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ABSTRACT

A new second-order turbulence closure scheme is proposed for the oceanic mixed layer. The scheme is similar
in complexity to a Mellor–Yamada level 2.5 scheme in that the turbulent kinetic energy is the only turbulence
quantity treated prognostically with the others determined diagnostically. The main difference lies in the treatment
of the turbulent fluxes. While momentum fluxes are assumed to be downgradient, the other turbulent fluxes allow
for nonlocal and countergradient contributions. The model was tested against several idealized forcing experiments
for wind-deepening, heating and cooling cases, and also against observational data taken from Ocean Weather
Stations November and Papa. The simulations reveal good agreement with other models. The present scheme also
performs reasonably well in reproducing the observed sea surface temperature and boundary layer depth for the
year 1961 at stations November and Papa. Also proposed are ways of incorporating near-surface processes such
as Langmuir circulation and wave breaking. Simulations have shown that wave breaking leads to negligible deep-
ening of the mixed layer, while the inclusion of Langmuir circulations causes further deepening to occur.

1. Introduction

In climate modeling it is imperative to include the
exchange processes such as heat, momentum, and water
vapor between the atmosphere and the ocean. The mixed
layer refers to the upper portion of the ocean that is in
direct contact with the atmosphere and is usually ob-
served to be thoroughly mixed. It plays an important
role in communicating fluxes with the atmosphere and
also acts as a link between the atmosphere and the deep-
er ocean. A means of investigating the response of the
mixed layer to a given atmospheric forcing is through
the implementation of one-dimensional column models
that account for vertical variations. Horizontal variations
can be significant under certain conditions and in spe-
cific regions; however, their influence is either explicitly
specified or omitted in these models.

In column models a set of conservation equations gov-
erning the mean horizontal velocity components, temper-
ature, and salinity are driven by fluxes of heat and wind
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stress imposed by the atmosphere at the ocean surface and
are also forced from below due to interior mixing pro-
cesses. The mixed layer then responds to these forcings
through deepening or shallowing and heating or cooling.
The resulting sea surface temperature (SST) has a signif-
icant impact on the climate and also on the local biological
environment. Over the years numerous models have been
proposed to simulate the mixed layer. These are generally
formulated following one of two common approaches. In
bulk models the equations are integrated across the mixed
layer on the assumption that the mean quantities are nearly
uniform throughout it. This idea was first introduced by
Ball (1960) and designed for atmospheric use and was
later extended to handle the ocean by Kraus and Turner
(1967). In these models the advance and retreat of the
mixed layer depends on the parameterizations of the fluxes
at its base. Another approach, known as a turbulence clo-
sure scheme, attempts to model the various turbulent fluxes
appearing in the equations. Here, the equations are dealt
with in a differential form rather than an integral form.
One is then faced with the task of prescribing the various
turbulent fluxes in terms of the prognostic variables.

Presented in this paper is a second-order turbulence
closure scheme for the mixed layer. In second-order
closure schemes the equations dictating the turbulent
fluxes are closed at the second-moment level and thus
require the specification of unknown third-moment tur-
bulence quantities. Third-order closure schemes have
also been developed by Warn-Varnas and Piacsek (1979)
and André and Lacarrère (1985). Unless simplifications
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are made, substantial computational demands can be
required by turbulence closure schemes since they in-
troduce additional equations for the various second mo-
ments that must be solved in conjunction with the usual
set for momentum, temperature, and salinity. Realizing
this, modelers have proposed schemes to reduce the
computational burden. Mellor and Yamada (1974,
1982), for example, introduced a hierarchy of closures
using a systematic expansion procedure to analyze the
departure from the state of local isotropy. The level 2.5
scheme in this hierarchy has since been used extensively
in geophysical applications. In a Mellor–Yamada level
2.5 scheme third moments are either ignored or modeled
downgradiently and the only additional equation re-
quired is that for the turbulent kinetic energy (TKE). In
the present scheme the parameterizations used for the
third moments are taken from the recent work of Abdella
and McFarlane (1997), which allow for countergradient
and nonlocal contributions. Also, as in the Mellor–Ya-
mada level 2.5 scheme, only the TKE is treated prog-
nostically here. By making certain assumptions about
the nature of the turbulence, the remaining second mo-
ments can be determined diagnostically. The new
scheme also offers some physical insight into near-sur-
face processes that are unique to the ocean. An attempt
has been made to model the effects of Langmuir cir-
culations and wave breaking, which are probably the
most important processes responsible for enhanced mix-
ing in the upper ocean.

Subsequent sections are organized as follows. In sec-
tion 2 we present the modeling equations along with the
forcing conditions and briefly discuss the physics. A
means of estimating the boundary layer depth is out-
lined, while the rational behind the turbulent flux ex-
pressions is included in the appendix. Then, in section
3, the performance of the model is addressed. The model
is tested against several bulk and turbulence closure
schemes for various idealized forcings including wind
driven, heating, and cooling cases. Also, the model is
tested against observational data taken from Ocean
Weather Stations November and Papa. Section 4 is de-
voted to discussing ways of incorporating near-surface
processes such as Langmuir circulation and wave break-
ing into the model. This is followed by the conclusions.

2. Modeling equations and boundary conditions
The equations governing the mean flow, potential

temperature, salinity, and TKE in a horizontally ho-
mogeneous ocean boundary layer under the Boussinesq
approximation are as follows:

]U ](u9w9)
5 f V 2 (1)

]t ]z

]V ](y9w9)
5 2 f U 2 (2)

]t ]z

]u 1 ]I ](u9w9)
5 2 (3)

]t r c ]z ]z0 p

]S ](s9w9)
5 2 (4)

]t ]z

]e ]U ]V
5 2 u9w9 1 y9w9 1 b9w91 2]t ]z ]z

] 1
2 ew9 1 P9w9 2 «. (5)1 2]z r0

In the above system U and V refer to the mean hori-
zontal velocity components in the x and y directions
respectively, u is the mean potential temperature, and
S is the mean salinity. The mean TKE, e 5 (u92 1 y92

1 w92)/2 5 q2/2, is the only turbulent quantity treated
prognostically. The various terms appearing on the
right-hand side of the TKE equation are due to shear,
buoyancy, transport, and viscous dissipation respective-
ly. The term (1/r0cp)]I/]z in Eq. (3) represents a non-
turbulent source flux due to penetrating solar radiation.
Labeling the vertical coordinate is z, which is taken to
be zero at the ocean surface and pointing upward, t is
the time coordinate, and f is the local Coriolis parameter.
The reference fluid density is denoted by r0 and the heat
capacity at constant pressure is cp. Primed quanti-
ties represent deviations from the mean with u9w9, y9w9,
u9w9 , s9w9 , b9w9 , ew9 , and P9w9 denoting the turbulent
fluxes that must be specified in order to close the system.

We propose to obtain these turbulent fluxes diagnosti-
cally through the following relations and include a more
detailed discussion of these expressions in the appendix:
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While momentum fluxes are assumed to be downgra-
dient, the other turbulent fluxes allow for nonlocal and
countergradient contributions. Here Km, Kh, and Ks rep-
resent the eddy viscosities for momentum, heat, and salt
respectively; Sm is the momentum viscosity coefficient,
g the acceleration due to gravity; a, b the thermal ex-
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TABLE 1. List of constants.

Symbol Description Value

Sm

B
g
c1

c2

c3

a1

a2

Eddy viscosity constant
TKE dissipation constant
Entrainment parameter
Turbulence constant
Temperature variance dissipation

constant
Timescale constant
TKE boundary condition parameter
TKE boundary condition parameter

0.39
16.6
1.2
0.19
7.8

1.56
3.25
3.25

k
cp

z0

Pr
f
g
a
b
r0

ra

von Kármán constant
Specific heat of seawater
Minimum turbulent length scale
Turbulent Prandtl number
Coriolis parameter
Acceleration due to gravity
Thermal expansion coefficient
Haline contraction coefficient
Reference seawater density
Surface air density

0.4
4,100 J kg21 K21

0.0001 m
1.0
f 5 2V sinl
9.81 m s22

0.00025 K21

0.00077 ppt21

1,025 kg m23

1.25 kg m23

pansion and haline contraction coefficients respectively;
h the boundary-layer depth; t t the turbulent timescale,
l the turbulent length scale; and w*, u* the convective
velocity and temperature scales respectively. Lastly, the
subscript 0 refers to evaluation at the surface z 5 0.
The thermal expansion and haline contraction coeffi-
cients were taken to vary according to the simplified
equation of state of Friedrich and Levitus (1972), and
the dissipation of TKE is expressed according to Kol-
mogorov (1942):

3q
« 5 .

Bl

The values used for the various parameters and constants
appearing in the above are listed in Table 1.

A weakness in turbulence closure schemes involves
the prescription of the length scale l. Methods of spec-
ifying this range from the Blackadar (1962) formula to
a prognostic equation for a variable that includes l such
as the quantity q2l as suggested by Mellor and Yamada
(1982) and Mellor (1989) or the dissipation « as used
by Kundu (1980). The difficulty associated with a prog-
nostic equation for the master length scale lies in the
lack of reliable closure assumptions for the various
terms in the equation. Another way of quantifying the
length scale is to introduce different length scales for
mixing and dissipation. Such an approach was imple-
mented by Therry and Lacarrère (1983), Bougeault and
Laccarère (1989) and Gaspar et al. (1990). In the present
model the adopted length scale is the widely used Black-
adar formula

k(|z| 1 z )0l 5
1 1 k|z|/l0

with

1 1 1
5 1

l l l0 MY b

for locally stable conditions and l0 5 lMY for locally
unstable conditions. Here lMY is the Mellor–Yamada as-
ymptotic length scale given by

0 0

l 5 0.2 q|z| dz q dz,MY E E@
2` 2`

and lb is the buoyancy length scale

Ïe
l 5b N

imposed by the underlying stable stratification having
a Brunt–Väisälä frequency N, where
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Near the surface l reduces to the usual ‘‘law-of-the-
wall’’ behavior and then approaches the value l0. Below
the mixed layer l decreases abruptly due to the ther-
mocline and approaches lb. The parameter z0 is used to
limit the minimum length scale associated with turbu-
lence near the surface. Later we will discuss how this
parameter can be modified to incorporate the effects of
wave breaking. The quantity k denotes the von Kármán
constant. From the length scale, the timescale is easily
obtained through

c l3t 5 .t q

Since the velocity scale and salinity flux involves the
boundary layer depth h, it is necessary to provide a
means of computing this. We view this quantity as a
measure of the depth to which a significant level of
turbulence penetrates to and believe that this typically
corresponds to the boundary layer depth itself. In the
literature one encounters several ways of defining this
depth; some commonly used methods for determining
h include:

1) a bulk Richardson number, RiB, criterion;
2) a jump in a quantity (such as temperature or salinity)

across the mixed layer; and
3) the extinction of TKE at the base of the mixed layer.

The bulk Richardson number criterion constitutes a tra-
ditional approach in estimating h. It is usually defined
as

g[a(u (z ) 2 u (h)) 2 b(S (z ) 2 S (h))](h 2 z )s s sRi 5B 2 2(U (z ) 2 U (h)) 1 (V (z ) 2 V (h))s s

and corresponds to the Richardson number between a
near-surface level z 5 zs and the boundary-layer bottom
z 5 h. Typically, h is taken to occur at the minimum
depth at which RiB assumes a critical value (usually in
the range 0.25 , RiB , 1). In cases of free convection



AUGUST 1998 1627D ’ A L E S S I O E T A L .

with little or no mean shear, this condition can lead to
problems since the bulk Richardson number will be
large at all depths. Large et al. (1994) introduce a sim-
ilarity-based modification to the definition of RiB that
prevents this situation by adding a turbulent velocity
term in the denominator. Another customary approach
in defining h stems from observation, which reveals that
the upper ocean is usually thoroughly mixed. Based on
this, the boundary layer depth can be defined as the
depth at which the temperature changes by DT from its
surface value. This depth usually coincides with the
seasonal thermocline depth (or halocline depth if salinity
is used instead of temperature). In fact, this is the cri-
terion used to determine h from observed bathyther-
mographs (BT), which will be presented later with DT
5 0.18C. The third criterion listed involves the turbulent
kinetic energy. One would expect that immediately be-
low the mixed layer the TKE should decrease rapidly
due to the buoyancy jump present at the base. This
marks the ‘‘turbucline,’’ which can also be used as a
surrogate for h as, for example, in the recent work by
Kantha and Clayson (1994). After much experimenting
with the above methods we have decided to adopt the
extinction of TKE approach since the TKE is computed
prognostically in this scheme, and it worked consistently
well for the various tests, and last, it was least dependent
on the grid spacing. Thus, the boundary layer depth is
defined as the depth that bounds the region adjacent to
the surface in which active turbulence is present. We
associate this with the TKE dropping below some low
value chosen to be approximately 1026 m2 s22. This
value is based on the idea that at the base of the mixed
layer

Ïe
l → l 5 .b N

Using l ø 0.5 m and N ø 5 3 1023 s21 (see Gargett
1984, 1988) we find that e 5 O(1026 m2 s22) and in
our usage provides an order of magnitude estimate for
the TKE at depth h.

The set of equations (1)–(5) is mainly driven by at-
mospheric forcing at the surface z 5 0 through flux
conditions. Continuity of stress implies

t tx yu9w9 5 2 , y9w9 5 2 , (13)0 0r r0 0

where t 5 (t x, t y) represents the wind stress. Similarly,
the surface heating/cooling condition is

Q
u9w9 5 2 , (14)0 r c0 p

where Q represents the net nonsolar heat (i.e., the sum
of net longwave radiative, sensible, and evaporative heat
fluxes) received at the surface and is positive for heating
and negative for cooling. The turbulent kinetic energy
at the surface can be specified as

e 0 5 a1 1 a2 .2 2u w* * (15)

Mellor (1989) discusses how this condition is formally
equivalent to a zero TKE flux on a rigid surface assum-
ing the ‘‘law-of-the-wall’’ holds. This will be revisited
later when we discuss how this condition should be
modified to include the effects of wave breaking. Here
u* is the friction velocity, which is related to the wind
speed and stress through

2 2Ït 1 t rx y a2 2 2u 5 5 C (U 1 V ),D w w* r r0 0

with CD denoting the drag coefficient, ra the density of
air, and (Uw, Vw) the wind velocity components. The
quantity w* is known as the convective velocity scale;
while u* is mechanically generated by the wind, w* is
thermally produced mainly by surface cooling. Physi-
cally, w* can be thought of as a sinking velocity as-
sociated with a parcel of fluid undergoing unstable sur-
face forcing and is related to the known surface buoy-
ancy flux, , throughb9w9 0

w* 5 2( |h|)1/3.b9w9 0

Later it will be discussed how w* should be modified
to include Langmuir circulations. Also, more explana-
tion and usage of w* is given in the appendix. The values
assumed by the coefficients a1 and a2, as discussed in
the appendix, are obtained by considering various bal-
ances in the limit that the surface is approached. For
salinity, the condition to be satisfied is

5 2S (E 2 P),s9w9 0 (16)

where S 0 is the mean surface salinity and E, P are the
evaporation and precipitation rates (in m s21) respec-
tively.

In addition to the atmospheric forcing at the surface,
the mixed layer is also forced from below due to interior
mixing consisting of the three processes: shear insta-
bility, internal wave breaking, and double diffusion. In-
terior mixing was implemented by enforcing the eddy
viscosities not to fall below specified background values
implied by such mixing processes. These processes were
parameterized according to Large et al. (1994) and are
fully described in their paper.

3. Model performance

The set of parabolic-type evolution equations (1)–(5)
were numerically integrated in time using a semi-im-
plicit procedure. To allow for accurate differencing,
computations were carried out on a staggered grid,
whereby the turbulent fluxes and TKE were computed
midway between the grid points for the mean quantities
U , V , u , and S . The prognostic variables were treated
implicitly to increase numerical stability. At each time
step the surface fluxes are known and specified through
Eqs. (13)–(16). Using this, the turbulent fluxes beneath
the surface were then numerically computed by simul-
taneously solving the system of equations (6)–(12). Oth-
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TABLE 2. Comparison of boundary and mixed layer depth (in
meters) with various models for the wind-deepening case.

Wind stress
(dyn cm22)

1 4 16

Mellor–Yamada level 2
Mellor–Yamada level 2.5
Niiler
Garwood
Price–Weller–Pinkel
Therry–Lacarrère
Present model

19
18
27
26
20
22
23

41
39
54
51
44
46
50

76
76

108
104

88
87

107

er quantities such as h, t t, Km, Kh, and Ks were computed
explicitly based on information from the previous time
step since these quantities vary more slowly with time.
This also accelerates the convergence of the numerical
scheme. Typical computational parameters used were
Dt 5 500 s, Dz 5 2 m, and a bottom located at z 5
2150 m.

The model described in the previous section was first
subjected to a selected set of tests with idealized forcings
including wind-deepening, heating, and cooling cases.
The test cases chosen have been considered by others.
This provides a direct comparison of the present model
against existing mixed layer models, which span from
bulk to turbulence closure schemes and also include the
well-cited Pollard et al. (1973, hereafter PRT) model as
well as the recent K profile parameterization (KPP) mod-
el of Large et al. (1994). For comparison purposes, the
mixed layer depth was one selected quantity since it is
well documented in the literature and in many cases
represents the only quantity available. A more appro-
priate comparison would be based on profiles that we
have also included. In an attempt to make a proper com-
parison, computational parameters similar to those uti-
lized by the authors were used.

We do, however, encounter an uncertainty associated
with the definition of the mixed layer depth. Observa-
tions compute this depth based on a DT criterion, while
most mixed layer models are designed to operate with
a RiB criterion. In most of the cases to be presented
(with the exception of the heating experiment) all of
these definitions, including the TKE extinction method,
produce depths that are sufficiently close to each other
in magnitude, thus suggesting little practical distinction
between these methods. Also, we will see that the TKE
extinction method agrees reasonably well with obser-
vational data that cover a wide selection of forcing sce-
narios. There may be conceivable situations in which
the mixed layer undergoes rapid shallowing due to rapid
reductions in the surface wind stress or an increase in
surface heating. Features of the associated dynamical
response, such as inertial oscillations, may give rise to
local shear zones that are favorable sites for generation
of turbulence and internal mixing. We believe that the
model is able to reproduce this shallowing process and
damping of inertial oscillations by internal mixing pro-
cesses that, as noted above, are represented following
Large et al. (1994).

a. Wind deepening

The first wind-driven case considered is that con-
ducted by Martin (1985, 1986) where comparisons have
been made with the Mellor–Yamada level 2 (1974), level
2.5 (1982), and Therry-Lacarrère (1983) turbulence clo-
sure schemes, as well as with the Niiler (1975), Gar-
wood (1977), and Price–Weller–Pinkel (1986) bulk
models. For this experiment the initial stratification was
0.058 C m21, the salinity was constant at 35 psu, the

surface heat and salinity fluxes were zero, and the in-
ertial period was 24 h. Displayed in Table 2 are bound-
ary and mixed layer depths after 5 days of forcing for
wind stress values of 1, 4, and 16 dyn cm22 (1 dyn cm22

5 0.1 N m22) acting on an initially shearless and mo-
tionless fluid having U(z, t 5 0) 5 V(z, t 5 0) 5 0.
As expected, the final depths are proportional to the
square root of the wind stress. Perhaps surprisingly, un-
der this forcing the present model appears to behave
more like the Garwood and Niiler bulk models than like
the Mellor–Yamada models. The reason for this lies in
the stability functions utilized in those schemes. For
example, in the level 2.5 scheme Sm and Sh, the eddy
viscosity coefficients for momentum and heat respec-
tively, can be determined algebraically through (Mellor
1989):

S [1 2 (3A B 1 18A A )G ]h 2 2 1 2 H

5 A (1 2 6A /B )2 1 1

2S (1 2 9A A G ) 2 S [(18A 1 9A A )G ]m 1 2 H h 1 1 2 H

5 A (1 2 3C 2 6A /B ),1 1 1 1

where

2l g ]r
G 5 ,H 21 21 2q r ]z0

and (A1, A2, B1, B2, C1) 5 (0.92, 0.74, 16.6, 10.1, 0.08).
These expressions result from the closure approxima-
tions that they have made and do not apply to our for-
mulation. As a curiosity, we imposed these constraints
on Sm and Sh and found that our results came in close
agreement with theirs.

The next case considered corresponds to a steady
wind stress of 0.3 N m22, constant temperature gradient
of 0.18 C m21 and initial velocity profiles U(z, t 5 0)
5 V(z, t 5 0) 5 0 as used in the work by Pollard et
al. (1973). Plotted in Fig. 1 is the mixed layer depth
according to the PRT model and our boundary layer
depth versus time. Time has been made dimensionless
by normalizing it with half the inertial period, T 5 p/ f.
The diagram shows that for early times the two models
agree well and behave like h ; u* (t/N). This behaviorÏ
was also confirmed in the work of Kundu (1981) by
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FIG. 1. Comparison of the evolution of h with the PRT model.

TABLE 3. Comparison of boundary and mixed layer depth (in
meters) with various models for the heating case.

Surface heat flux
(ly/day)

150 600 2400

Mellor–Yamada level 2
Mellor–Yamada level 2.5
Niiler
Garwood
Price–Weller–Pinkel
Therry–Lacarrère
Present model

28
28
17
33
36
38
30

16
16

4
14
18
20
19

8
8
1
4

10
10
10

TABLE 4. Comparison of boundary and mixed layer depth (in
meters) with various models for the cooling case.

Surface heat flux
(ly/day)

2100 2200 2300

Mellor–Yamada level 2
Mellor–Yamada level 2.5
Niiler
Garwood
Price–Weller–Pinkel
Therry–Lacarrère
Present model

72
72

101
90
71
76
76

105
104
127
117
102
104
109

122
122
150
140
126
126
133

assuming a self-similar structure in the flow for early
times. After half an inertial period, deepening in the
PRT model is arrested by rotation and the mixed layer
depth remains constant, while the present model shows
a transition occurring in the growth rate. The small os-
cillations observed are from fluctuations in shear at the
base due to mixing, while the larger oscillation is due
to inertial motions.

b. Heating

For the heating experiment the model was initialized
as in Martin (1985, 1986) with a uniform temperature
from the surface down to a depth of 100 m and a linear
stable stratification of 0.058 C m21 below and zero initial
velocity profiles. Also, it was forced with a constant
wind stress of 1 dyn cm22 and heat fluxes of 150, 600,
2400 ly day21 (1 ly day21 5 0.484 W m22) applied at
the surface (with no solar radiation). This case repre-
sents the opposing effects of mixing due to wind gen-
erated turbulence and the stabilizing effect of surface
heating. As in the wind-deepening case, all the turbulent
fluxes collapse to downgradient expressions. In Table 3
the boundary layer depth of the present model is con-
trasted with the mixed layer depths of several models
after 2 days of forcing. Our model behaves closest to
the models of Mellor–Yamada for this stable case. For
stronger heating all the differential models behave sim-
ilarly. The Niiler and Garwood bulk models produce
shallow mixed layer depths for the heating experiment.
It was observed that our model produced significant
stratification near the surface for high surface heat fluxes
indicating that mixing was not strong enough to keep
the mixed layer temperature uniform. This is to be ex-
pected though since the source of heat is at the surface
with no penetration into the fluid column, as would be
the case if solar radiation were present. As commented
in Martin (1986), this also occurred with the other tur-
bulence closure schemes; the bulk models, on the other
hand, respond quickly and hence display little stratifi-

cation. The heating case produces an example of the
difficulties that arose in using the RiB and DT criteria
for determining h. Because of the large stratification that
can occur near the surface, these two criteria predicted
an unrealistically shallow depth for high heating rates,
whereas the TKE criterion was not so affected by the
presence of such a stratification. One must bear in mind
though that this heating experiment is unrealistic since
high heating rates are expected to occur as a result of
solar radiation and hence allowed to decay beneath the
surface. This was not the case in this experiment.

c. Cooling

We begin examination of the effects of convection by
simulating the case considered by Martin (1985, 1986).
Here, the initial conditions were identical to those in
the wind-deepening case. Forcing is due to a constant
wind stress of 1 dyn cm22 and surface fluxes of 2100,
2200, and 2300 ly day21. Table 4 compares the bound-
ary and mixed layer depths of several models after a
forcing duration of 120 days. The long forcing period
simulates the cooling typical of the winter season and
also magnifies the differences in the various models.
The shallowest mixed layer depths result from the Mel-
lor–Yamada, Price–Weller–Pinkel, and Therry–Lacar-
rère models, while the deepest from the Niiler model.
The further deepening beyond the shallowest depths in
the present model can be attributed to the nonlocal and
countergradient contributions to the turbulent fluxes,
which are activated in convective situations. Plotted in
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FIG. 2. Normalized heat flux profile after 120 days of cooling at Q
5 2300 ly day21 and a wind stress of 1 dyn cm22.

TABLE 5. Comparison of boundary layer depth (in meters) with the
KPP model for the case of free convection for surface heat flux 5
2100 W m22.

KPP model
Present model

13.6
12.8

TABLE 6. Comparison of boundary layer depth (in meters) with the
third-order model of André and Lacarrère for the case of free con-
vection.

André–Lacarrère
model

Present
model

Time
(hours)

8.0
10.5
12.5

7.8
9.3

11.1

5
10
15

Fig. 2 is the normalized heat flux profile at the end of
the 120 day run for the cooling rate of 2300 ly day21.
The diagram reveals that the magnitude of the flux gen-
erated at the base of the mixed layer is about 15% of
the surface value, which is consistent with observational
findings on convective boundary layers (Stull 1976).

The next comparisons are for the important case of
free convection. Listed in Table 5 are the boundary layer
depths for the experiment proposed by Large et al. using
their similarity-based KPP model. The surface is subject
to a steady cooling of 2100 W m22 and has an initial
linear stable stratification of 0.18 C m21. As with all
these idealized forcing examples, the salinity was kept
constant. The depth shown is after 3 days of cooling
and are in good agreement. Also presented in Table 6
are boundary layer depths at various times for a case
conducted with the third-order model of André–Lacar-
rère. The agreement for this experiment is within 11%.
Here, the surface is cooled at 2200 W m22 and the
initial profiles as well as the profiles at later times are
illustrated in Figs. 3a and 3b. Also shown in these di-
agrams are the corresponding results of André–Lacar-
rère, which are represented as dots. The agreement dem-
onstrates that our second-order model does reasonably
well in reproducing their velocity and temperature struc-
tures. In Fig. 3a we see that convectively generated
turbulence is capable of efficiently mixing momentum
throughout the mixed layer in contrast to wind generated
turbulence, which typically produces an almost constant
shear throughout the mixed layer. Also, the temperature
profiles in Fig. 3b remain slightly unstable near the sur-
face due to the cooling.

d. Ocean weather station datasets

In addition to the above simple forcing experiments,
the model was further tested against observational data
taken from Ocean Weather Stations (OWS) November
(N) and Papa (P) located in the North Pacific at 308N,

1408W and 508N, 1458W respectively. For these sim-
ulations the model was run with a uniform 5-m grid
spacing that extended down to a depth of 200 m and a
15-min time step. The sensitivity of the results to the
grid spacing will be briefly discussed later in this sec-
tion. Since previous studies such as Martin (1985,
1986), Large et al. (1994), and Kantha and Clayson
(1994) have focused on the year 1961, we have decided
to follow suit and begin our simulations on 1 January,
which we denote as day 0. The datasets consist of 3-h
meteorological and BT observations that were used to
initialize the temperature profiles. Unfortunately, no ve-
locity, salinity, or TKE measurements are available.
This, of course, raises the concern of how to initialize
these profiles as well as the sensitivity to these unknown
profiles. These sensitivity issues will be addressed later
when we present the results for OWS P. From the me-
teorological data (which included SST, air, wet-bulb, and
dewpoint temperatures, wind speed and direction, cloud
cover, and surface air pressure) surface fluxes of heat,
momentum, evaporation, and radiation can be comput-
ed. To do this we utilized the bulk formulas that are
fully described in Martin (1985). Fluxes required by the
model between the 3-h measurements were obtained by
interpolation. As previously mentioned, the boundary
layer depth can be determined from the observed BT
using a temperature jump criterion. It was defined as
the depth at which the temperature drops by 0.18C from
the sea surface value. The effects of advection were not
taken into account in our simulation, and the conse-
quences of this will be commented on later. The ex-
tinction of solar radiation in seawater as classified by
Jerlov (1976) according to turbidity was used in the
model with optical type I at OWS N and type II at OWS
P. Last, we have assumed a 6% surface albedo at both
stations.

At OWS N salinity was held constant during the year-
long simulation. The justification for ignoring salinity
effects is supported by the 20 years of analysis of me-
teorological and oceanographic data performed by Dor-
man et al. (1974). Also, the velocity and TKE profiles
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FIG. 3. Profiles of (a) U and (b) u at various times for a free convection experiment with a steady cooling of Q 5 2200 W m22. The
dots reflect corresponding values obtained by the third-order model of André–Lacarrère.

were initially set to zero. The clear-sky insolation was
corrected for cloud cover using the correction and solar
transmission coefficient set forth by Reed (1977). The
results of the simulation are shown in Figs. 4a–c. Ob-
vious features of the simulated SST are spikes that occur
during the spring and summer. Similar spikes are also
present in the models used by Martin (1985, 1986) and
that of Kantha and Clayson (1994) and are the result of
the combination of strong heating and weak winds act-
ing on a shallow mixed layer. Figures 4a and 4b contrast
the observed and simulated SST and boundary layer
depth respectively. Large differences in the SST are
apparent in Fig. 4c. However, as explained in Martin
(1985), the observed SST at OWS N does show some
spurious features where the temperature jumps abruptly
and should be taken into account when evaluating the
comparison.

For simulations carried out at OWS P the clear-sky
insolation was corrected for cloud cover using the cor-
rection and solar transmission coefficient of Tabata
(1964). Salinity must be treated more carefully since
the works of Beatty (1977) and Tabata (1965) both re-
port that a strong halocline exists below a depth of ;125
m. The climatological data of Beatty was used to ini-
tialize the salinity profile. To investigate the sensitivity
to salinity effects we ran several simulations. First, we
ran a trial simulation having a constant initial salinity
profile (instead of the climatological data of Beatty),
which of course ignored the halocline. In the second
simulation we set the salinity flux to zero during the
entire run, as did Martin, and used the climatological
data for the initial salinity profile. For the third simu-
lation we followed the suggestion of Gaspar (1988),
which is to keep the initial salinity profile constant
throughout the entire year (again using the profile of
Beatty). Last, a fourth simulation was performed similar
to the second with the exception that the salinity flux
was not set to zero but estimated based upon evaporation
that was computed and precipitation that was specified

according to the observed mean annual cycle of Tabata
(1965). For the three simulations, excluding the first
case, the resulting SST profiles were only slightly dif-
ferent from one another and thus justifies using the cli-
matological data as a reasonable initial salinity profile.
As to be expected, ignoring the halocline produced a
significantly deeper mixed layer during the wintertime.

To investigate the sensitivity to the initial velocity
profiles we again ran several simulations whereby dif-
ferent initial profiles were selected ranging from the
trivial choice U(z, t 5 0) 5 V(z, t 5 0) 5 0 to various
linear profiles. The results showed negligible depen-
dence on the initial velocity profiles. The velocity pro-
files after a short time, on the order of days, were vir-
tually independent of the initial profiles. Last, the sen-
sitivity to the initial TKE profile was also studied. Here
we considered two initial profiles: the trivial choice e(z,
t 5 0) 5 0 and expression (A8) derived in the appendix.
Once again the results revealed negligible dependence
on the initial TKE profile. Presented and contrasted in
Figs. 5a–c are observed and simulated SST and bound-
ary layer depth profiles for the case where evaporation
and precipitation were incorporated. The agreement be-
tween the observed and simulated SST, as shown in Fig.
5a, is good as is the agreement in h portrayed in Fig.
5b. Figure 5c reveals that noticeable discrepancies occur
in the final and summertime SST where in both instances
the model overestimates the observed value. The final
SST is overestimated by about 0.98C. A similar over-
estimation was also obtained by Kantha and Clayson
and as they mention could be partly attributed to the
neglect of advection effects. Large et al. (1994) point
out that horizontal advection is important during the
period running from September to February. Another
apparent difference is an underpredicted mixed layer
depth during the winter due to the strong halocline.
Since the observed depth is based solely on temperature,
it mimics the thermocline depth and does not take into
account the halocline. Plotted in Fig. 6 are simulated
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FIG. 4. Observed and simulated (a) SST and (b) boundary layer
depth at OWS N for the year 1961. (c) Difference between observed
and simulated SST at OWS N.
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FIG. 5. Observed and simulated (a) SST and (b) boundary-layer
depth at OWS P for the year 1961. (c) Difference between observed
and simulated SST at OWS P.
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FIG. 6. Comparison of simulated (solid line) and observed (dashed
line) temperature profiles for OWS P at t 5 90, 180, and 270 days.

FIG. 7. Simulated SST at OWS P using three grid spacings: Dz 5
2.5 m (dashed line), Dz 5 5 m (solid line), and Dz 5 10 m (dotted
line).

and observed temperature profiles at various times dur-
ing the year-long simulation. This illustrates that the
model is able to reasonably capture the seasonal tem-
perature structure in addition to the seasonal SST. We
also carried out experiments where the grid spacing was
varied. Illustrated in Fig. 7 are the SST profiles corre-
sponding to the three resolutions: Dz 5 2.5 m, Dz 5 5
m, and Dz 5 10 m. The three profiles are in good agree-
ment and show the largest difference occurring during
the summertime. This is to be expected though since
the mixed layer can get quite shallow and sensitive to
the minimum depth allowed, which was set equal to the
grid spacing Dz. As a final note we wish to comment
that computing h using the different criteria mentioned
(i.e., using RiB and DT) produced similar profiles for
the boundary layer depth as that presented. Since the
agreement with the observed depth is reasonable, this
supports our approach in using the TKE extinction
method.

4. Extensions

The structure of the oceanic surface layer is compli-
cated by the presence of surface gravity waves. A con-
sequence of this is that the oceanic surface layer is sub-
jected to some unique processes having no atmospheric
counterpart, such as Langmuir circulation and wave
breaking. In this section we will discuss how the present
model can be modified to include these effects by treat-
ing each process separately and independent of each
other.

a. Langmuir circulation

Langmuir circulations can be described as organized
convective motions in the surface layer of the ocean that
play a prominent role in upper-layer mixing. Apart from
surface and internal gravity waves, Langmuir cells are
considered to be the most important coherent structures

in the ocean boundary layer according to Weller and
Price (1988). While numerous theories have been pro-
posed to explain these circulations (see Pollard 1977),
the prevailing theory is that due to Craik and Leibovich
(1976). This theory claims that Langmuir circulations
are an instability arising from the nonlinear interaction
between the Stokes drift and the frictional wind drift
current that is initiated by a vortex force, which enters
into the momentum equations. This model is known as
the CL2 instability mechanism. Visible manifestations
of Langmuir circulations are streaks (or windrows)
formed nearly parallel to the wind caused by a series
of subsurface counterrotating vortices that closely re-
semble convection rolls [although they form regardless
of surface heating or cooling, the effects of heating or
cooling was numerically investigated by Li and Garrett
(1995)]. These circulations normally do not exist in
winds less than approximately 3 m s21. Also, they re-
align themselves with shifts in the wind direction. The
wind drift current has larger velocities in the conver-
gence zones. Langmuir (1938) believed that this is be-
cause the water there had been on the surface since it
rose from the divergence zone and therefore had been
accelerated by the wind for the longest period of time.
Langmuir also claimed that the vortices are largely re-
sponsible for the formation of the thermocline and the
maintenance of mixed layers. These circulations have
been successfully modeled by Leibovich (1977), Lei-
bovich and Radhakrishnan (1977), and Li and Garrett
(1993) using two-dimensional models. Recently, three-
dimensional large-eddy simulations of Langmuir cir-
culations have been performed by Skyllingstad and Den-
bo (1995) and McWilliams et al. (1997), while a three-
dimensional model was advanced by Tandon and Lei-
bovich (1995).

To date, ocean models have not yet included the ef-
fects of Langmuir circulation. However, using the Price–
Weller–Pinkel bulk model Li et al. (1995) and Li and
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Garrett (1997) have recently proposed introducing an-
other criterion, called the Langmuir circulation index
LCn, to determine if deepening should occur. This con-
dition is used in addition to the bulk Richardson number
criterion and generally produces a deeper mixed layer.
The physics behind this criterion is based upon the
Froude number, Fr 5 wd/(Nh), where wd is the maximum
downwelling velocity produced by Langmuir circula-
tions in a homogeneous fluid. Their numerical simula-
tions show that this quantity is constant. In the present
scheme we have accounted for the effects of Langmuir
circulation through the following modifications to the
model when the winds exceed 3 m s21:

1) Adding to the convective velocity, w*, a mechani-
cally driven contribution due to Langmuir circula-
tion. Here we exploit the nonlocal versatility of our
parameterizations for third moments; and

2) including in the equations the contributions arising
from the vortex force responsible for producing
Langmuir circulations. As we will see this modifies
the TKE and momentum equations.

An obvious choice for the mechanical contribution to
the convective velocity w*LC is to use the maximum

downwelling velocity wd. With |wd| ø (0.0025 to
0.0085) ( 1 (Leibovich 1983) we can write2 2U VÏ w w

w*LC ø 2c ( 1 ),2 2U VÏ w w

where c lies in the range 0.0025 , c , 0.0085. The
vortex force that must be included in the momentum
equations is given by Vs 3 v (Leibovich 1977), where
Vs is the Stokes drift velocity and v is the absolute
vorticity. The Stokes drift can be parameterized as in
Li and Garrett (1993) for a fully developed sea:

V 5 (U , V ) ø 0.016 exp(2|z|/L)(U , V )s s s w w

with
2 2L 5 0.12(U 1 V )/g.w w

Owing to the assumption of horizontal homogeneity,
adding the vortex force to the momentum equations only
affects the Coriolis terms. This has been pointed out in
the very recent work of McWilliams et al. (1997). The
Coriolis terms in Eqs. (1) and (2) become f (V 1 Vs)
and 2 f (U 1 Us), respectively, which now include the
Stokes drift. Another consequence of adding the vortex
force to the momentum equations is a modification to
the TKE equation, which now takes the form

3]e ]U dU ]V dV ] 1 qs s5 2 u9w9 1 1 y9w9 1 1 b9w9 2 ew9 1 P9w9 2 U u9w9 2 V y9w9 2 . (17)s s1 2 1 2 1 2[ ]]t ]z dz ]z dz ]z r Bl0

A full derivation of the above is given in the work by
Skyllingstad and Denbo (1995). The result is that the
following new terms appear on the right-hand side of
the TKE equation:

] ]
U (u9w9), V (y9w9),s s]z ]z

which can be rewritten as

] ] dUsU (u9w9) 5 (U u9w9) 2 u9w9s s]z ]z dz

] ] dVsV (y9w9) 5 (V u9w9) 2 y9w9 .s s]z ]z dz

Written in this way we see that the shear production and
transport terms have been modified by the inclusion of
the vortex force. The shear production term (SP) now
reads

]U dU ]V dVs sSP 5 u9w9 1 1 y9w9 1 .1 2 1 2[ ]]z dz ]z dz

To investigate the outcome of these modifications we
ran the yearlong simulation at OWS P with Langmuir
circulation since the winds are stronger there and the

dataset is of better quality. The results of that simulation
with c 5 0.006 are illustrated in Figs. 8a,b. In Fig. 8a
we plot the boundary layer depth, which shows episodes
of dramatic deepening at various instances; illustrated
in Fig. 8b is a running 5-day average of the depth dif-
ference with and without Langmuir circulation. It is
clear from these diagrams that the effects of Langmuir
circulation, as implemented here, can lead to further
deepening. This deepening is especially prevalent dur-
ing the fall and winter when convection and winds are
stronger. The only noticeable change in the sea surface
temperature worth mentioning is a drop in the final SST
of about 0.28C compared to the case with no Langmuir
circulation. The inclusion of Langmuir circulation does
improve the agreement with observation in that the rms
value of the difference between the observed and sim-
ulated h is reduced slightly and also the overestimation
in SST near the end of the simulation is lowered. As a
final note, the modified shear production term suggests
redefining the bulk Richardson number RiB as follows:

g[a(u (z ) 2 u (h)) 2 b(S (z ) 2 S (h))](h 2 z )s s sRi 5 ,B 2 2 2(U (z ) 2 U (h)) 1 (V (z ) 2 V (h)) 1 |DV |s s s

where
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FIG. 8. (a) Simulated boundary layer depth at OWS P with Lang-
muir circulation. (b) Averaged depth difference D, with and without
Langmuir circulation.

|DVs| 2 5 (Us(zs) 2 Us(h))2 1 (Vs(zs) 2 Vs(h))2.

Using the prescribed expressions for the Stokes drift
with h k L and zs → 0, we find that

2r u02 2 2 2 2 *|DV | ø (0.016) (U 1 V ) 5 (0.016)s w w 1 2r Ca D

2ø 160u .*

It is interesting that the modified expression for RiB

comes in close agreement with one proposed by Vo-
gelezang and Holtslag (1998), for atmospheric use under
stable conditions. Also, Large et al. (1994) suggest a
form for RiB that is similar to that above whereby they
replace |DVs| 2 with a turbulent velocity. We point out
that the above expression for RiB was not used in our
case since the TKE extinction method was implemented
to compute h and we offer the above only as an alter-
native.

b. Breaking waves

The recent measurements of Drennan et al. (1996),
Terray et al. (1996), Anis and Moum (1992), Agrawal
et al. (1992), and Gargett (1989), to mention a few,
support the idea of enhanced turbulence in the oceanic
surface layer as a result of wind wave action. In previous
studies, for example Kundu (1980) and Klein and Coan-
tic (1981), wave breaking is taken into account by pre-
scribing a nonzero TKE flux at the surface z 5 0. Fol-
lowing this approach, as in the recent work of Craig
and Banner (1994), we proceed to investigate the con-
sequences of this on the present scheme. This involves
examining the limiting behavior of the TKE equation
(5) in its steady-state form near the surface. In the ab-
sence of a surface buoyancy flux we expect that

l → k(|z| 1 z )0

4u*SP →
Km

]e 3B
ew9 → 2a K , a 5 .e m e]z 64Sm

The TKE equation then assumes the form of a nonlinear
ordinary differential equation given by

3d d(q )
2 3 2(1 1 z) (1 1 z) 2 n q 5 2n l /q, (18)5 6dz dz

where z 5 |z|/z0, n2 5 3/(Bk2Smae) and l 5 /Sm.4Bu*

This equation represents a three-way balance between
shear, diffusion, and dissipation. In the absence of dif-
fusion we get the familiar shear–dissipation balance giv-
en by q 5 l1/4. Craig and Banner also considered the
balance between diffusion and dissipation to arrive at
the dominant solution

q 5 C9(1 1 z )2n/3,

where C9 is an arbitrary constant. Physically, this so-
lution represents the decay in TKE from the surface
where it is presumably generated. Our objective here is
to present a more general solution to (18) that reduces
to the above result when the right-hand side of (18)
tends to zero. We begin by making the substitution (1
1 z ) 5 exp(j ) and cast the equation in dimensionless
form by defining q̂ 5 q/l1/4 and rescaling j as 5 nj.ĵ
Then, in terms of q̂2, Eq. (18) can be rewritten as

22 2 2ˆ3 d(q ) 3 d (q̂ )
2 2 2ˆ1 q̂ 2 (q ) 5 21. (19)

21 24 dĵ 2 dĵ

In this form the shear–dissipation balance becomes sim-
ply q̂ 5 1. Next we set q̂2 5 1 1 F, where F denotes
an enhancement factor above the shear–dissipation val-
ue due to wave breaking, and define R 5 dF/ so thatˆdj

5 RdR/dF. With these in place and after someˆdR/dj
algebra we obtain
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dF 2 3 1 F
R 5 5 2 F . (20)!dĵ 3 1 1 F

In arriving at this expression we have invoked the con-
dition that R 5 0 when F 5 0 and have chosen the
negative root to give the desired asymptotic behavior,
which is that q̂2 → 1 sufficiently far away from the
surface. Before presenting the exact solution to (20) we
first illustrate two limiting cases:

dF 2
F k 3, then 5 2 F,

dĵ 3

which recovers the solution of Craig and Banner, and

dF 2
F K 1, then 5 2 F,

dĵ Ï3

which corresponds to the shear–dissipation limit. This
demonstrates that, if wave breaking significantly en-
hances the turbulence, then the balance is established
between dissipation and diffusion with little contribu-
tion coming from shear. The general solution to (20) is
given by

1/Ï3h 1 2Ï3 2
5 C(h 1 4) exp 2 ĵ , (21)1 2 1 23h 2 2Ï3

where C is an arbitrary constant and

h 5 2F 2 2 (3 1 F)(1 1 F).Ï
It can be shown that the solution given by (21) collapses
to the limiting forms above when the appropriate limits
are taken.

In order to investigate the role of wave breaking we
consider the limiting case of large F since in such cir-
cumstances wave breaking is expected to be the main
source of turbulence. In this case we have F → C(1 1
z )22n/3 and q2 → lF in terms of the original variables.Ï
If we impose a TKE flux condition as in Kundu (1980)
and Klein and Coantic (1981)

ew90 5 ,32mu*

where m is a parameter ranging from about 10 to as
high as 100, this enables us to determine the constant
C and yields C 5 4m2/3 Sm/B. Since the near surfaceÏ
structure of the TKE is known, this information can be
used to convert the above flux condition into a Dirichlet
condition and is equivalent to adding a wave breaking
component to the coefficient a1 in the TKE boundary
condition giving

a 1 5 2m2/3 1 a1.

This limiting case considered becomes more and more
valid as m increases. As well, we redefine z0 with a
Charnock-type formula

21, 400u*z 50 g

as discussed in Craig and Banner. As noted in the recent

review by Melville (1996), the specification of z0 is an
unresolved issue plaguing turbulence closure modeling.
Craig and Banner found that in order to yield reasonable
agreement with dissipation measurements much larger
values of z0 in the range 0.1–8 m had to be used. Sim-
ulations were run with these modifications and although
these changes enhanced the turbulence near the surface,
it showed a negligible effect in further deepening the
mixed layer. This is also consistent with the findings of
Kundu (1980) and Klein and Coantic (1981). The ex-
planation for this, which is consistent with the above
analysis, is that deeper beneath the surface the TKE
becomes controlled by the mean flow through shear pro-
duction and not by its surface conditions. Since the ef-
fects of wave breaking do not directly enter into the
equations for the mean, little change in the TKE occurs
at larger depths.

Considerable interest has been directed toward the
vertical structure of « and the prediction of its decay
rate since the dissipation is a quantity that can be mea-
sured with reasonable confidence. Recent measurements
(cited earlier) verified the existence of a wave zone char-
acterized by enhanced dissipation due to wave breaking
well in excess of

3u*« ø
kz

as suggested by the classical logarithmic boundary layer
over a rigid surface. The dissipation was first estimated
to decay as z2a with a in the range 3.0–4.6. However,
as discussed in Melville (1996) the recent papers by
Terray et al. (1996) and Drennan et al. (1996) both point
to a slower z22 decay. The decay rate predicted by the
Craig and Banner model is given by z23.4. According to
the analysis presented above, our dissipation is found
to decay with a power law behavior having an index of
22.2 and thus comes in close agreement with the cur-
rently accepted inverse square law.

5. Conclusions

Presented in this paper is a second-order turbulence
closure scheme for the oceanic mixed layer. While the
scheme is similar in some respects to a Mellor–Yamada
level 2.5 scheme, it differs substantially in the treatment
of the turbulent fluxes. Here, we have allowed for non-
local and countergradient contributions to the turbulent
fluxes by virtue of our parameterizations for third mo-
ments. These contributions become activated in con-
vective cases. The scheme computes the boundary layer
depth h on the basis of the level of turbulence. Since
the TKE decays rapidly beneath the mixed layer and is
computed prognostically, it was found to be a good
measure for h for the all cases considered. The perfor-
mance of the model was compared with other turbulence
closure and bulk models as well as with the PRT and
KPP models for idealized forcing experiments. Also,
the model was tested against observations taken at OWS
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November and Papa for the year 1961 and did reason-
ably well in reproducing the observed sea surface tem-
perature and boundary layer depth.

Also considered in this study were means of incor-
porating near-surface processes such as Langmuir cir-
culations and wave breaking. Accounting for the effects
generated by Langmuir circulations involved modifying
the convective velocity scale to include a mechanically
driven contribution as well as modifying the TKE and
momentum equations to include the Craik–Leibovich
(1976) vortex force, all of which can be easily absorbed
into the present scheme. The results obtained from these
modifications using OWS P data indicate that Langmuir
circulation causes further deepening of the mixed layer,
especially during the fall and winter seasons. Using the
data from the Long-Term Upper Ocean Study (LOTUS),
Li et al. (1995) also demonstrate that Langmuir circu-
lations can dominate deepening when the velocity dif-
ference across the base of the mixed layer is less than
about 1% of the wind speed. The analysis presented on
wave breaking represents an extension of the pioneering
work conducted by Craig and Banner (1994), which
constitutes the most recent and thorough attempt in
modeling the effects of wave breaking. Here, wave
breaking was accounted for by modifying the surface
boundary condition for the TKE and by specifying the
limiting length scale near the surface with a Charnock-
type relation. Although these changes can greatly en-
hance the turbulence near the surface, it showed little
influence in further deepening the mixed layer. This is
consistent with the findings of Kundu (1980) and Klein
and Coantic (1981). Last, the decay rate of dissipation
predicted by the analysis agrees well with the recent
measurements of Terray et al. (1996) and Drennan et
al. (1996).
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APPENDIX

Derivation of Turbulent Flux Expressions

The derivation of the flux relations (6)–(12) is out-
lined below. We begin with the heat budget equation
for the turbulent heat flux:

2](u9w9) ]u ](u9w9 ) 1 ]P9
25 2w9 2 2 u9 1 b9u9 .

]t ]z ]z r ]z0

(A1)

First we assume that the turbulence is quasi-steady. This
is valid provided the turbulent timescale is much smaller
than the timescale associated with the evolving surface
conditions. Following Moeng and Wyngaard (1986), the
pressure term is expressed as

1 ]P9 u9w9 1
2u9 ø 1 agu9 .

r ]z t 20 t

This result makes use of Rotta’s (1951) ‘‘return to isot-
ropy’’ model, which is represented by the first term.
Equation (A1) then becomes

2]u ](u9w9 ) t t 2u9w9 5 2K 2 t 1 agu9 , (A2)h t]z ]z 2

where the eddy viscosity for heat is defined as Kh 5
t tw92 and we have made the approximation b9u9 ø
agu92 . The next step is to parameterize the third moment
according to the recent work of Abdella and McFarlane
(1997)

u9w92 ø 0.4w*u9w9 , (A3)

where w* is the convective velocity established by sur-
face forcing. It is defined by w* 5 2(b9w90|h|)1/3 for
unstable cases and zero otherwise, with the subscript
referring to evaluation at the surface z 5 0. With these
in place Eq. (A2) then agrees with expression (8). In
the absence of radiation (8) can be further simplified by
arguing that the heat flux should be an approximately
linear function of z throughout the mixed layer. This is
supported by Fig. 2 where the normalized heat flux is
plotted for one of the cooling cases presented in Table
4. Making this assumption on the transport term avoids
numerically solving the ODE while still capturing the
importance of transport. Thus, in radiation-free cases
we can write

2](u9w9 ) ](u9w9) u9w9 05 0.4w ø 20.4gw ,* *]z ]z h

where g is a constant in the range 1 # g # 1.3 and
accounts for the level of entrainment at the base of the
mixed layer. We emphasize that we have made use of
the linear profile of the heat flux only to make an es-
timate on the transport term.

The expression for the heat flux requires knowledge
of the temperature variance u92 as well as the vertical
velocity variance w92 . To obtain u92 we start from its
budget equation

2 2](u9 ) ]u ](u9 w9)
5 22u9w9 2 2 2e . (A4)u]t ]z ]z

As before, we assume the turbulence is quasi-steady and
parameterize the third moment according to Abdella and
McFarlane:

u9w9 02u9 w9 ø 2.0u u9w9 with u 5 , (A5)* * w*
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where u* is the convective temperature scale. Both the
parameterizations for u92w9 and u9w92 can be traced
back to the convective mass flux concept as explained
in Abdella and McFarlane. Next we represent the dis-
sipation term according to Kolmogorov (1942)

q
2e ø u9 .u c l2

With this we arrive at the expression given by (11). The
equation satisfied by the vertical velocity variance as
given by the André et al. (1978) model is

2 3 3](w9 ) ](w9 ) 8 q 1 2 q
2 25 2 1 2b9w9 2 w9 2 q 2 .1 2]t ]z B l 3 3 Bl

(A6)

Assuming stationarity and ignoring the transport term
yields the expression given by (12).

In the parameterization of the TKE flux (10) we have
included a buoyancy contribution as in Therry and La-
carrère (1983) to more effectively describe the diffusion
of TKE in convective situations. The salinity flux, s9w9 ,
can be modeled along the same lines as the heat flux.
This, however, would introduce the second moments
s9u9 and s92 , which in turn can be parameterized in a
similar fashion as u92 . Since the influence of these terms
is uncertain and is expected to be small for the cases
presented here, we have adopted a simpler representa-
tion for s9w9 given by (9). The origin of the counter-
gradient term follows from arguments made for the heat
flux. We add that this term represents a nonlocal con-
tribution to the salinity flux since it is derived from
surface forcing conditions. Last, the momentum fluxes
used in the model are standard downgradient expres-
sions that closely resemble those used in the Mellor and
Yamada (1982) scheme. Parameterizing momentum
fluxes is complicated by the presence of pressure forces.
Assumptions made in modeling other turbulent fluxes,
such as heat and salinity, cannot be easily carried over
to momentum since there is very little experimental or
observational evidence to support this. The downgra-
dient approximation, which is probably not fully ade-
quate for convective cases, results from its budget equa-
tion if we assume the following: the transport term ap-
proximately cancels the buoyancy term, the pressure
term can be parameterized by the return-to-isotropy for-
mulation and finally the steady-state assumption is valid.
In view of this, the parameterization of momentum flux-
es is worthy of a more thorough independent investi-
gation.

As a final note we wish to comment on the values of
the various constants appearing in Table 1. While some
of these constants are purely empirical, others are based
on physical arguments. For example, we expect that near
the surface

Km → ku*(|z| 1 z0),

and, using a simple shear–dissipation balance, obtain

1/4B
q → u .1 2 *Sm

Combining these expressions, it is easy to show that

1
B 5 .

3S m

Thus, once Sm is chosen, this immediately fixes the value
of B. The value for Sm corresponds to the neutral value
of Mellor and Yamada. The constant a1 appearing in
the surface condition for the TKE was found by applying
a simple shear–dissipation balance. This leads to

1 B
a 5 ,1 !2 Sm

which is consistent with Mellor and Yamada, and sim-
ilarly we find that a2 5 a1. Last, the constant c3 as-
sociated with the timescale was determined by imposing
the constraint that under neutral conditions Kh 5 Km/
Pr, where Pr is the turbulent Prandtl number. This leads
to the result c3 5 4Sm/Pr.

A note on TKE initialization

Here we develop a formula for initializing the TKE
needed for the yearlong simulations conducted at OWS
N and P. We begin with a version of the TKE equation
similar to that used in the Mellor–Yamada level 2
scheme in which a quasi-steady state is assumed and
eddy transport terms are ignored:

3]U ]V q
0 5 2 u9w9 1 y9w9 1 b9w9 2 . (A7)1 2]z ]z Bl

All turbulent fluxes are represented by the downgradient
expressions

]U ]V
u9w9 5 2K , v9w9 5 2K ,m m]z ]z

]u
b9w9 5 2agK ,h ]z

with Km 5 Kh 5 K 5 Smlq, as in a Mellor–Yamada
level 2.5 scheme. Then rearranging Eq. (A7) yields

2 22S Bl ]U ]V ]ume 5 1 2 ag . (A8)1 2 1 2[ ]2 ]z ]z ]z

The above relation can be used to furnish an initial TKE
profile provided the mean variables are specified and a
reasonable estimate for l is used, such as l ø 2 m. It is
interesting to note that in terms of the gradient Rich-
ardson number, defined as

2N
Ri 5 ,G 2 2(]U/]z) 1 (]V /]z)

where
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]u
2N 5 ag ,

]z

Eq. (A8) can be written alternatively as
2 2S Bl Nme 5 (1 2 Ri ). (A9)G2 RiG

This provides a relationship between the TKE and RiG

once appropriate values for l and N are specified.
It is interesting to note that, at the base of the mixed

layer where we have assumed that

Ïe
l → l 5 ,b N

Eq. (A9) yields a critical value for the gradient Rich-
ardson number:

1
(Ri ) 5 , 1,G cr 2

1 1
S Bm

whose magnitude is approximately 0.76. Retaining the
transient term in the left-hand side of Eq. (A7) and
repeating the above analysis it is easily shown that for
RiG . (RiG)cr the TKE decays exponentially with time
while for RiG , (RiG)cr the TKE grows exponentially
with time.
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, Y. Grégoris, and J.-M. Lefevre, 1990: A simple eddy kinetic
energy model for simulations of the oceanic vertical mixing:
Tests at station Papa and Long-Term Upper Ocean Study site.
J. Geophys. Res., 95, 16 179–16 193.

Jerlov, N. G., 1976: Marine Optics. Elsevier, 231 pp.
Kantha, L. H., and C. A. Clayson, 1994: An improved mixed layer

model for geophysical applications. J. Geophys. Res., 99,
25 235–25 266.

Klein, P., and M. Coantic, 1981: A numerical study of turbulent
processes in the marine upper layers. J. Phys. Oceanogr., 11,
849–863.

Kolmogorov, A. N., 1942: The equation of turbulent motion in an
incompressible fluid. Izv. Akad. Nauk. SSSR, Ser. Phys., 6, 56–
58.

Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of
the seasonal thermocline. Part II. The general theory and its
consequences. Tellus, 19, 98–105.

Kundu, P. K., 1980: A numerical investigation of mixed-layer dy-
namics. J. Phys. Oceanogr., 10, 220–236.
, 1981: Self-similarity in stress-driven entrainment experiments.
J. Geophys. Res., 86, 1979–1988.

Langmuir, I., 1938: Surface motion of water induced by wind. Sci-
ence, 87, 119–123.

Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic
vertical mixing: A review and a model with a nonlocal boundary
layer parameterization. Rev. Geophys., 32, 363–403.

Leibovich, S., 1977: On the evolution of the system of wind drift
currents and Langmuir circulations in the ocean. Part 1. Theory
and averaged current. J. Fluid Mech., 79, 715–743.
, 1983: The form and dynamics of Langmuir circulations. Ann.
Rev. Fluid Mech., 15, 391–427.
, and K. Radhakrishnan, 1977: On the evolution of the system
of wind drift currents and Langmuir circulations in the ocean.
Part 2. Structure of the Langmuir vortices. J. Fluid Mech., 80,
481–507.

Li, M., and C. Garrett, 1993: Cell merging and the jet/downwelling
ratio in Langmuir circulation. J. Mar. Res., 51, 737–769.
, and , 1995: Is Langmuir circulation driven by surface
waves or cooling? J. Phys. Oceanogr., 25, 64–76.
, and , 1997: Mixed layer deepening due to Langmuir cir-
culation. J. Phys. Oceanogr., 27, 121–132.
, K. Zahariev, and C. Garrett, 1995: Role of Langmuir circulation
in the deepening of the ocean surface mixed layer. Science, 270,
1955–1957.

Martin, P. J., 1985: Simulation of the mixed layer at OWS November
and Papa with several models. J. Geophys. Res., 90, 903–916.
, 1986: Testing and comparison of several mixed-layer models,
Naval Oceanographic Research and Development Agency
(NORDA) Rep. 143, Naval Research Laboratory, Stennis Space
Center, Mississippi, 27 pp.

McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir
turbulence in the ocean. J. Fluid Mech., 334, 1–30.



AUGUST 1998 1641D ’ A L E S S I O E T A L .

Mellor, G. L., 1989: Retrospect on ocean boundary layer modelling
and second moment closure. Proc. Fifth Aha Huliko’a Hawaiian
Winter Workshop, Honolulu, HI, Hawaii Institute of Geophysics,
251–272.
, and T. Yamada, 1974: A hierarchy of turbulence closure models
for planetary boundary layers. J. Atmos. Sci., 31, 1791–1806.
, and P. A. Durbin, 1975: The structure and dynamics of the
ocean surface mixed layer. J. Phys. Oceanogr., 5, 718–728.
, and T. Yamada, 1982: Development of a turbulent closure model
for geophysical fluid problems. Rev. Geophys. Space Phys., 20,
851–875.

Melville, W. K., 1996: The role of surface-wave breaking in air–sea
interaction. Ann. Rev. Fluid Mech., 28, 279–321.

Moeng, C.-H., and J. C. Wyngaard, 1986: An analysis of closures
for pressure-scalar covariances in the convective boundary layer.
J. Atmos. Sci., 43, 2499–2513.

Niiler, P. P., 1975: Deepening of the wind-mixed layer. J. Mar. Res.,
33, 405–422.
, and E. B. Kraus, 1977: One-dimensional models of the upper
ocean. Modelling and Prediction of the Upper Layers of the
Ocean, E. B. Kraus, Ed., Pergamon, 143–172.

Pollard, R. T., 1977: Observations and theories of Langmuir circu-
lations and their role in near surface mixing. A Voyage of Dis-
covery: George Deacon 70th Anniversary Volume, M. Angel,
Ed., Pergamon, 235–251.
, P. B. Rhines, and R. O. R. Y. Thompson, 1973: The deepening
of the wind-mixed layer. Geophys. Fluid Dyn., 3, 381–404.

Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: ob-
servations and models of the upper ocean response to diurnal
heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411–
8427.

Reed, R. K., 1977: On estimating insolation over the ocean. J. Phys.
Oceanogr., 7, 482–485.

Rotta, J. C., 1951: Statistische theorie nichthomogener turbulenz. Z.
Phys., 129, 547–572.

Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy
simulation of Langmuir circulation in the surface mixed layer.
J. Geophys. Res., 100, 8501–8522.

Stull, R. B., 1976: The energetics of entrainment across a density
surface. J. Atmos. Sci., 33, 1260–1267.

Tabata, S., 1964: Insolation in relation to cloud amount and sun’s
altitude. Studies on Oceanography, Y. Kozo, Ed., University of
Washington Press, 202–210.
, 1965: Variability of oceanographic conditions at ocean station
‘‘P’’ in the northeast Pacific Ocean. Trans. Roy. Soc. Canada,
Vol. III(Ser. IV), 367–418.

Tandon, A., and S. Leibovich, 1995: Simulations of three-dimensional
Langmuir circulation in water of constant density. J. Geophys.
Res., 100, 22 613–22 623.

Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K.
Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitaigorodskii,
1996: Estimates of kinetic energy dissipation under breaking
waves. J. Phys. Oceanogr., 26, 792–807.

Therry, G., and P. Lacarrère, 1983: Improving the eddy-kinetic-energy
model for planetary boundary-layer description. Bound.-Layer
Meteor., 25, 63–88.

Vogelezang, D. H. P., and A. A. M. Holtslag, 1998: Evaluation and
model impacts of alternative boundary-layer height formula-
tions. Bound.-Layer Meteor., in press.

Warn-Varnas, A. C., and S. A. Piacsek, 1979: An investigation of
the importance of third-order correlations and choice of length
scale in mixed layer modelling. Geophys. Astrophys. Fluid Dyn.,
13, 225–243.

Weller, R. A., and J. F. Price, 1988: Langmuir circulation within the
oceanic mixed layer. Deep-Sea Res., 35, 711–747.


