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Investigated in this paper is the stability of the gravity-driven flow of a liquid
layer laden with soluble surfactant down a heated incline. A mathematical model
incorporating variations in surface tension with surfactant concentration and tempera-
ture has been formulated. A linear stability analysis is carried out both asymptotically
for small wavenumbers and numerically for arbitrary wavenumbers. An expression
for the critical Reynolds number has been derived which accounts for thermocapillary
and solutocapillary effects, and reduces to known documented results for special
cases. Also, a nonlinear reduced model has been derived using weighted residuals,
and solved numerically to simulate the instability of the equilibrium flow and the
development of permanent surface waves that arise. The nonlinear simulations were
found to be in good agreement with the linear stability analysis.

Key words: thin films

1. Introduction
The Marangoni effect, named after the Italian physicist Carlo Marangoni, refers

to mass transfer along the interface between two fluids arising from variations in
surface tension. These variations are typically caused by gradients in solute/surfactant
concentration, or temperature along the interface. When a concentration gradient is
responsible for the variation in surface tension, the Marangoni effect is known as the
solutocapillary effect, whereas when a temperature gradient drives the surface tension
variation, then the Marangoni effect is referred to as the thermocapillary effect. In
situations where both gradients are present, the solutocapillary and thermocapillary
effects occur simultaneously. In this paper we study these competing effects by
considering a thin liquid layer that is doped with a soluble surfactant and allowed
to flow down an incline that is maintained at a higher temperature than that of the
ambient surroundings. The initial experiments of Kapitza & Kapitza (1949) and the
subsequent theoretical investigations of Benjamin (1957) and Yih (1963) have clearly
demonstrated that an isothermal, surfactant-free, gravity-driven flow will become
unstable provided that Re > 5 cot β/6 where Re is the Reynolds number and β is

† Email address for correspondence: sdalessio@uwaterloo.ca
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the inclination angle. While there have been numerous studies devoted to the impact
on stability brought on by either the thermocapillary or solutocapillary effect acting
alone, there have been relatively few studies focussing on the combined thermosolutal
effects. This work attempts to partially fill this void.

The first studies to investigate thermocapillary effects resulting from thin-film flow
over an inclined heated surface were carried out by Pearson (1958) and Sternling
& Scriven (1959). These studies identified two thermocapillary instability modes: a
short-wave mode and a long-wave mode. Goussis & Kelly (1991) later performed a
detailed analysis into the onset of instability of a falling film down a uniformly heated
wall. Comprehensive investigations into the long-wave instability were also conducted
by Kalliadasis et al. (2003a), Kalliadasis, Kiyashko & Demekhin (2003b), Ruyer-Quil
et al. (2005), Scheid et al. (2005) and Trevelyan et al. (2007). The key finding from
these investigations is that in general thermocapillarity has a destabilizing effect on
the flow. The work of D’Alessio et al. (2010) showed that this finding also holds for
an uneven heated inclined surface; the only exception occurs in cases where strong
surface tension is coupled with bottom unevenness. Here, thermocapillary effects can
either stabilize or destabilize the flow depending on the Marangoni number and can
also lead to a reversal in stability.

Introducing surfactants, which are chemical agents adsorbed by the surface, to a
liquid layer typically has the effect of weakening surface tension (Aksel & Schörner
2018). However, contrary to thermocapillarity, solutocapillarity has a stabilizing
influence on the flow. The first theoretical studies to uncover this stabilizing effect
of surfactants in inclined flow were made by Benjamin (1964) and Whitaker (1964).
They conducted a linear stability analysis on the governing equations for the case
of an insoluble surfactant. Experimental validation of the stabilization accompanying
the doping of a liquid layer with surfactants was reported by Emmert & Pigford
(1954), Stirba & Hurt (1955) and Tailby & Portalski (1961), as well as with
additional theoretical investigations carried out by Blyth & Pozrikidis (2004), Pereira
et al. (2007),and Pereira & Kalliadasis (2008). To account for surfactant solubility
Karapetsas & Bontozoglou (2013, 2014) have recently completed detailed studies
on the stability. They found that surfactant solubility enhances flow instability
and this finding has been experimentally verified by Georgantaki, Vlachogiannis
& Bontozoglou (2016). Recently, Pascal, D’Alessio & Ellaban (2019) conducted an
extension to include the effects of having a variable density.

Concerning the combined thermosolutal effects, one of the earliest studies was
by Ji & Setterwall (1995). They considered film flow down a vertical wall which
allowed for water vapour absorption along the free surface and identified three
unstable modes. We note that Ji & Setterwall (1994) also numerically investigated
the linear stability problem of soluble surfactants in a vertically falling film. They
discovered that Marangoni effects destabilized the flow for moderate or short waves
in the low-Reynolds-number range. Pascal & D’Alessio (2016) and D’Alessio
& Pascal (2016) studied thermosolutal effects associated with inclined flow of
a binary liquid with variable density. More recently Srivastava & Tiwari (2018)
investigated gravity-driven film flow with an insoluble surfactant flowing down
a vertical non-uniformly heated substrate. Using lubrication theory they derived
evolution equations for the film thickness and surfactant concentration which were
then used to elicit information regarding the impact on the stability of the flow.

The paper is structured as follows. In § 2 we present the governing equations
and associated boundary conditions. Then in § 3 we carry out a linear stability
analysis both asymptotically for small wavenumbers and numerically for arbitrary
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z = h(x,t) z g
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FIGURE 1. The flow set-up.

wavenumbers. Section 4 is devoted to studying nonlinear effects. A weighted residual
model is derived and a numerical solution procedure is outlined. Finally, in § 5 we
summarize the key findings of our investigation.

2. Mathematical formulation
Illustrated in figure 1 is a schematic of the problem under investigation. We are

considering the two-dimensional gravity-driven flow of a thin liquid layer doped with
a soluble surfactant down a heated incline making an angle β with the horizontal.
The liquid is taken to be a viscous, incompressible, Newtonian fluid. The incline is
maintained at a temperature T0 while the constant ambient temperature is taken to be
Ta<T0. A rectangular coordinate system (x, z) has been adopted whereby the position
of the free surface of the liquid layer corresponds to z= h(x, t).

We assume that a fixed mass of surfactant is added to the liquid layer. Since we are
dealing with a soluble surfactant, we must consider two separate concentrations: one
for the surfactant adsorbed at the surface and another for the surfactant dissolved into
the bulk of the layer. Further, we will assume that the surfactant concentrations are
below the critical level for the formation of micelles, and thus, the surfactant added
to the liquid will exist as monomers. Governing the conservation of surfactant mass
in the bulk is the advection–diffusion equation given by

∂c
∂t
+ u

∂c
∂x
+w

∂c
∂z
=Db

(
∂2c
∂x2
+
∂2c
∂z2

)
,

where c is the concentration of surfactant dissolved in the bulk, Db is the molecular
diffusivity and (u, w) are the velocity components. In order to describe the transport
of surfactant adsorbed at the surface we implement the following equation derived by
Pereira & Kalliadasis (2011)

∂Γ

∂t
+ u

∂Γ

∂x
+

Γ

1+
(
∂h
∂x

)2

[
∂u
∂x
+

(
∂h
∂x

)(
∂w
∂x

)
+
∂h
∂x

(
∂u
∂z
+
∂h
∂x
∂w
∂z

)]

=
Ds√

1+
(
∂h
∂x

)2

∂

∂x


∂Γ

∂x√
1+

(
∂h
∂x

)2

+ Jba,
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where Γ (x, t) is the surface surfactant concentration, Ds is the surface molecular
diffusivity and Jba denotes the net flux of surfactant adsorbed at the surface. If we
assume that the rate of adsorption is proportional to the concentration in the bulk,
and that the rate of desorption is proportional to the surface concentration, then

Jba = k1

(
1−

Γ

Γ∞

)
c− k2Γ at z= h(x, t),

where k1 and k2 are the adsorption and desorption reaction rates, respectively, and Γ∞
denotes the maximal packing surface concentration. Since the adsorption flux to the
surface must also equal the surfactant flux from the bulk and since it is assumed to
obey Fickian diffusion, Jba can be expressed as

Jba =
Db√

1+
(
∂h
∂x

)2

(
∂h
∂x
∂c
∂x
−
∂c
∂z

)
at z= h(x, t).

Regarding the variation in surface tension, σ , we will allow it to vary linearly with
both the surface surfactant concentration and the surface temperature as follows

σ(Γ , T)= σ0 − σΓ (Γ − ΓE)− σT(T − Ta),

where ΓE is the equilibrium surface concentration and σ0= σ(ΓE, Ta). The parameters
σΓ and σT are evaluated at Γ = ΓE, T = Ta and are defined by

σΓ =−
∂σ

∂Γ
, σT =−

∂σ

∂T
.

They can be deduced from the equation of state for the surface tension for which there
appear to be two commonly used expressions,

σ = σp[1+ Γ (Σ1/3
− 1)]−3

known as the Sheludko (1967) equation, and

σ = σp + RTΓ∞ ln
(

1−
Γ

Γ∞

)
known as the von Szyszkowski equation (Nepomnyashchy, Velarde & Colinet 2002).

Here, σp refers to the surface tension of a surfactant-free, or pure, liquid, R is the
ideal gas constant, T is the temperature in Kelvin and Σ denotes the ratio of σp to
the value corresponding to the maximal packing of surfactants. Since our interest is in
the variation of surface tension with both surface surfactant concentration and surface
temperature we will use the second expression; hence,

σΓ =
RTaΓ∞

Γ∞ − ΓE
and σT =−RΓ∞ ln

(
1−

ΓE

Γ∞

)
.

We note that the von Szyszkowski equation becomes singular as Γ → Γ −
∞

. Since an
underlying assumption is that the surfactant concentration remains below the critical
level for the formation of micelles this singularity is of little consequence as Γ will
be well below Γ∞.
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Marangoni instabilities in falling films 887 A20-5

The conservation of mass, momentum and energy equations become (Spurk & Aksel
2008)

∂u
∂x
+
∂w
∂z
= 0,

ρ

(
∂u
∂t
+ u

∂u
∂x
+w

∂u
∂z

)
=−

∂p
∂x
+ ρg sin β +µ

(
∂2u
∂x2
+
∂2u
∂z2

)
,

ρ

(
∂w
∂t
+ u

∂w
∂x
+w

∂w
∂z

)
=−

∂p
∂z
− ρg cos β +µ

(
∂2w
∂x2
+
∂2w
∂z2

)
,

∂T
∂t
+ u

∂T
∂x
+w

∂T
∂z
= κ

(
∂2T
∂x2
+
∂2T
∂z2

)
,

where p is the pressure, g is the acceleration due to gravity, ρ is the density, µ is the
dynamic viscosity and κ is the thermal diffusivity.

We next cast the governing equations in dimensionless form. In order to achieve
this we choose the Nusselt thickness of a pure liquid given by

H =
(

3µQ
gρ sin β

)1/3

,

as a length scale. In the above Q denotes the prescribed flow rate. As for the surfactant
concentration, there are two possible scales: Γ∞ and ΓE. We have decided to use the
maximal value, Γ∞. In the study conducted by Pereira & Kalliadasis (2008) they have
opted to use ΓE. For the pressure we use ρQ2/H2 as the scale. Using these scales we
apply the following transformation

(x, z)=H(x∗, z∗), h=Hh∗, t=
H2

Q
t∗, (u,w)=

Q
H
(u∗,w∗),

p− pa =
ρQ2

H2
p∗, Γ = Γ∞Γ

∗, c=
Γ∞

H
c∗,

where pa refers to the constant ambient pressure. Lastly, the temperature is scaled
according to

T = Ta + (1T)T∗,

where 1T = T0 − Ta.
With these scalings in place, and dropping the asterisks for notational convenience,

the dimensionless equations within the liquid layer become

∂u
∂x
+
∂w
∂z
= 0, (2.1)

Re
Du
Dt
=−Re

∂p
∂x
+
∂2u
∂x2
+
∂2u
∂z2
+ 3, (2.2)

Re
Dw
Dt
=−Re

∂p
∂z
+
∂2w
∂x2
+
∂2w
∂z2
− 3 cot β, (2.3)

Peb
Dc
Dt
=
∂2c
∂x2
+
∂2c
∂z2

, (2.4)

PrRe
DT
Dt
=
∂2T
∂x2
+
∂2T
∂z2

, (2.5)
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887 A20-6 S. J. D. D’Alessio and others

where Peb=Q/Db is the Péclet number, Pr=µ/ρκ is the Prandtl number, Re=ρQ/µ
is the Reynolds number and D/Dt denotes the two-dimensional material derivative.
Also, along the free surface the dimensionless equation for the surfactant transport
takes the form

∂Γ

∂t
+
∂Γ

∂x
u+

Γ

1+
(
∂h
∂x

)2

[
∂u
∂x
+
∂h
∂x
∂w
∂x
+
∂h
∂x

(
∂u
∂z
+
∂h
∂x
∂w
∂z

)]

=
1

Pes

√
1+

(
∂h
∂x

)2

∂

∂x


∂Γ

∂x√
1+

(
∂h
∂x

)2

+ ks[ξs(1− Γ )c− Γ ] at z= h(x, t),

(2.6)

where Pes =Q/Ds, ks =Hk2/U and ξs = k1/k2H.
The system of equations (2.1)–(2.5) is to be solved subject to the following

boundary conditions. Along the free surface z = h(x, t) we impose the dynamic
conditions

p =
2

Re

(
1+

(
∂h
∂x

)2
) [∂u

∂x

((
∂h
∂x

)2

− 1

)
−
∂h
∂x

(
∂u
∂z
+
∂w
∂x

)]

−

∂2h
∂x2(

1+
(
∂h
∂x

)2
)3/2 [We−M1 (Γ − ΓE)−M2T] , (2.7)

−Re

√
1+

(
∂h
∂x

)2 [
M1
∂Γ

∂x
+M2

(
∂T
∂x
+
∂h
∂x
∂T
∂z

)]
=

(
1−

(
∂h
∂x

)2
)(

∂w
∂x
+
∂u
∂z

)
− 4

∂h
∂x
∂u
∂x
, (2.8)

1

Peb

√
1+

(
∂h
∂x

)2

(
∂h
∂x
∂c
∂x
−
∂c
∂z

)
= ks[ξs(1− Γ )c− Γ ], (2.9)

and

− BT

√
1+

(
∂h
∂x

)2

=
∂T
∂z
−
∂h
∂x
∂T
∂x
. (2.10)

Conditions (2.7) and (2.8) arise from a balance between the ambient pressure and
surface tension, condition (2.9) refers to balance between the surfactant adsorption
flux and the diffusive flux from the bulk, while condition (2.10) is essentially a
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Marangoni instabilities in falling films 887 A20-7

statement of Newton’s law of cooling. Here, We = σ0H/ρQ2, M1 = σΓHΓ∞/ρQ2,
M2 = σTH1T/ρQ2 and B = αgH/ρcpκ with αg denoting the heat transfer coefficient
across the liquid–air interface and cp is the specific heat at constant pressure of the
liquid. Ignoring evaporation the kinematic condition along the free surface is given
by

w=
∂h
∂t
+ u

∂h
∂x
, at z= h(x, t). (2.11)

Lastly, along the incline z = 0 we apply the no-slip, impermeability and constant
temperature conditions

u=w=
∂c
∂z
= 0 and T = 1. (2.12)

3. Linear stability analysis
In this section we will investigate the stability of a unidirectional steady flow which

is constant in the streamwise direction. Setting all derivatives with respect to x and t
to zero one easily obtains

Γ = ΓE = const., c= cE ≡
ΓE

ξs(1− ΓE)
, h= 1, w= 0,

u= uE(z)≡ 3
(

z−
z2

2

)
, p= pE(z)≡−

3 cot β
Re

(z− 1), T = TE(z)≡ 1−
Bz

(1+ B)
,

where ΓE assumes the role of a control parameter in the range 06ΓE 6 1. Clearly, in
order for cE to remain bounded as ΓE→ 1− it follows that we must also have ξs→∞

(i.e. an insoluble surfactant) such that the product ξs(1− ΓE) does not approach zero.
More specifically, since we expect the surfactant concentration in the bulk to vanish in
the insoluble limit, the product ξs(1− ΓE) must approach infinity. This suggests that
a maximal surface concentration can only be attained if the surfactant is insoluble.
Following Pascal et al. (2019) we will use Mtot = ΓE + cE as a control parameter
instead of ΓE which are related by the following expression

ΓE =
1
2

(
1+Mtot +

1
ξs
−

√
(Mtot − 1)2 +

2
ξs
(Mtot + 1)+

1
ξ 2

s

)
. (3.1)

The control parameters then become Mtot, ξs, ks, β, Peb, Pes, Pr, B, M1, M2, We and
Re.

To conduct a linear stability analysis we begin by disturbing the steady solution by
adding an infinitesimal perturbation as follows

u= uE + ũ, w= w̃, p= pE + p̃, h= 1+ h̃,
Γ = ΓE + Γ̃ , c= cE + c̃, T = TE + T̃,

where the tildes denote the perturbations. Next, we substitute these expressions into
the governing equations and linearize with respect to the perturbations. To simplify
the analysis we introduce the streamfunction, ψ , such that

ũ=
∂ψ

∂z
, w̃=−

∂ψ

∂x
.
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887 A20-8 S. J. D. D’Alessio and others

This guarantees that the continuity equation is automatically satisfied. We then
eliminate the pressure perturbation by combining the momentum equations and
employ normal modes given by

(ψ, c̃, Γ̃ , T̃, h̃)= (Ψ (z), ĉ(z), Γ̂ , T̂(z), η)eik(x−vt),

where the perturbation wavenumber, k, is taken to be real and positive, while v is a
complex quantity with the real part denoting the phase speed and the imaginary part,
Im(v), is related to the growth rate.

The functions Ψ (z), ĉ(z) and T̂(z) satisfy the following Orr–Sommerfeld type
ordinary differential equations over the domain 0< z< 1

D4Ψ − [ikRe(uE − v)+ k2
]D2Ψ + [−ik3Re(uE − v)+ k4

+ ikReD2uE]Ψ = 0, (3.2)
ikPeb(uE − v)ĉ=D2ĉ− k2ĉ, (3.3)

ikPrRe(uE − v)T̂ =D2T̂ − k2T̂ + ikPe(DTE)Ψ , (3.4)

where D≡ d/dz. The associated boundary conditions at z= 1 are

D3Ψ −
[
ikRe(uE − v)+ 2k2

]
DΨ −

[
3ik cot β + ik3(We−M2TE)

]
η= 0, (3.5)

−ikRe(M1Γ̂ +M2T̂)=D2Ψ + k2Ψ − (3− ikReM2DTE)η, (3.6)

ik(uE − v)Γ̂ + ikΓEDΨ =−
k2

Pes
Γ̂ + ks[ξs(1− ΓE)ĉ− (1+ ξscE)Γ̂ ], (3.7)

−Dĉ= Pebks[ξs(1− ΓE)ĉ− (1+ ξscE)Γ̂ ], (3.8)
DT̂ + BT̂ =−BDTEη, (3.9)

and
−Ψ = (uE − v)η. (3.10)

At z= 0 we have
Ψ =DΨ =Dĉ= T̂ = 0. (3.11)

The problem posed by (3.2)–(3.11) represents an eigenvalue problem with v denoting
the eigenvalue which signals if the disturbance with wavenumber k will be amplified
or damped in time for a given set of flow parameters. The system of (3.2)–(3.11) will
be solved asymptotically as k→ 0 (i.e. longwave perturbations) and also numerically
with no restriction on k.

3.1. Asymptotic solution
In carrying out the asymptotic analysis we begin by expanding the flow variables in
powers of k as follows

Ψ =Ψ0(z)+ kΨ1(z)+ · · · ,
ĉ= c0(z)+ kc1(z)+ · · · ,
T̂ = T0(z)+ kT1(z)+ · · · ,

Γ̂ = Γ0 + kΓ1 + · · · ,

η= η0 + kη1 + · · · ,

v = v0 + kv1 + · · ·
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Marangoni instabilities in falling films 887 A20-9

Without loss of generality we can normalize the eigenvalue problem and set η0=1 and
η1 = η2 = 0. An immediate consequence is that the perturbed free surface is given by
h̃= eik(x−vt). Substituting these expansions into the system (3.2)–(3.11), and assuming
that all the parameters to be O(1) as k→0, leads to a hierarchy of problems at various
orders of k which can be solved sequentially.

The leading-order problem satisfies

D4Ψ0 = 0, D2c0 = 0, D2T0 = 0,

subject to the boundary conditions

D3Ψ0 = 0, D2Ψ0 = 3, v0 =Ψ0 − uE, Dc0 = 0, DT0 + BT0 =−BDTE at z= 1,
ξs(1− ΓE)φ0 = (1+ ξsφE)Γ0 at z= 1,

Dc0 =Ψ0 =DΨ0 = 0 at z= 0.

The solutions are easily found to be

Ψ0(z)=
3
2

z2, T0(z)=
B2

(1+ B)2
z, Γ0 =

ξs(1− ΓE)

(1+ ξscE)
c0, v0 = 3,

where c0 is a constant which is yet to be determined.
Proceeding to the O(k) problem yields the system of equations

D4Ψ1 = iRe(uE − v0)D2Ψ0 − iReD2uEΨ0,

D2c1 = iPeb(uE − v0)c0,

D2T1 = iPrRe[(uE − v0)T0 −DT0Ψ0],

subject to

D3Ψ1 = iRe(uE − v0)DΨ0 + 3i cot β at z= 1,
D2Ψ1 =−iRe(M1Γ0 +M2T0)− iReM2DTE at z= 1,

Dc1 =−iPeb[(uE − v0)Γ0 + ΓEDΨ0] at z= 1,
Dc1 =−ksPeb[ξs(1− ΓE)c1 − (1+ ξscE)Γ1] at z= 1,

DT1 + BT1 = 0 at z= 1,
Ψ1 = v1 at z= 1,

Ψ1 =DΨ1(0)=Dc1 = T1 = 0 at z= 0.

The condition for neutral stability can be obtained from v1 given above in terms of
Ψ1. The solution for Ψ1 was found to be

Ψ1(z)=
3iRe
40

(z5
− 5z4)+

i cot β
2

z3
+

iRe
2

[
3
(

1−
cot β
Re

)
−M1Γ0 +

M2B
(1+ B)2

]
z2,

where

Γ0 =
6ΓEξs(1− ΓE)

2

4+ 3ξs(1− ΓE)2
.

Hence,

v1 =Ψ1(1)= iRe
(

6
5
−

cot β
Re
+

M2B
2(1+ B)2

−
3M1ΓEξs(1− ΓE)

2

4+ 3ξs(1− ΓE)2

)
,
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887 A20-10 S. J. D. D’Alessio and others

with the state of neutral stability given by v1 = 0. It is immediately evident that
this relation is independent of the parameters Pr, Pes, Peb, We and ks. Therefore the
indication is that neutral stability is not affected by solutal and thermal diffusivity, nor
is it influenced by the individual desorption and adsorption reaction rates, but only by
the ratio of the two, which is given by the parameter ξs.

Now, the neutral stability relation can be written as the following expression for the
critical Reynolds number, Recrit,

cot β
Recrit

−
6
5
= F(B, ΓE;M1,M2, ξs), (3.12)

where

F(B, ΓE;M1,M2, ξs)=
M2B

2(1+ B)2
−

3M1ΓEξs(1− ΓE)
2

4+ 3ξs(1− ΓE)2
.

For an isothermal clean liquid layer F = 0. The function F accounts for departures
from F = 0, and hence variations in Recrit, as a result of heating and doping, and is
made up of two terms which clearly identify the contributions made by the thermal
Marangoni effect and the soluto Marangoni effect, respectively. It is also clear that
heating destabilizes the flow while the addition of a surfactant stabilizes the flow, as
expected. We note that F = 0 can also occur when the thermosolutal mechanisms
exactly cancel each other which happens when

M2B
2(1+ B)2

=
3M1ΓEξs(1− ΓE)

2

4+ 3ξs(1− ΓE)2
or

M2

M1
=

6ΓEξs(1+ B)2(1− ΓE)
2

B[4+ 3ξs(1− ΓE)2]
. (3.13)

Thus, linear theory predicts the necessary relationship needed between the parameters
in order for a heated liquid layer doped with a surfactant to have the same critical
Reynolds number as the corresponding isothermal clean liquid layer.

To determine the extreme values of Recrit over the semi-infinite rectangular strip 06
B<∞, 0 6 ΓE 6 1 in the BΓE-plane we first find the critical points of F by solving

∂F
∂B
=
∂F
∂ΓE
= 0.

The critical points are found to be (B, ΓE)= (1, 1) or (1, Γ E) where Γ E is the real
root of the cubic equation

3ξsΓ
3
E − 9ξsΓ

2
E + 9ξsΓ E + 12Γ E − 3ξs − 4= 0,

given by

Γ E = 1+
a

3ξs
−

4
a

where a=
(

12
√

3ξ 3
s (3ξs + 4)− 36ξ 2

s

)1/3

.

It is worth noting that in the insoluble limit as ξs→∞, Γ E→ 1− and the two critical
points merge. It turns out that the interior critical point (B, ΓE)= (1, Γ E) is a saddle
point. Inspecting the values of F along the boundary we find that along B = 0 and
B→∞ a minimum value of F is assumed given by

Fmin =−
3M1ξsΓ E(1− Γ E)

2

[4+ 3ξs(1− Γ E)2]
,
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Marangoni instabilities in falling films 887 A20-11

while along ΓE = 0 and ΓE = 1 a maximum value of F is assumed given by

Fmax =
M2

8
.

From this information the extreme values of Recrit are

(Recrit)max =
5[4+ 3ξs(1− Γ E)

2
] cot β

3[8+ ξs(6− 5Γ EM1)(1− Γ E)2]
and (Recrit)min =

40 cot β
48+ 5M2

.

The existence of the saddle point (B, ΓE) = (1, Γ E) can be explained as follows.
If we hold B constant at B = 1 and vary ΓE we note that when ΓE = 0 or ΓE = 1
we obtain the above minimum value for Recrit. Now, as we add a surfactant to an
initially surfactant-free liquid layer gradients in the concentration will form along the
free surface whereby the concentration is higher at the crests than at the troughs.
This creates Marangoni stresses (i.e. solutocapillary forces) in the direction of the
troughs which are responsible for damping surface deflections, and hence, stabilizing
the flow. So a liquid layer with a non-uniform concentration of surface surfactant is
more stable (i.e. has a larger Recrit value) than a corresponding clean liquid layer
because surfactants have a tendency of enhancing the elasticity of the surface. As more
surfactant is added to the liquid layer the surface will eventually reach its maximal
value. At this point the concentration gradients cannot form along the surface and
consequently the liquid layer behaves exactly as a clean heated liquid layer. This is
why ΓE= 0 and ΓE= 1 yield the same Recrit value. Thus, there exists an optimal value
of ΓE, ΓE = Γ E, that maximizes Recrit. Similarly, if we fix the value of ΓE = Γ E and
vary B we observe that when B= 0 or B→∞ we obtain the above maximum value
for Recrit. The case B= 0 corresponds to an insulated fluid layer which means that the
temperature will be uniform throughout the layer. On the other hand, the case B→∞
corresponds to an infinite rate of heat transfer across the interface which means that
the interface temperature will remain fixed at the ambient value. In both of these
cases there is no temperature gradient along the free surface, and hence, no Marangoni
stresses. Thus, the liquid layer will behave like an isothermal, surfactant-laden liquid
layer. Now, as B increases from zero a temperature distribution in the liquid layer
begins to develop and if the free surface is non-planar, then the temperature along
the free surface will be greater at the troughs than at the crests. This temperature
gradient creates Marangoni stresses (i.e. thermocapillary forces) which act to amplify
the waves on the surface, and hence, destabilize the flow. However, for large B the
temperature along the free surface will approach that of the ambient medium which
is constant, and as such these thermocapillary forces will be weakened. Consequently,
there exists a optimal value of B, B = 1, for which thermocapillarity is maximized
resulting in a minimum value for Recrit.

Alternatively, equation (3.12) can be written as

Recrit =
10(1+ B)2[4+ 3ξs(1− ΓE)

2
] cot β

6(1+ B)2[8+ ξs(6− 5ΓEM1)(1− ΓE)2] + 5M2B[4+ 3ξs(1− ΓE)2]
, (3.14)

which can be expressed in terms of Mtot by making use of (3.1). There are various
limits that can be taken and comparisons that can be drawn. For example, the
isothermal limit can be obtained by setting M2 = 0 or B= 0; this yields

Recrit|B=0 =
5[4+ 3ξs(1− ΓE)

2
] cot β

3[8+ ξs(6− 5ΓEM1)(1− ΓE)2]
, (3.15)
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FIGURE 2. Value of Recrit versus ΓE for various values of ξs with cotβ=M1=M2=B=1.

which coincides with the result obtained by Pascal et al. (2019) and also with
Karapetsas & Bontozoglou (2014) if the difference in scaling is taken into account.
The surfactant-free limit can be retrieved by setting ΓE = 0 which gives

Recrit|ΓE=0 =
10(1+ B)2 cot β

12(1+ B)2 + 5M2B
, (3.16)

which is in full agreement with D’Alessio et al. (2010). Also, the insoluble case
corresponds to the limit ξs→∞, ΓE→ 1− such that ξs(1− ΓE)

2
→ 0. This leads to

Recrit|insoluble =
10(1+ B)2 cot β

12(1+ B)2 + 5M2B
, (3.17)

which is identical to the surfactant-free limit. Plotted in figure 2 are curves of Recrit
as a function of ΓE for various values of ξs. Lastly, expression (3.14) reproduces the
familiar isothermal, surfactant-free case given by Recrit = 5 cot β/6 when B= ΓE = 0.

We next present a physical mechanism responsible for the stability of the flow as
was done by Wei (2005) for the insoluble surfactant model and by Karapetsas &
Bontozoglou (2014) for soluble surfactant case. We consider the flow rate given by

q=
∫ 1

0
(uE + ũ) dz,

with ũ(x, z, t)= û(z)h̃(x, t). From the asymptotic analysis we find that

q= 1+
3
2

h̃+ ikReh̃
(

6
5
−

cot β
Re
+

M2B
2(1+ B)2

−
3M1ΓEξs(1− ΓE)

2

4+ 3ξs(1− ΓE)2

)
+O(k2).
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Marangoni instabilities in falling films 887 A20-13

We recognize that the quantity in the brackets will be zero for neutral stability and
thus changes sign as we cross from a stable (negative) to an unstable (positive)
configuration. To leading order q and h̃ are in phase, but as we learned from the
asymptotic analysis the O(k) problem determines the stability. For non-neutral cases
the first-order problem reveals a phase shift of ±π/2 between q and h̃ where the sign
corresponds to that of the quantity in the brackets. This phase shift is responsible
for redistributing the fluid along the interface; when it is negative it has the effect of
reducing the surface undulations and therefore stabilizes the flow, whereas when it is
positive it causes fluid to pile up at the crest and in doing so destabilizes the flow.
Now, the sign of the quantity in the brackets is influenced by the terms

M2B
2(1+ B)2

and
3M1ΓEξs(1− ΓE)

2

4+ 3ξs(1− ΓE)2
,

which have opposite signs, and these competing influences will contribute to the
overall stability.

3.2. Numerical solution
In this investigation we are primarily interested in the H and S modes. Although
there is also a shear mode, it has been shown by Floryan, Davis & Kelly (1987)
that this mode will only be important at small inclination angles, and hence we
will focus on moderate inclination angles. The scaling that we have adopted in § 2
allowed us to obtain a nice simple relation for neutral stability and to analyse the
H mode in detail. However, in order to capture the S mode we need to introduce a
second scaling because the parameters involved in the neutral stability relation are in
fact implicitly dependent on the Reynolds number. Thus, a rescaling of the problem
must be considered which involves strictly independent parameters in order to ensure
that all physical aspects are fully and correctly taken into account. For example, in
the standard non-isothermal case involving the stability of a heated clean fluid, it
is well known that a Marangoni number independent of Re must be introduced in
order for the analysis to resolve the separate mode of instability which is entirely
driven by thermocapillarity and stabilized by inertia (Kalliadasis et al. 2012). The
new non-dimensional numbers can be expressed in terms of the parameters currently
appearing in the neutral stability relation as

M1 =

(
3

sin β

)1/3 KaΣ1

Re5/3(1− ΓE)
, M2 =−

(
3

sin β

)1/3 KaΣ2

Re5/3
ln(1− ΓE)

B=
(

3
sin β

)1/3

Re1/3Bi, ξs =

(
sin β

3

)1/3
ξa

Re1/3
,

where the new parameters are the Kapitza number, given by Ka = σp(ρ/µ
4g)1/3,

the solutal and thermal capillarity parameters given by Σ1 = Γ∞RTa/σp and
Σ2 = Γ∞R1T/σp, respectively, the rate of adsorption parameter ξa = (gρ2/µ2)1/3k1/k2
and the Biot number Bi = αg/ρcpκ(µ/ρ)

2/3g−1/3. Here, we have also incorporated
the von Szyszkowski equation of state. We point out that in terms of these new
parameters the neutral stability relation cannot be explicitly solved for the Reynolds
number and the role played by the various physical factors cannot be clearly identified
with separate terms as was done in (3.12). Shortly we will use this new relation to
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887 A20-14 S. J. D. D’Alessio and others

generate and interpret plots of neutral stability curves, but listing the formulation
serves little purpose. Lastly, we must entertain the possibility that infinitely long
perturbations are not the most unstable, in which case the neutral stability relation
obtained from the asymptotic analysis does not accurately predict the threshold of
instability for the equilibrium flow.

In order to determine the stability of perturbations of arbitrary wavenumber we
employed a collocation method based on polynomial interpolation with Chebyshev
points (Trefethen 2000) to solve the eigenvalue problem (3.2)–(3.11). Accordingly, we
introduced the expansions

Ψ =

N∑
j=0

wjPj(ξ), ĉ=
N∑

j=0

vjPj(ξ), T̂ =
N∑

j=0

ζjPj(ξ),

where ξ = 2z− 1 and

Pj(ξ)=

N∏
n=0
n 6=j

(ξ − ξn)

N∏
n=0
n6=j

(ξj − ξn)

, j= 0, 1, 2, . . . ,N,

with ξl =− cos(lπ/N), l= 0, 1, 2, . . . , N. This leads to an algebraic system of the
form

Ay= vBy,

where
y= [w0 w1 · · · wN v0 v1 · · · vN ζ0 ζ1 · · · ζN η Γ̂ ]

T,

and A and B are (3N + 5)× (3N + 5) matrices. The eigenvalues of this system were
calculated using the Matlab subroutine eig. The correct eigenvalue for the problem
(3.2)–(3.11) was determined by recalculating the eigenvalues of the algebraic system
for a finer grid and identifying the value that remained unchanged. The results from
the collocation method confirm that the onset of instability in the equilibrium flow
is in fact due to the amplification of infinitely long perturbations, and the critical
conditions for instability are in excellent agreement with the predictions from the
asymptotic analysis, as is illustrated in figure 3. This is similar to what is known to
be the case for both isothermal flow with surfactants (Pascal et al. 2019) and a clean
fluid in a non-isothermal flow (Ellaban, Pascal & D’Alessio 2017).

In presenting and interpreting our results we examine the stability map in the
Σ2Re-plane. We plot the curves which denote the values of Re and Σ2 associated
with neutral stability for the equilibrium flow. The region to the right of the neutral
stability curve corresponds to instability, while for Re and Σ2 combinations in the
region to the left the equilibrium flow is stable. As Σ2 is the parameter measuring
thermocapillarity, this observation is consistent with the destabilizing role played
by the thermal Marangoni effect. There is also a critical level of thermocapillarity
beyond which the flow is unstable for all Reynolds number. This is identified by the
maximum Σ2 value on the neutral stability curve. For lower values the flow is stable
depending on the Reynolds number. For the basic non-isothermal flow of a clean fluid
two separate modes of instability are known to exist: the so-called H mode which
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Numerical solution
(Mtot = 0.002)

FIGURE 3. Neutral stability curves for different values of Mtot in the Σ2Re-plane with
Σ1 = 0.07, ξa = 1, Ka= 3000 and Bi= 1.

is driven by inertia and enhanced by thermocapillarity, hence distinguishable by the
stability occurring as the Reynolds number is increased beyond a critical value, and
the so-called S mode which is driven by thermocapillarity and impeded by inertia
and occurring as the Reynolds number is decreased below a critical level.

In figure 3 we plot the neutral stability curves for different values of Mtot which
measures the total concentration of surfactant added to the equilibrium flow. For one
of the cases presented we also compare the numerical solution with that obtained by
our asymptotic analysis and we see that the agreement is excellent. For small Σ2
values (i.e. weak thermocapillarity) only the H mode is present. This is indicated by
the fact that instability results as the Reynolds number is increased beyond the value
for neutral stability, and it can be seen that the critical Reynolds number increases
with Mtot. This behaviour is identical to isothermal flow for sufficiently low surfactant
concentration, when adding a surfactant stabilizes the flow, as was explained above.
However, for sufficiently large values of Σ2 the region of stability shrinks as Mtot

is increased, meaning that adding more surfactant destabilizes the flow. As such,
thermocapillarity effectuates a reversal in the stabilizing effect of surfactant doping.
Now, the formula in (3.12) consists of separate terms for the solutal and thermal
contributions to Recrit, and therefore does not capture this coupling of the two effects.
The explanation is the fact that the formula is in terms of the original parameters
which are implicitly dependent on Recrit, and it is thus evident that it is important to
introduce the new parameters in order to accurately interpret the results.

Continuing with our examination of the results in figure 3 we see that for the
smaller values of Mtot, the curves clearly display the occurrence of both modes of
instability for sufficiently large values of Σ2. Specifically, for low Reynolds numbers
the flow is unstable due to the S mode and for sufficiently high Reynolds numbers
the H mode destabilizes the flow. The thresholds for the two modes are marked
by two critical Re values located on the neutral stability curve, with the interval
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FIGURE 4. Neutral stability curves for different values of Σ1 in the Σ2Re-plane with
ξa = 1, Mtot = 0.002, Ka= 3000 and Bi= 1.

between them corresponding to Reynolds numbers for which the flow is stable. It
is interesting to note that adding surfactant stabilizes the flow for a narrow interval
of small Reynolds numbers. Although the physical explanation for this is not clear,
it is predicted by both our numerical and asymptotic results. As Mtot is increased
the S mode eventually disappears due to the rapid destabilization of the H mode
which is triggered at significantly reduced levels of inertia. However, the thin region
of stability next to the Re= 0 axis persists and its extent with respect to Σ2 values
remains approximately fixed.

In the next set of results illustrated in figure 4 we show the effect of the
parameter Σ1, which is related to the rate of variation in surface tension with
respect to surfactant concentration. In determining a realistic range of values for
this parameter we assumed that the value of the maximal surface concentration is
Γ∞= 2× 10−6 mol m−2, as was done by Pereira & Kalliadasis (2008). Then with R=
8.3145 N m mol−1 K−1 and Ta = 25 ◦C= 298.15 K, and using σp = 72× 10−3 N m−1

(the surface tension of water at 25 ◦C) we obtain Σ1≈ 0.07. It can be clearly seen that
the region of stability increases with Σ1 due to the stabilization of both the H and S
modes. Since the rate of variation of surface tension with surfactant concentration is
proportional to Σ1, increasing this parameter strengthens the solutocapillary stresses
which damp surface perturbations thus stabilizing the inertia-driven H mode. The
fact that the S mode is stabilized indicates that solutocapillarity also counteracts the
instability driven entirely by thermocapillarity.

Finally, in figure 5 we present the neutral stability curves for different values of ξa.
It is apparent that the region of stability increases with ξa, meaning that increasing
surfactant solubility, which is associated with a decrease in ξa, destabilizes the flow
regardless of the level of thermocapillarity. This behaviour is consistent with the fact
that desorption of surfactant from the surface lowers concentration gradients along the
surface and weakens the solutal Marangoni stresses.
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FIGURE 5. Neutral stability curves for different values of ξa in the Σ2Re-plane with Σ1=

0.07, Mtot = 0.1, Ka= 3000 and Bi= 1.

To complete our linear stability analysis we now consider the stability of different
perturbation wavenumbers. This can be gauged from the results in figure 6 where
we present the neutral stability curves in the Rek-plane for different values of Σ2
with Mtot = 0.005, calculated using the numerical method. We first note that these
results confirm that perturbations with k= 0 are the most unstable as claimed above.
Specifically, we see that the intervals of stable Reynolds numbers are narrowest
for k = 0 and widen as k is increased. The intercepts of the curves with the Re
axis coincide with the critical Reynolds numbers for the onset of instability in the
equilibrium flow at the specified Σ2 values on the curve in figure 3 for Mtot = 0.005.
We also observe the merging of the H and S modes for Σ2= 0.42713. Also apparent
in these results is that the shape of the S-mode branch of the curve is different from
the one known to be obtained for a clean fluid. In that case k decreases monotonically
with Re (Kalliadasis et al. 2012), while here it attains a maximum. In other words,
for the basic non-isothermal flow, as Re is decreased and inertia is lowered, more
wavenumbers are destabilized by thermocapillarity. However, if surfactant is added
a stabilizing effect takes place for very low Reynolds numbers and the range of
unstable wavenumbers is reduced as Re is decreased. Eventually all wavenumbers are
stabilized resulting in a stable flow.

4. Nonlinear simulations
In this section we investigate the effect of nonlinearity on the stability of the

flow. Since the S mode occurs at small Reynolds numbers and the weighted residual
approximation is better suited to resolve the H mode at larger Reynolds numbers we
revert back to the original scaling applied in § 2. We begin by introducing slow time
(τ ) and space (X) variables and rescale the vertical velocity (W) according to

τ = εt, X = εx, w= εW,
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FIGURE 6. Neutral stability curves for different values of Σ2 in the Rek-plane with Mtot=

0.005, Σ1 = 0.07, ξa = 1, Ka= 3000, Bi= 1, Pr = 7, Scb = Scs = 700 and kd = 1, where
Scb =µ/ρDb, Scs =µ/ρDs and kd = (µ/g2ρ)1/3k2.

where 0<ε� 1 is a small parameter. Then the scaled governing equations (2.1)–(2.5)
to second order in ε become

∂u
∂X
+
∂W
∂z
= 0, (4.1)

εRe
(
∂u
∂τ
+ u

∂u
∂X
+W

∂u
∂z

)
=−εRe

∂p
∂X
+ 3+ ε2 ∂

2u
∂X2
+
∂2u
∂z2

, (4.2)

ε2Re
(
∂W
∂τ
+ u

∂W
∂X
+W

∂W
∂z

)
=−Re

∂p
∂z
− 3 cot β + ε

∂2W
∂z2

, (4.3)

εPeb

(
∂c
∂τ
+ u

∂c
∂X
+W

∂c
∂z

)
= ε2 ∂

2c
∂X2
+
∂2c
∂z2

, (4.4)

εPrRe
(
∂T
∂τ
+ u

∂T
∂X
+W

∂T
∂z

)
= ε2 ∂

2T
∂X2
+
∂2T
∂z2

. (4.5)

These can be viewed as the long-wave equations and mark the starting point of our
nonlinear analysis.

Likewise, the transformed boundary conditions at z= h(X, τ ) to second order in ε
are

p=
2ε
Re

(
∂W
∂z
−
∂h
∂X

∂u
∂z

)
− ε2 [We−M1(Γ − ΓE)−M2T]

∂2h
∂X2

, (4.6)

W =
∂h
∂τ
+ u

∂h
∂X
, (4.7)

ε

(
∂Γ

∂τ
+ u

∂Γ

∂X

)
+ εΓ

(
∂u
∂X
+
∂h
∂X

∂u
∂z

)
=
ε2

Pes

∂2Γ

∂X2
+ ks [ξs(1− Γ )c− Γ ] , (4.8)
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ε2 ∂h
∂X

∂c
∂X
−
∂c
∂z
= Pebks [ξs(1− Γ )c− Γ ] , (4.9)

−εRe
[

M1
∂Γ

∂X
+M2

(
∂T
∂X
+
∂h
∂X

∂T
∂z

)]
=
∂u
∂z
+ ε2 ∂W

∂X
− 4ε2 ∂h

∂X
∂u
∂X
, (4.10)

−BT =
∂T
∂z
− ε2 ∂h

∂X
∂T
∂X
, (4.11)

while the bottom conditions at z= 0 are

u=W =
∂c
∂z
= 0, T = 1. (4.12)

4.1. Weighted residual model
We next implement a reduced model where the explicit dependence on the vertical
coordinate is eliminated by applying a weighted residual technique. The method of
weighted residuals was originally proposed by Ruyer-Quil & Manneville (2000, 2002)
to handle isothermal flows down an even incline. It has since been applied to more
complicated flows (Kalliadasis et al. 2003a; D’Alessio, Pascal & Jasmine 2009; Pascal
& D’Alessio 2010; D’Alessio et al. 2010; Ogden, D’Alessio & Pascal 2011; Pascal
& D’Alessio 2016; D’Alessio & Pascal 2016; Ellaban et al. 2017; Pascal, D’Alessio
& Hasan 2018). Recently, Veremieiev & Wacks (2019) have extended the weighted
residual method to include third- and fourth-order terms. Here, we extend the approach
implemented by Pascal et al. (2019) to incorporate thermosoluto effects.

The basic idea behind the weighted residual method is to eliminate the z dependence
by prescribing specific profiles for u, T and c. We propose the following:

u=
3q
2h3

b+
εRe
4h

(
M1
∂Γ

∂X
+M2

∂θ

∂X

)
b1,

T = 1+
(θ − 1)

h
z,

c=C+
Pebks

2h
[ξs(1− Γ )C− Γ ] (h2

− z2),

where b and b1 are given by

b= z(2h− z), b1 = z(2h− 3z).

We note that the proposed profile for T represents a linear variation in temperature
with respect to z, while that for c corresponds to a linear variation in the gradient
∂c/∂z with respect to z. Here, C(X, τ )= c(X, z= h, τ ) denotes the bulk concentration
at the interface, whereas θ(X, τ )= T(X, z= h, τ ) is the surface temperature, and

q=
∫ h

0
u dz,

is the flow rate. We point out that the profiles for u and c satisfy all the boundary
conditions including the free-surface conditions to O(ε2). Although the profile for
T satisfies the bottom condition, it does not satisfy the free-surface condition. In
fact, it is impossible for the profile to satisfy both. However, as explained by
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Kalliadasis et al. (2003a), the free-surface condition is incorporated into the energy
equation when it is integrated over the fluid thickness, as described below. The
profiles for u and T have been used in previous studies, whereas the particular choice
for c is new and an explanation behind this choice is given in appendix A.

In accordance with the Galerkin approach we take b as the weight function and
multiply (4.2) by b and integrate with respect to z from 0 to h. The pressure term
in (4.2) is eliminated by using (4.3) as follows. First, we discard the O(ε2) terms to
obtain

∂p
∂z
=−

3 cot β
Re

+
ε

Re
∂2W
∂z2

.

This is then integrated from z to h and the boundary condition (4.6) at z= h is applied
to yield an expression for the pressure which is then substituted into (4.2). Since the
pressure term is multiplied by ε in (4.2), the O(ε2) terms in (4.3) can be ignored. This
will result in a second-order weighted residual model. For the concentration equation
we take the weight function to be unity and integrate from z= 0 to z= h, while for
the energy equation we choose z as the weight function and integrate over the liquid
layer. After some algebra we obtain the following second-order equations for the flow
variables h, q, φ = h(θ − 1), χ = h2

[ξs(1− Γ )C− Γ ] and Γ

∂h
∂τ
+
∂q
∂X
= 0, (4.13)

∂q
∂τ
+

∂

∂X

[
9
7

q2

h
+

5 cot β
4Re

h2
+

5M1

4
Γ +

5M2

4
φ

h

]
=

q
7h
∂q
∂X
+

5
2εRe

(
h−

q
h2

)
+
ε

Re

[
9
2
∂2q
∂X2
−

9
2h
∂h
∂X

∂q
∂X
+

4q
h2

(
∂h
∂X

)2

−
6q
h
∂2h
∂X2

]

+
εM1Re

16

[
h2

3
∂2Γ

∂X∂τ
+

15hq
14

∂2Γ

∂X2
+

19h
21

∂Γ

∂X
∂q
∂X
+

5q
7
∂h
∂X

∂Γ

∂X

]
+
εM2Re

16

[
h
3
∂2φ

∂X∂τ
−

1
3
∂h
∂X

∂φ

∂τ
+

26
21
∂φ

∂X
∂q
∂X
−

11φ
7h

∂h
∂X

∂q
∂X
+
φ

3
∂2q
∂X2

+
15q
14

∂2φ

∂X2
−

10q
7h

∂h
∂X

∂φ

∂X
+

10qφ
7h2

(
∂h
∂X

)2

−
15qφ
14h

∂2h
∂X2

]
, (4.14)

∂φ

∂τ
+

∂

∂X

[
27
20

qφ
h

]
=

7φ
40h

∂q
∂X
−

3
εPrReh

[
B(h+ φ)+

φ

h

]
+

3εM1Re
80

[
hφ
∂2Γ

∂X2
+ 2h

∂φ

∂X
∂Γ

∂X

]
+

ε

PrRe

[
∂2φ

∂X2
−

1
h
∂h
∂X

∂φ

∂X
−

2φ
h
∂2h
∂X2
−

3B
2

(
1+

φ

h

)(
∂h
∂X

)2
]

+
3εM2Re

80

[
φ
∂2φ

∂X2
+ 2

(
∂φ

∂X

)2

−
4φ
h
∂h
∂X

∂φ

∂X
−
φ2

h
∂2h
∂X2
+

2φ2

h2

(
∂h
∂X

)2
]
, (4.15)
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∂

∂τ

(
χ +

3hC
Pebks

)
+

∂

∂X

[
33
40

qχ
h
+

3qC
Pebks

]
=

ε

Peb

[
∂2χ

∂X2
−

3χ
h2

(
∂h
∂X

)2
]
−

3
εPeb

χ

h2
+

3εh
Pe2

bks

∂2C
∂X2

−
3εRe

80

[
hχ

(
M1
∂2Γ

∂X2
+

M2

h

{
∂2φ

∂X2
−

2
h
∂h
∂X

∂φ

∂X
−
φ

h
∂2h
∂X2
+

2φ
h2

(
∂h
∂X

)2
})

+
∂χ

∂X

(
M1h

∂Γ

∂X
+M2

{
∂φ

∂X
−
φ

h
∂h
∂X

})
+χ

∂h
∂X

(
M1
∂Γ

∂X
+

M2

h

{
∂φ

∂X
−
φ

h
∂h
∂X

})]
. (4.16)

∂Γ

∂τ
+

∂

∂X

[
3
2

qΓ
h

]
=

ε

Pes

∂2Γ

∂X2
+ εReΓ

∂h
∂X

[
M1
∂Γ

∂X
+

M2

h

(
∂φ

∂X
−
φ

h
∂h
∂X

)]
+

ks

ε

χ

h2

+
εRe

4

[
hΓ

(
M1
∂2Γ

∂X2
+

M2

h

{
∂2φ

∂X2
−

2
h
∂h
∂X

∂φ

∂X
−
φ

h
∂2h
∂X2
+

2φ
h2

(
∂h
∂X

)2
})

+
∂Γ

∂X

(
M1h

∂Γ

∂X
+M2

{
∂φ

∂X
−
φ

h
∂h
∂X

})
+Γ

∂h
∂X

(
M1
∂Γ

∂X
+

M2

h

{
∂φ

∂X
−
φ

h
∂h
∂X

})]
. (4.17)

As a check, we carried out a linear stability analysis on the above system and were
able to reproduce the expression for the critical Reynolds number given by (3.14).

To numerically solve the system of (4.13)–(4.17) we first express these equations
in the form

∂h
∂τ
+
∂q
∂X
= 0,

∂q
∂τ
+

∂

∂X

[
9
7

q2

h
+

5 cot β
4Re

h2
+

5M1

4
Γ +

5M2

4
φ

h

]
= S1 +Q1,

∂φ

∂τ
+

∂

∂X

[
27
20

qφ
h

]
= S2 +Q2,

∂χ

∂τ
+

∂

∂X

[
33
40

qχ
h

]
= S3 +Q3,

∂Γ

∂τ
+

∂

∂X

[
3
2

qΓ
h

]
= S4 +Q4,

where the gradient-free source terms S1, S2, S3 are given by

S1=
5

2εRe

(
h−

q
h2

)
, S2=−

3
εPrReh

[
B(h+ φ)+

φ

h

]
, S3=−

3
εPeb

χ

h2
, S4=

ks

ε

χ

h2
,

and Q1,Q2,Q3,Q4 can be easily determined from (4.14)–(4.17), respectively. To solve
this system of equations the fractional-step splitting technique (Leveque 2002) was
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implemented. We first solve

∂h
∂τ
+
∂q
∂X
= 0,

∂q
∂τ
+

∂

∂X

[
9
7

q2

h
+

5 cot β
4Re

h2
+

5M1

4
Γ +

5M2

4
φ

h

]
= S1,

∂φ

∂τ
+

∂

∂X

[
27
20

qφ
h

]
= S2,

∂χ

∂τ
+

∂

∂X

[
33
40

qχ
h

]
= S3,

∂Γ

∂τ
+

∂

∂X

[
3
2

qΓ
h

]
= S4,

over a time step 1τ , and then solve

∂q
∂τ
=Q1,

∂φ

∂τ
=Q2,

∂χ

∂τ
=Q3,

∂Γ

∂τ
=Q4,

using the solution obtained from the first step as an initial condition for the second
step. The second step then returns the solution for q, Γ , χ at the new time τ +1τ .

The first step involves solving a nonlinear system of hyperbolic conservation laws
which, when expressed in vector form, can be written compactly as

∂U
∂τ
+
∂F(U)
∂X

=B(U),

where

U=


h
q
φ

χ

Γ

 , F(U)=



q
9q2

7h
+

5 cot βh2

4Re
+

5M1Γ

4
+

5M2φ

4h
27qφ
20h

33qχ
40h
3qΓ
2h


, B(U)=


0
S1
S2
S3
S4

 .

While there are several schemes available to solve such a system, because of the
complicated eigenstructure of the above system eigen-based methods will not be
practical. Instead, MacCormack’s method was adopted due to its relative simplicity.
This is a conservative second-order accurate finite difference scheme which correctly
captures discontinuities and converges to the physical weak solution of the problem.
LeVeque & Yee (1990) extended MacCormack’s method to include source terms via
the explicit predictor–corrector scheme

U∗j =Un
j −

1τ

1X

[
F(Un

j+1)−F(Un
j )
]
+1τ B(Un

j ),

Un+1
j =

1
2

(
Un

j +U∗j
)
−
1τ

21X

[
F(U∗j )−F(U∗j−1)

]
+
1τ

2
B(U∗j ),
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where the notation Un
j ≡ U(Xj, τn) is utilized with 1X denoting the uniform grid

spacing and 1τ is the time step.
The second step reduces to solving a coupled system of generalized one-dimensional

nonlinear diffusion equations with the understanding that h is determined from the first
step and remains constant during the second step. For example, equation (4.16) for χ
has the form

∂χ

∂τ
=−

3h
Pebks

∂C
∂τ
−

3q
Pebks

∂C
∂X
+

3εh
Pe2

bks

∂2C
∂X2
+

ε

Peb

∂2χ

∂X2
+ Q̂1

∂χ

∂X
+ Q̂0χ.

The functions Q̂0, Q̂1 do not depend on χ and can be easily obtained. However, C
does depend on χ through the relation χ = h2

[ξs(1−Γ )C−Γ ] which was used in the
discretization process. This equation was discretized using the Crank–Nicolson scheme
with central differencing applied to spatial derivatives. Also, periodicity conditions
were imposed and the output from the first step was used as an initial condition.
Solving the remaining equations in a similar manner leads to a nonlinear system of
algebraic equations which was solved iteratively. A robust algorithm taking advantage
of the structure and sparseness of the resulting linearized system was used to speed
up the iterative process. It was found that convergence was reached quickly, typically
in fewer than five iterations.

The evolution of the unsteady flow was computed by imposing a small perturbation
on the constant equilibrium solutions hE, qE, φE, χE and ΓE where

hE = qE = 1, φE =−
B

(1+ B)
, χE = 0,

and 0 < ΓE < 1. By monitoring the growth of the disturbances as the perturbed
solutions were marched in time we were able to estimate the onset of instability by
carrying out numerous numerical experiments. In these experiments the computational
domain was taken to have a length of L = 20, the grid spacing and time step were
1X = 0.01, 1τ = 0.001, respectively, the parameter ε was set to 0.1 and periodicity
conditions were imposed at the ends. Although the domain length is arbitrary, based
on our numerical experiments it was judged that L = 20 was sufficiently large to
trigger the long-wave instability. As numerical checks the volume of fluid and the
total surfactant mass were computed at each time step and were observed to remain
constant to within several decimal places.

By stepping the Reynolds number and noticing the first instance when the flow
develops a permanent series of waves on the free surface we were able to bound
the critical value of Re. We report here the findings of a case having the following
parameter values: cot β = 1, ξs = 10, ks = 1, ΓE = 0.1, B= 0.1, M1 = 1, M2 = 2.07795,
Pr = 7 and Peb = Pes = 700. This particular configuration having moderate solubility
was chosen because these values satisfy the condition given by (3.13) whereby
the destabilizing thermocapillary effect exactly cancels the stabilizing solutocapillary
effect. Hence, the critical Reynolds number for this set-up will be that of an isothermal
pure liquid layer given by Recrit = 5 cot β/6≈ 0.83. From our numerical simulations
we have determined that 0.8 < Recrit < 0.9; that is, for Re = 0.8 the disturbed flow
settles to the equilibrium solution while for Re = 0.9 the disturbed flow becomes
unstable. Thus, our nonlinear numerical simulation is in close agreement with the
value predicted by linear theory. Next we present some unstable results for this
configuration having Re = 0.9. Shown in figure 7 is the time evolution of the flow
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FIGURE 7. Time evolution of the flow rate.

rate, q. The diagram illustrates the transition in the development of waves as a
result of the instability. We see that at τ = 100 a series of four waves are present
and with the passage of time the number of waves decreases to two at τ = 250.
Plotted in figure 8, on the other hand, is the time evolution of the surface surfactant
concentration, Γ . This plot shows the formation of a prominent peak at τ = 500.
Lastly, illustrated in figure 9 is a snapshot of the fluid thickness, h, and the surface
temperature, θ , at τ = 100. Here we see that h produces a similar plot as q but with
smaller amplitudes. Although there is little variation in θ due to the small value of
B, we do notice that the surface temperature is lowest at the crests and largest at the
troughs. This is consistent with the prescribed temperature profile which decreases
linearly from the incline to the free surface. Thus, at the crests the temperature drops
the most while at the troughs it drops the least.

Lastly, we present some results which include an additional capillary term. In
our model a capillary term was neglected because it is O(ε3). However, for strong
surface tension having We=O(1/ε) this capillary term will make an appearance. We
entertained this case by setting We=We1/ε and added the following to the right-hand
side of (4.14)

5εWe1

6
h
∂3h
∂x3

.

Plotted in figures 10–12 are results obtained for the parameter values: M1 = M2 =

B = cot β = ks = 1, ξs = 10, ΓE = 0.05, Peb = Pes = 700, Pr = 7, We1 = 5 and
Re = 1.5. Figure 10 shows a wave pattern consisting of two waves accompanied
by small amplitude capillary oscillations at their fronts. We also observed that on
a shorter computational domain having L = 5 a single-hump solitary-type wave
emerged. Figure 11 illustrates the surface surfactant concentration at various times
while figure 12 portrays the fluid thickness and surface temperature at τ = 500.
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FIGURE 8. Time evolution of the surface surfactant concentration.
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FIGURE 9. The fluid thickness and surface temperature at τ = 100.

5. Concluding remarks
We reported on the stability of a gravity-driven flow of a surfactant-laden liquid

layer down a heated incline in this study. The interaction of solutal and thermal effects
was thoroughly investigated. A linear stability analysis of the steady flow of a film
with uniform thickness was conducted which led to an eigenvalue problem governing
the evolution of infinitesimal perturbations. An asymptotic analysis yielded a formula
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FIGURE 10. Time evolution of the flow rate.
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FIGURE 11. Time evolution of the surface surfactant concentration.

for the neutral stability pertaining to perturbations having small wavenumbers which
is in full agreement with previous results for special cases. These results were also
verified by numerical solutions of the eigenvalue problem for arbitrary wavenumbers.
The key findings include the fact that adding a surfactant enhances inertial instability
if thermocapillarity is sufficiently strong, however the strict Marangoni instability
mode is stabilized for very small Reynolds numbers.
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FIGURE 12. The fluid thickness and surface temperature at τ = 500.

In addition, nonlinear effects were also investigated using a second-order weighted
residual model. The nonlinear simulations were in good agreement with the
predictions made by the Orr–Sommerfeld equations for the onset of instability. For
unstable flows the simulations revealed the formation of permanent waves propagating
along the free surface. For large Weber numbers these waves have small amplitude
capillary oscillations formed at their fronts.
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Appendix A. Linear stability in the limit of a non-deformable interface
We consider the limit of a non-deformable interface of constant height h= 1. In this

case, the momentum balance, heat balance and governing equations for the surfactant
concentrations are decoupled. The perturbations of surfactant concentrations within the
bulk and adsorbed at the free surface, denoted by c̃ and Γ̃ respectively, then satisfy

Peb
∂ c̃
∂t
=
∂2c̃
∂z2

, (A 1)

∂Γ̃

∂t
= ks

[
ξs(1− ΓE)c̃−

Γ̃

(1− ΓE)

]
, (A 2)

subject to the boundary conditions

∂ c̃
∂z
=−Peb

∂Γ̃

∂t
at z= 1, (A 3)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
74

.9
4.

47
.1

12
, o

n 
28

 Ja
n 

20
20

 a
t 1

6:
09

:1
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
10

58

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.1058


887 A20-28 S. J. D. D’Alessio and others

−40

−35

−30

−25

−20Pe
b¬

≈s

−15

−10

−5

0

0 10 20 30 40 50

FIGURE 13. The first two eigenvalues, Pebλ, as a function of ξs with Peb= 700, ΓE = 0.5
and ks = 1.

∂ c̃
∂z
= 0 at z= 0. (A 4)

Assuming solutions of the form

c̃= eλt cos(lz), Γ̃ = eλtΓ̂ , (A 5)

where λ and l denote the growth rate and wavenumber, respectively, and substituting
into (A 1)–(A 4) yields the dispersion relation

l2 sin l− Pebks

[
ξs(1− ΓE)l cos l+

sin l
(1− ΓE)

]
= 0, (A 6)

with

λ=−
l2

Peb
and Γ̂ =−

sin l
l
.

In the insoluble limit ξs� 1, equation (A 6) reduces to cos l= 0, with l= π/2+ nπ.
Similarly, in the limit ξs→ 0, l = π + nπ. All of these solutions correspond to real
and negative eigenvalues, thus these eigenmodes are relaxation eigenmodes associated
with the dissipation of kinetic energy by viscosity. Figure 13 shows the two first
eigenvalues for the parameter values Peb=700, ΓE=0.5 and ks=1. We observe that in
the insoluble limit Pebλ→−π2/4≈−2.5 for the first eigenvalue and it is approached
rather quickly as ξs increases from zero.

As discussed in Ruyer-Quil et al. (2014), following the centre manifold approach
introduced by Roberts (1995), a successful modelling should approach the eigenmode
associated with the displacement of the free surface (kinematic neutral eigenmode)
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and the viscous relaxation modes. An appropriate choice for the test functions
in our weighted residual procedure should consist of linear combinations of the
viscous eigenmodes solutions of (A 5) and (A 6). Hence, l is obtained implicitly
and not explicitly. Also, sinusoidal functions introduce non-fractional numbers which
unnecessarily complicate the expressions for the coefficients in the model.

Since the insoluble limit is achieved rather quickly as ξs increases, we assume l to
be close to π/2. Here, we chose a trade-off between complexity and accuracy, namely
1 − z2 which is a simple polynomial approximation to cos(πz/2). The relaxation
eigenvalue λ is then approached by −3/Peb, which is the coefficient of the damping
term −(3/Peb)χ/h2 in our evolution equation for χ given by (4.16). Figure 13 shows
that this coefficient is an acceptable approximation to the first relaxation eigenvalue
for a wide range of ξs values.
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