown; in the top panel, the bottom topography is character-

ized by ab¼ 0.3, and in the bottom panel, the bottom topog-

raphy is described by ab¼ 0.4. The curves show that

increasing Ma while holding other parameters constant

destabilizes the flow, even when bottom topography is

included. Also, varying the Marangoni number can alter the

value of the most unstable wavenumber, as seen in the top

panel of Fig. 13. For flows with larger bottom amplitude, the

shape of the curve can change such that the critical Reynolds

number occurs for a non-zero wavenumber, as already wit-

nessed in Fig. 8. For example, with ab¼ 0.3 the critical

Reynolds number can occur for a perturbation wavenumber

of zero if the Marangoni number is sufficiently large, while

this is not the case for ab¼ 0.4. Comparing the top and bot-

tom panels, it is clear that the Marangoni effect is more pro-

nounced for small bottom amplitudes than it is for larger

bottom amplitudes.

The neutral stability curves for flow over a wavy bottom

show that most of the trends seen for an even bottom persist

when bottom topography is added. One exception is that bot-

tom waviness can change the wavenumber of the most unsta-

ble perturbation. Further, the plots confirm that adding

bottom topography and weak surface tension stabilizes the

FIG. 13. Effect of increasing Ma for the case where d¼ 0.05, We¼ 5,

cot b¼ 4, Pr¼ 7, Bi¼ 1, and d1¼ 0.1, with ab¼ 0.3 (top) and ab¼ 0.4

(bottom).

FIG. 12. Effect of increasing d1 for the case where d¼ 0.05, We¼ 5,

ab¼ 0.4, cot b¼ 4, and Ma¼Bi¼ 0.
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flow, while the combination of strong surface tension and

bottom topography destabilizes the flow.

One last interesting feature worth presenting involves

the interplay between permeability, surface tension, and bot-

tom topography, and how this exchange affects the stability

of the flow. This is captured in Figures 14 and 15, which plot

the critical Reynolds number versus bottom amplitude for

We¼ 50 and We¼ 400, respectively. Fig. 14 shows that for

relatively small We, bottom permeability destabilizes the

flow by shifting the entire curve downwards. As ab increases

though, the value of Recrit also increases for both an imper-

meable and permeable bottom. Thus, once again bottom to-

pography stabilizes the flow in the presence of moderately

weak surface tension both with and without permeability.

However, when We is increased considerably, Fig. 15 reveals

that this is no longer the case. Here, for an impermeable bot-

tom, increasing ab destabilizes the flow, while for a permea-

ble bottom it stabilizes the flow with Recrit reaching a

maximum value at ab � 0.3. What is most interesting

though, is that for ab >� 0:28 the value of Recrit for a permea-

ble bottom exceeds that for the impermeable bottom. Thus,

in the presence of sufficiently strong surface tension and for

sufficiently large bottom amplitude, a permeable bottom can

actually stabilize the flow. Adding heating to the cases

shown in Figures 14 and 15 does not change these trends;

heating simply shifts the curves downwards, and thus, desta-

bilizes the flow as in the even bottom case.

VII. NUMERICAL SIMULATIONS

The weighted residual model equations, including heat-

ing, permeability and topography, are solved numerically

using the fractional step method,69 as outlined in Ref. 43. In

this method, the model equations are rewritten in the form

which separates the advective and diffusive terms and solved

in two steps. The WRM equations are expressed as

@h

@t
þ @q

@x
¼ 0; (34)

@q

@t
þ @

@x
ðW1Þ ¼ W2; (35)

and

@/
@t
þ @

@x
ðW3Þ ¼ W4; (36)

where the flow variable /¼ h(h� 1) is used instead of h.

The functions W1, W3 represent advective terms while W2,

W4 represent a combination of diffusive and source terms.

These equations are solved in two steps. In the first step, the

following system of equations involving only the advective

terms is solved:

@h

@t
þ @q

@x
¼ 0; (37)

@q

@t
þ @

@x
ðW1Þ ¼ 0; (38)

@/
@t
þ @

@x
ðW3Þ ¼ 0: (39)

This system of hyperbolic conservation laws can be written

compactly in vector form as

@ ~U

@t
þ @Fð~UÞ

@x
¼ 0; (40)

where

~U ¼
h
q
/

2
4

3
5; Fð~UÞ ¼

q
W1

W3

2
4

3
5: (41)

The system is solved using MacCormack’s explicit

predictor-corrector scheme;70 in the predictor step, a forward

differencing scheme is used, while a backward differencing

scheme is used in the corrector step. The method can be

expressed as

~U�j ¼ ~Un
j �

Dt

Dx
½Fð~Un

jþ1Þ � Fð~Un
j Þ	; (42)

followed by

~Unþ1
j ¼ 1

2
ð~Un

j þ ~U�j Þ �
Dt

2Dx
½Fð~U�j Þ � Fð~U�j�1Þ	; (43)

where ~Un
j is the value of ~U at grid point j at time step n; Dt is

the time step and Dx is the uniform grid spacing.
FIG. 15. Effect on the critical Reynolds number of increasing ab for the

case where d¼ 0.05, We¼ 400, cot b¼ 1, and Ma¼Bi¼ 0.

FIG. 14. Effect on the critical Reynolds number of increasing ab for the

case where d¼ 0.05, We¼ 50, cot b¼ 1, and Ma¼Bi¼ 0.
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In the second step, the diffusive and source terms are

considered. The equations,

@q

@t

@/
@t

2
664

3
775 ¼ W2

W4

� �
; (44)

are discretized using the Crank-Nicolson scheme and solved

iteratively. An important point to note is that during the sec-

ond step, h remains constant and is equal to the value com-

puted from the first step. Overall, this method of solving the

model equations is second order accurate in space and first

order accurate in time.

This method computes the fluid thickness, volume flow

rate, and interface temperature through / at each time step,

and in doing so tracks the evolution of the fluid interface and

temperature with time. For a flow having a super-critical

Reynolds number, numerical perturbations are added to

destabilize the flow. These perturbations grow and form

waves which interact and eventually produce a stable wave

pattern. This wave pattern circles through the domain due to

the periodic boundary conditions applied at the ends.

The development of the interface with time is shown in

Fig. 16 for a case with bottom topography and permeability,

surface tension, and heating. A perturbation having a wave-

length equal to the length of the domain is superimposed on

the steady-state solution for q, and used as an initial condi-

tion at t¼ 0. Since this is an unstable configuration, the per-

turbation amplifies initially and then ultimately forms a

wave that maintains its shape as it continuously cycles

through the domain.

The fully developed results for the same case are com-

pared to results for the corresponding isothermal, imperme-

able case in Fig. 17. The resulting fully developed snapshot

of the volume flow rate, fluid thickness, and interface tem-

perature over the domain are shown in the figure at t¼ 200.

The volume flow rate, shown in the top panel, indicates that

the wave formed for the case with heating and permeability

is slightly more pronounced than that for the isothermal,

impermeable case. This is to be expected since it has already

been shown that, in general, heating and permeability tend to

destabilize the flow. The wave is also more pronounced due

to the Marangoni effect, since surface tension is greatest

where the fluid temperature is smallest which typically

occurs at the crest of the wave. Fluid will be drawn to areas

of higher surface tension, which will result in an increased

thickness.

The middle panel shows the fluid thickness. Relating

this to the q distribution in the panel above, we observe that

the peaks in the q-wave correspond to a thicker fluid depth,

which is a result of the increased volume flux. Comparing

the basic case with the permeable bottom case, it can be seen

that when the q values are approximately equal, the fluid

thickness is greater for the isothermal, impermeable case.

This is simply because the bottom slip condition results in a

higher velocity for the permeable case, and since the volume

flow rate is the same, the fluid layer is thinner for the perme-

able case.

The interface temperature, plotted in the bottom

panel, shows a constant temperature for the isothermal

case and a varying temperature for the case with heating.

A dip in interface temperature occurs near the wave crest

since the fluid layer is thicker, and therefore receives less

heat from the bottom. This results in an interface tempera-

ture closer to the ambient temperature. The shift between

the locations of the maximum fluid thickness and mini-

mum interface temperature is also apparent in these

results. As already pointed out in Fig. 4, the minimum

temperature occurs further downstream than expected due

to the bottom permeability.

FIG. 17. Comparison between a case with heating and bottom permeability

and an impermeable, isothermal case at t¼ 200. Both have Re¼ 1.0,

d¼ 0.1, cot b¼ 0.5, We¼ 100, ab¼ 0.2, and a domain length of ten bottom

wavelengths. The case with heating and permeability has Bi¼Ma¼ 1 and

d1¼ 0.1. The WRM with the scaling qs¼ 1 was used.

FIG. 16. Time evolution of q for a case with heating and permeability hav-

ing Re¼ 1.0, d¼ 0.1, cot b¼ 0.5, We¼ 100, ab¼ 0.2, Bi¼Ma¼ 1, and

d1¼ 0.1. The WRM with the scaling qs¼ 1 was used.
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A. Comparison with CFX

The full Navier-Stokes equations for free surface flow

down an inclined plane can be solved by employing the CFD

software package CFX. The numerical method used by CFX

to solve the governing equations is a combination of the fi-

nite volume and finite element methods. The domain is dis-

cretized into fluid elements, and control volumes are formed

around element nodes. Momentum and mass are conserved

over each control volume. Flow variables and fluid proper-

ties are stored at the nodes which are located within each

control volume. The finite element method, using shape

functions, is employed to calculate properties within fluid

elements at the edges of the control volumes. The high reso-

lution advection discretization scheme is used, which is a

bounded second-order upwind scheme. It is bounded through

the use of flux-limiting methods. A second-order backward

Euler transient discretization scheme is used. To locate the

free surface, a volume-of-fluid method is used. The volume

fraction of one of the fluids is tracked as a solution variable

using a volume fraction advection scheme. This causes a

smearing of the interface due to numerical diffusion and the

possibility of multiple adjacent cells containing a volume

fraction between zero and one; however, CFX uses a com-

pressive scheme to minimize this diffusion.

The numerical results from the weighted residual model

are compared to those obtained using CFX for an isothermal

case having a permeable even bottom. Heating was not

included because CFX simulations with variable surface ten-

sion are problematic due to the mass loss that occurs. The

flow parameters are Re¼ 1.75, d¼ 0.089, d1¼ 0.14, cot

b¼ 1.38. The value of the permeability parameter is based

on the values of Foametal A used in the experiments by Bea-

vers and Joseph.61 In CFX, the porous bottom is simulated

by including a porous layer in the domain which is saturated

with fluid. A momentum loss term is included in the govern-

ing equations to model the porous layer. This term is based

on the permeability of the material and the volume fraction

of solid material. Compared in Fig. 18 are the CFX and

weighted residual model results. The figure shows that the

number of peaks in the flow rate match. The spacing is simi-

lar, as are the height of the peaks, although the peaks in the

weighted residual model results are slightly taller and farther

apart. Other model simulations for the porous bottom prob-

lem match the corresponding CFX results fairly well. The

results indicate that the weighted residual model continues to

predict the flow well, even in cases with permeability.

The CFX results can also be used to compare the veloc-

ity profile predicted by the complete set of equations and

boundary conditions with the profile assumed by the WRM.

These velocity profiles are compared in Fig. 19. The CFX

profile is calculated directly from the Navier-Stokes equa-

tions and is non-dimensionalized so as to compare it with the

WRM profile given by Eq. (11), with the magnitude given

by the WRM simulation results. Profiles at two locations are

shown; those in the upper panel are far from a wave while

those in the lower panel are at the peak of a wave. Far from a

wave, the profiles match very well except near the interface.

Near the interface, the CFX velocity decreases rapidly due to

the smearing associated with the tracking of the free surface.

As the volume fraction of liquid decreases over several cells,

so does the liquid velocity. The profiles at the peak of the

wave also agree well except near the interface. The noticea-

ble difference in the maximum value is due to the difference

in peak height shown in Fig. 18. These results indicate that

the Beavers and Joseph slip condition is an effective way to

model a permeable bottom and that the velocity profile

assumed by the WRM mimics the actual velocity profile

fairly well.

VIII. CONCLUSIONS

The method of weighted residuals was extended to solve

the problem of gravity-driven flow over a porous, heated,

wavy inclined surface. Although the focus of this study was

FIG. 18. CFX and WRM results for a case with porosity. The flow

parameters are Re¼ 1.75, d¼ 0.089, d1¼ 0.14, cot b¼ 1.38, and

We¼Ma¼Bi¼ ab¼ 0.

FIG. 19. CFX and WRM velocity profiles far from a wave (top) and at the

peak of a wave (bottom). The flow parameters are Re¼ 1.75, d¼ 0.089,

d1¼ 0.14, cot b¼ 1.38, and We¼Ma¼Bi¼ ab¼ 0.
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on surfaces that are sinusoidal, the equations were derived

for arbitrary bottom topography. A constant bottom tempera-

ture was applied, and a variation of the Beavers and Joseph61

slip condition was used to account for the non-planar perme-

able bottom. For the even bottom case, the critical Reynolds

number calculated from a linear stability analysis of the

model equations was compared to the result from the Benney

equation, and the two were found to agree closely; good

agreement was also found with the results of Sadiq et al.,59

who used the Orr-Sommerfeld equation to predict the critical

Reynolds number. This suggests that the WRM continues to

make accurate predictions regarding the stability of the flow,

even when the model is extended to include bottom heating

and permeability. The expressions obtained for the critical

Reynolds number indicate that heating and permeability act-

ing alone destabilize the flow over an even bottom, as previ-

ously reported in the literature,43,53,55 and that the interaction

of these two effects is to further destabilize the flow. It was

also found that increasing either bottom permeability or the

Marangoni number monotonically destabilizes the flow for

relevant values of the parameters. Although increasing the

Biot number also destabilizes the flow, the behaviour is not

monotonic. Instead, there is a specific Biot number, close to

unity, for which the flow is most unstable. Lastly, allowing

the density and viscosity to vary linearly with temperature

does not alter the stability of the flow down an even imper-

meable heated incline for Weber numbers of order 1/d, or

larger, and Marangoni numbers of order unity, provided the

variations in density and viscosity are comparable to those in

surface tension.

The critical Reynolds number for flow over a wavy bot-

tom, however, was found to depend on the Weber number.

The observed trend was that, in general, bottom waviness

stabilizes the flow for small Weber numbers, while for large

Weber numbers bottom waviness was found to destabilize

the flow. This is also consistent with previous findings for

flows over impermeable surfaces.10,14,43 Although a permea-

ble bottom was found to destabilize the flow in most cases,

the combination of strong surface tension, large bottom am-

plitude and bottom permeability can actually stabilize the

flow.

As a final test of the WRM, numerical solutions of the

full Navier-Stokes equations, computed using the CFX soft-

ware package, were compared to the model predictions for

isothermal flow with bottom permeability. The results

obtained were found to agree closely, thus confirming that

the WRM, when extended to include permeability, can pre-

dict the essential features of the flow. Additionally, the solu-

tions of the full Navier-Stokes equations were used to

compare its velocity profile to that assumed by the WRM.

The two velocity profiles agreed reasonably well, further val-

idating a key model assumption.

APPENDIX: TEMPERATURE DEPENDENT DENSITY
AND VISCOSITY

The impact on the stability of the flow in allowing the

density and viscosity to vary linearly with temperature

according to

q
q0

¼ 1� K̂ðT � TaÞ

l
l0

¼ 1� k̂ðT � TaÞ

is assessed below for the case of an even impermeable bot-

tom. In this study, surface tension was allowed to vary

according to

r
r0

¼ 1� c
r0

ðT � TaÞ:

It is interesting to note that in previous studies where surface

tension was the only fluid property allowed to vary, little

explanation was given to justify ignoring buoyancy and vari-

able viscosity. Often a statement to the effect that for suffi-

ciently thin films the influence of buoyancy can be

neglected, is all that was included. The work by Goussis and

Kelly44 appears to be one of the earliest papers on inclined

flow with variable surface tension which gives a more

detailed explanation. They claim that for moderate values of

the Prandtl number the effects of buoyancy will only be im-

portant for small inclination angles. The review paper by

Oron et al.22 mentions that for liquids with high viscosity the

error made in ignoring the temperature variation may be

significant, since viscosities can vary with an Arrhenius-type

exponential temperature dependence. It appears that very lit-

tle has been done on inclined flow with variable fluid proper-

ties. It is a complicated problem even for the impermeable

and even bottom case. Goussis and Kelly71 and Hwang and

Weng72 have included variable viscosity; however, these

studies assume a prescribed constant temperature at the free

surface, and thus, the Marangoni effect is not included.

Kabova and Kuznetsov73 include both variable viscosity and

the Marangoni effect, but they only consider the steady-state

problem.

Accounting for these variable fluid properties, and

employing the Boussinesq approximation, the non-

dimensional governing equations are as follows:

@u

@x
þ @w

@z
¼ 0; (A1)

dRe
Du

Dt
¼�dRe

@p

@x
þ 3ð1�KTÞþ d2 @

@x
ð1� kTÞ@u

@x

� �

þ @

@z
ð1� kTÞ@u

@z

� �
� d2k

@T

@x

@u

@x
þ@T

@z

@w

@x

� �
; (A2)

d2Re
Dw

Dt
¼ �Re

@p

@z
� 3 cot bð1� KTÞ þ d

@

@z
ð1� kTÞ @w

@z

� �

� d2k
@T

@x

@u

@z
þ @T

@z

@w

@x

� �
; (A3)

dRePr
DT

Dt
¼ d2 @

2T

@x2
þ @

2T

@z2
; (A4)
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where D
Dt denotes the two-dimensional material derivative, Re and Pr are defined as in Sec. II, but now in terms of q0 and

�0¼l0/q0, and K ¼ K̂DT and k ¼ k̂DT represent dimensionless variation parameters for density and viscosity, respectively.

For flow over an even and impermeable incline the bottom conditions are

u ¼ w ¼ 0 and T ¼ 1 at z ¼ 0; (A5)

while the conditions at the free surface are given by

p� 2d
Re
ð1� kTÞ @w

@z
þ d2ðWe�MaTÞ @

2h

@x2
¼ 0

ð1� kTÞ @u

@z
� 4d2 @h

@x

@u

@x
þ d2 @w

@x
þMaRed

@T

@x
þ @h

@x

@T

@z

� �
¼ 0

�BiT 1þ d2

2

@h

@x

� �2
 !

¼ @T

@z
� d2 @h

@x

@T

@x

w ¼ @h

@t
þ u

@h

@x

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

at z ¼ hðx; tÞ; (A6)

where Bi, Ma, and We are defined as in Sec. II, but now in

terms of q0 and �0.

In this stability analysis, it will be assumed that the pa-

rameters K and k are small, in particular they are taken to be

O(d). It is worth noting that this assumption is consistent

with the parameter ranges considered in this study, and does

not impose a severe restriction. To appreciate this, consider

the ratio of the relative density variation to the relative sur-

face tension variation given by

density variation

surface tension variation
¼ KT

cDTT

r0

¼ KWe

Ma
:

If Ma¼O(1) and We is of order 1/d or larger, then even if

K¼O(d) the buoyancy variation would still be comparable

to, or larger than, that in surface tension. A similar argument

can also be made with regard to the assumption that the vis-

cosity variation parameter, k, is O(d). Hence, it makes sense

to set

K ¼ K1d; k ¼ k1d:

To perform the linear stability analysis, the Benney

equation is utilized. As explained in Sec. V A, this involves

expanding u, w, p, and T in powers of d as follows:

u ¼ u0 þ du1 þ � � � ;

w ¼ w0 þ dw1 þ � � � ;

p ¼ p0 þ dp1 þ � � � ;

T ¼ T0 þ dT1 þ � � � :

Substituting these into Eqs. (A1)–(A4) and conditions (A5)

and (A6) leads to a hierarchy of problems at various orders.

The solutions emerging for the velocity components u and w

can then be substituted into the kinematic condition to pro-

duce the Benney equation. To first order this equation is

given by

@h

@t
þ @

@x
ðh3Þ þ d

@

@x

6Re

5
h6 @h

@x
þ ReMaBi

2

h2

ð1þ BihÞ2

"

� @h

@x
� cot bh3 @h

@x
þ d2WeRe

3
h3 @

3h

@x3

�

� d
K1h2ð9Bi2h2 þ 28Bihþ 24Þ

8ð1þ BihÞ2
@h

@x

 

� k1h2ð9Bi2h2 þ 20Bihþ 12Þ
4ð1þ BihÞ2

@h

@x

!
¼ 0: (A7)

Linearizing Eq. (A7) using h ¼ 1þ ĥ and introducing

the perturbation ĥ ¼ h0ejkxext leads to a dispersion relation

for the temporal growth rate x which can be solved. The real

and imaginary parts of x are

<ðxÞ ¼ k2d

30ð1þ BiÞ2
�10k2Red2WeBi2 � 30 cot bBi2
�

þ 36ReBi2 � 20k2Red2WeBi� 60 cot bBi

þ 15MaReBiþ 72ReBi� 30 cot bþ 36Re

�10k2Red2We
�

and

=ðxÞ ¼ k

8ð1þ BiÞ2
9dK1Bi2 � 24dk1 þ 28dK1Bi
�

� 48Bi

� 24� 40dk1Biþ 24dK1 � 24Bi2 � 18dk1Bi2
�
;

respectively.

122102-17 Gravity-driven flow over heated, porous, wavy surfaces Phys. Fluids 23, 122102 (2011)



It is evident that, while the expression for the imaginary

part of x contains K1 and k1, the expression for the real part

is independent of these parameters. Therefore, the neutral

stability state, satisfying < xð Þ ¼ 0, is not affected by the

temperature dependent variations in density and viscosity.

Thus, the critical Reynolds number for the onset of instabil-

ity is independent of K1 and k1 and is given by

Reeven
crit ¼

5

6
cot b

1þ 5MaBi

12ð1þ BiÞ2
;

which is in exact agreement with the theoretical value for

flow down an even heated, impermeable, incline.43
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