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h i g h l i g h t s

• Differentially heated flow of a thin fluid layer from a rotating sphere has been investigated.
• A numerical solution procedure for solving the steady and unsteady equations has been proposed.
• An approximate analytical solution has been derived.
• A linear stability analysis has estimated a theoretical value for the onset of instability.
• Good agreement was found between numerical, analytical and theoretical results.
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a b s t r a c t

We present results on the flow of a thin fluid layer over a rotating sphere having a sur-
face temperature that varies in the latitudinal direction. The fluid is taken to be viscous,
incompressible and Newtonian while the flow is assumed to possess both azimuthal and
equatorial symmetry. The governing Navier–Stokes and energy equations are formulated
in terms of a stream function and vorticity and are solved subject to no-slip boundary con-
ditions. An approximate analytical solution for the steady-state flow has been derived and
is compared with numerical solutions to the steady and limiting unsteady equations. For
small Rayleigh numbers these solutions are found to be in close agreement. However, as the
Rayleigh number is increased noticeable differences occur. A numerical solution procedure
is presented and a linear stability analysis has been conducted to predict the onset of in-
stability. Good agreement between the theoretical predictions and the observed numerical
simulations was found.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The flow and heat transfer of a thin fluid layer from a differentially heated rotating sphere are of interest in geophysical
and meteorological applications such as weather prediction and climate modelling [1,2]. Differential heating and rotation
combined with stratification of the fluid layer make this a challenging problem. One goal of this research is to present a
simple mathematical model to describe such flows; another is to construct numerical and analytical solution procedures to
solve this problem. A compactmathematicalmodel togetherwith an efficient solver can be used as a platform to explore and
better understandmodel sensitivity to physical processes and discretization [3]. It can also be used to examine, evaluate, and
when necessary, revise parameterizations that are currently used in weather forecasting and climate modelling to describe
key unresolved sub-grid processes [4].
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Some previous related studies include Marcus and Tuckerman [5,6] who carried out numerical simulations of the flow
between two concentric differentially rotating spheres in the absence of heating. In this case the flow is analogous to
Taylor–Couette flow [7] whereby Taylor vortices resembling Hadley cells can form. Hart, Glatzmaier and Toomre [8], on
the other hand, presented three-dimensional numerical simulations of thermal convection in a rotating hemispherical shell
and presented a thorough summary of earlier investigations. The research carried out by Lesueur et al. [9] numerically
investigated the flow in a thick spherical shell using parameters that are consistent with those of the outer planets. The
fluid was subjected to both internal and external heat sources with the external source representing solar heating. The flow
pattern consisted of two Hadley cells on each side of the equator extending from the equator to the poles occupying the
entire fluid layer.

Regarding the stability of the flow, one of the earliest works can be attributed to Chandrasekhar [10] who formulated the
problem using a spherical shell geometry.Walton [11] extended the classical Rayleigh–Bénard problem [12–14] to include a
slowly varying temperature along the bottom plate. His analysis showed that a slowly varying temperature has a stabilizing
effect on the flow andhence delays the onset of instability. In this researchwehave applied his analysis to our problem. Later,
Soward and Jones [15] analytically investigated the stability of the isothermal flow in thenarrowgapbetween two concentric
differentially rotating spheres. Themore recentwork of Lewis and Langford [16] blends bifurcation theory and computations
to examine the stability of differentially heated flow froma rotating sphere. Their calculations showed that as the equator-to-
pole temperature difference increases from zero, large Hadley cells extending from the equator to poles form immediately.
As the temperature difference increases two or three convection cells appear in each hemisphere. A related problem involves
the stability of a boundary layer on a rotating sphere. Barrow, Garrett and Peake [17] and Garrett and Peake [18], among
others, have solved the stability problem for the case of a sphere rotating in a fluid which is otherwise at rest.

Although this study tackles a problem that has been addressed by several researchers, the adopted approach is signifi-
cantly different. Key differences lie in the mathematical formulation of the problem as well as the numerical and analytical
solution procedures. The paper is structured as follows. In Section 2we present the governing equations and the correspond-
ing initial and boundary conditions. Following that, in Section 3, we conduct a linear stability analysis to estimate the onset
of instability. This involves deriving an approximate analytical solution to the steady-state equations which is then fed into
the stability analysis. The numerical solution procedure for solving both the steady and unsteady equations is outlined in
Section 4. The numerical and analytical results are presented and discussed in Section 5. The investigation is summarized
in the concluding section. Lastly, an Appendix A is included to provide more details on the mathematical formulation of the
problem.

2. Governing equations

The atmosphere can be thought of as a thin fluid layer covering the surface of a rotating sphere. Based on this a simple
mathematical model describing the unsteady laminar convective flow of a viscous incompressible dry Boussinesq fluid
from a solid impermeable rotating differentially heated sphere can be formulated. The flow domain and configuration are
illustrated in Fig. 1. In the rotating reference frame the fluid is taken to be initially at rest and is then set into motion by
buoyancy as a result of a prescribed poleward decrease in surface temperature as well as a radial decrease in temperature.
The poleward decrease in surface temperature mimics solar heating and is taken to be sinusoidal since this is consistent
with the amount of solar radiation penetrating into the surface as it tilts away from the equator. In addition, the flow is
assumed to possess both azimuthal and equatorial symmetry.

Owing to the assumed symmetry, the unsteady Navier–Stokes equations can be expressed in terms of a stream function,
ψ , scaled vorticity, ω, and scaled zonal velocity,W . Appendix A presents the primitive formulation of the problem in terms
of the velocity components vr , vθ , vφ and pressure P , and also explains how the equations for ψ , ω andW can be obtained.
In spherical coordinates (r, θ, φ) and cast in dimensionless form the governing Navier–Stokes and energy equations can be
expressed as

ω = −δD2ψ, (1)
∂ω

∂t
+

δ

r2 sin θ
∂(ψ, ω)

∂(θ, r)
+ δ Pr Ra sin θ

∂T
∂θ

+
2δω

r2 sin2 θ


cos θ

∂ψ

∂r
−

sin θ
r
∂ψ

∂θ


−


2δ2W

r2 sin2 θ
+

2δ2

Ro


cos θ

∂W
∂r

−
sin θ
r
∂W
∂θ


= δ2 Pr D2ω, (2)

δ2 Pr D2W −
∂W
∂t

=
δ

r2 sin θ
∂(ψ,W )
∂(θ, r)

−
2δ
Ro


cos θ

∂ψ

∂r
−

sin θ
r
∂ψ

∂θ


, (3)

∂T
∂t

+
δ

r2 sin θ
∂(ψ, T )
∂(θ, r)

= δ2∇2T . (4)

As noted in the Appendix A, the key underlying assumptions and approximations made in deriving Eqs. (1)–(4) include: the
Boussinesq approximation, ignoring the variation in the gravitational accelerationwith radial distance from the surface, and
assuming that the rate of rotation is sufficiently small that the centrifugal acceleration, and its impact on pressure, can be
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Fig. 1. The flow set up.

neglected. In the above t denotes time, r is the radial coordinate, and θ is the anglewith the polar axis. The variable T denotes
the scaled temperature. The dimensionless parameters appearing in the above equations include the Rayleigh number (Ra),
the Rossby number (Ro), the Prandtl number (Pr) and the shallowness parameter (δ) which are defined as follows:

Ra =
αg0H31T
νκ

, Ro =
κ

HΩR
, Pr =

ν

κ
, δ =

H
R
.

Here, the fluid properties ν, κ andα represent the kinematic viscosity, thermal diffusivity and thermal expansion coefficient,
respectively, whereas g0 is the acceleration due to gravity, R is the radius of the sphere, H is the thickness of the fluid layer,
1T is the temperature scale, andΩ is the rotation rate about the polar axis. The time and length are scaled according to

t̃ →
H2

κ
t, r̃ → Rr,

while the adopted scaling for the flow variables is given by

(ψ̃, ω̃, W̃ ) →


κR2

H
ψ,

κR
H2
ω,
κR
H

W

,

where the tilde denotes a dimensional quantity. We present the scaling of the temperature in more detail. As in the study
by Lewis and Langford [16], the surface temperature is allowed to vary sinusoidally. In dimensional form we have

T̃ = Tave −1T cos(2θ),

with Tave denoting the average surface temperature. Along the top of the fluid layer we impose a constant temperature of
Tedge. Then we define the scaled temperature as

T =
T̃ − Tedge

Tave +1T − Tedge
.

Lastly, the differential operators D2,∇2 and ∂(A, B)/∂(x, y) are defined as follows:

D2
=
∂2

∂r2
+

1
r2
∂2

∂θ2
−

cot θ
r2

∂

∂θ
,

∇
2

=
∂2

∂r2
+

2
r
∂

∂r
+

1
r2
∂2

∂θ2
+

cot θ
r2

∂

∂θ
,

∂(A, B)
∂(x, y)

=
∂A
∂x
∂B
∂y

−
∂A
∂y
∂B
∂x
.

Eqs. (1)–(4) are to be solved in the region

0 ≤ θ ≤
π

2
, 1 ≤ r ≤ 1 + δ,
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subject to the no-slip and impermeability boundary conditions

ψ =
∂ψ

∂r
= W = 0 on r = 1 and r = 1 + δ.

The assumed symmetry requires that we impose the following conditions at the pole and equator

ψ = ω = W = 0 along θ = 0 and ψ = ω =
∂W
∂θ

= 0 along θ =
π

2
.

We observe that the stream function is overspecified while the vorticity is underspecified. Later we will explain how the
extra conditions for the stream function can be used to furnish the missing conditions for the vorticity. In dimensionless
form the temperature is taken to satisfy

T = 1 − γ cos2 θ on r = 1 and T = 0 on r = 1 + δ, (5)

where

γ =
21T

Tave +1T − Tedge
,

and represents the ratio of the maximum surface temperature difference to the maximum difference in temperature
between the surface and the top of the fluid layer. Hence, the temperature has been scaled so that themaximum temperature
difference between the surface and the top of the fluid layer is unity, and the constant temperature at the top of the fluid
layer is zero. At the pole (θ = 0) and the equator (θ = π/2) we apply the zero heat-flux (i.e. Neumann) condition

∂T
∂θ

= 0 along θ = 0 and θ =
π

2
. (6)

In solving the unsteady problem we assume that the fluid is initially at rest having a temperature distribution given by
the approximate analytical solution derived in the next section.

3. Linear stability analysis

For analytical and numerical purposes we propose a change of coordinates and introduce (z, µ) where r = 1 + δz and
µ = cos θ . This has the advantage of mapping the computational domain to the unit square: 0 ≤ z, µ ≤ 1. On the unit
square, the transformed equations read

δω = −D̂2ψ, (7)
∂ω

∂t
+

1
(1 + δz)2

∂(ψ, ω)

∂(z, µ)
+

2ω
(1 − µ2)(1 + δz)2


µ
∂ψ

∂z
+
δ(1 − µ2)

(1 + δz)
∂ψ

∂µ


−

2δW
(1 − µ2)(1 + δz)2


µ
∂W
∂z

+
δ(1 − µ2)

(1 + δz)
∂W
∂µ


−

2δ
R0


µ
∂W
∂z

+
δ(1 − µ2)

(1 + δz)
∂W
∂µ


= δ Pr Ra(1 − µ2)

∂T
∂µ

+ Pr D̂2ω, (8)

∂T
∂t

+
1

(1 + δz)2
∂(ψ, T )
∂(z, µ)

= ∇̂
2T , (9)

Pr D̂2W −
∂W
∂t

=
1

(1 + δz)2
∂(ψ,W )
∂(z, µ)

−
2
R0


µ
∂ψ

∂z
+
δ(1 − µ2)

(1 + δz)
∂ψ

∂µ


. (10)

The transformed differential operators become

D̂2
=
∂2

∂z2
+
δ2(1 − µ2)

(1 + δz)2
∂2

∂µ2
,

∇̂
2

=
∂2

∂z2
+

2δ
(1 + δz)

∂

∂z
−

2µδ2

(1 + δz)2
∂

∂µ
+
δ2(1 − µ2)

(1 + δz)2
∂2

∂µ2
.

For small δ approximate analytical solutions can be constructed by expanding the flow variables in the following series:

ψ = ψ0 + δψ1 + δ2ψ2 + · · · ,

ω = ω0 + δω1 + δ2ω2 + · · · ,

W = W0 + δW1 + δ2W2 + · · · ,

T = T0 + δT1 + δ2T2 + · · · .



S.J.D. D’Alessio et al. / Journal of Computational and Applied Mathematics 291 (2016) 209–224 213

Using the above expansions it is a straight-forward exercise to show that

ψ0 = ψ1 = ω0 = W0 = W1 = 0,

as well as to determine the non-zero terms ψ2, ω1, ω2,W2, T0, T1 and T2. For the steady-state equations the approximate
solutions, correct to second order in δ, are given by

ψs(z, µ) ≈ −2γ δ2 Raµ(1 − µ2)F1(z),

ωs(z, µ) ≈ 2γ δ Raµ(1 − µ2)


d2F1
dz2

+ δF2(z)

,

Ws(z, µ) ≈
4γ δ2 Ra
Pr R0

µ2(1 − µ2)F3(z),

Ts(z, µ) ≈ (1 − γµ2)(1 − z)(1 − δz)+ δ2T2(z, µ),

where

F1(z) =
z4

24
−

z5

120
−

7z3

120
+

z2

40
,

F2(z) =
z4

12
−

z3

6
+

z
12

−
1
60
,

F3(z) =
z5

120
−

z6

720
−

7z4

480
+

z3

120
−

z
1440

,

T2(z, µ) = γ (1 − 3µ2)z2

1 −

z
3


+ (1 − γµ2)z2


1 −

z2

3


+ γ 2 Raµ2(1 − µ2)z3

×


z4

252
−

z3

36
+

41z2

600
−

3z
40

+
1
30


− γ Ra(1 − 3µ2)(1 − γµ2)z4


z2

360
−

z3

2520
−

7z
1200

+
1

240


+ z


−

2
3
(1 − γµ2)−

2
3
γ (1 − 3µ2)−

1
350

γ 2 Raµ2(1 − µ2)+
1

1400
γ Ra(1 − 3µ2)(1 − γµ2)


.

These approximate analytical solutions will next be used to conduct a linear stability analysis. Later, these approximate
analytical solutions will also be used to validate the steady-state numerical solutions as well as the limiting unsteady
numerical solutions for large t .

To investigate the stability of the steady-state flowwe begin by perturbing the flow by imposing a small disturbance and
monitoring how the disturbance evolves in time. We set

T = Ts + T ′, ψ = ψs + ψ ′, ω = ωs + ω′, W = Ws + W ′,

where T ′, ψ ′, ω′,W ′ denote disturbances. Substituting these into the governing equations and linearizing we obtain the
following system of perturbation equations

δω′
= −D̂2ψ ′, (11)

∇̂
2T ′

=
1

(1 + δz)2


∂(ψs, T ′)

∂(z, µ)
+
∂(ψ ′, Ts)
∂(z, µ)


, (12)

Pr D̂2ω′
+ δ Pr Ra(1 − µ2)

∂T ′

∂µ

=
1

(1 + δz)2


∂(ψs, ω

′)

∂(z, µ)
+
∂(ψ ′, ωs)

∂(z, µ)


+

2ωs

(1 − µ2)(1 + δz)2


µ
∂ψ ′

∂z
+
δ(1 − µ2)

(1 + δz)
∂ψ ′

∂µ


+

2ω′

(1 − µ2)(1 + δz)2


µ
∂ψs

∂z
+
δ(1 − µ2)

(1 + δz)
∂ψs

∂µ


−

2δWs

(1 − µ2)(1 + δz)2


µ
∂W ′

∂z
+
δ(1 − µ2)

(1 + δz)
∂W ′

∂µ


−

2δW ′

(1 − µ2)(1 + δz)2


µ
∂Ws

∂z
+
δ(1 − µ2)

(1 + δz)
∂Ws

∂µ


−

2δ
R0


µ
∂W ′

∂z
+
δ(1 − µ2)

(1 + δz)
∂W ′

∂µ


, (13)

Pr D̂2W ′
=

1
(1 + δz)2


∂(ψs,W ′)

∂(z, µ)
+
∂(ψ ′,Ws)

∂(z, µ)


−

2
R0


µ
∂ψ ′

∂z
+
δ(1 − µ2)

(1 + δz)
∂ψ ′

∂µ


. (14)

In arriving at (11)–(14) we have made use of the principle of exchange of stabilities [13] which is expected to hold. This
allows us to ignore derivatives with respect to time at the threshold of instability.
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Following Walton [11], we next expand the disturbances in powers of δ:

T ′(z, µ) = (T (0)(z, µ)+ δT (1)(z, µ)+ δ2T (2)(z, µ)+ · · · ) exp


i
δ

 µ

0
k(ξ)dξ


,

ψ ′(z, µ) = (ψ (0)(z, µ)+ δψ (1)(z, µ)+ δ2ψ (2)(z, µ)+ · · · ) exp


i
δ

 µ

0
k(ξ)dξ


,

ω′(z, µ) = (ω(0)(z, µ)+ δω(1)(z, µ)+ δ2ω(2)(z, µ)+ · · · ) exp


i
δ

 µ

0
k(ξ)dξ


,

W ′(z, µ) = (W (0)(z, µ)+ δW (1)(z, µ)+ δ2W (2)(z, µ)+ · · · ) exp


i
δ

 µ

0
k(ξ)dξ


.

As noted in [11], the above correspond to disturbances having a wavenumber, k(µ), that are slowly varying as a result of the
variation in the boundary condition for the surface temperature. Further, we expand the Rayleigh number and differential
operators in similar series

Ra = Ra(0) + δ Ra(1) + δ2 Ra(2) + · · · ,

D̂2
=
∂2

∂z2
+ δ2(1 − µ2)

∂2

∂µ2
+ · · · ,

∇̂
2

=
∂2

∂z2
+ 2δ

∂

∂z
+ δ2


−2µ

∂

∂µ
+ (1 − µ2)

∂2

∂µ2


+ · · · .

Substituting these into (11)–(14) leads to a hierarchy of problems. Although this can be a tedious procedure, wewill see that
for our purposes the leading-order problem provides a wealth of information.

The leading-order problem forW ′ is given by

∂2W (0)

∂z2
− k2(1 − µ2)W (0)

= 0,

and is subject to

W (0)
= 0 at z = 0, 1.

The solution to the above is the trivial solutionW (0)
≡ 0. Similarly, it follows thatψ (0)

≡ 0. T (0) andψ (1) satisfy the coupled
system

∂2

∂z2
− k2(1 − µ2)


T (0) = ik(1 − γµ2)ψ (1),

∂2

∂z2
− k2(1 − µ2)

2
ψ (1)

= ikRa(0)(1 − µ2)T (0),

while ω(0) can be found from

ω(0) = −


∂2

∂z2
− k2(1 − µ2)


ψ (1).

The equations for T (0) and ψ (1) can be combined to yield
∂2

∂z2
− k2(1 − µ2)

3
ψ (1)

= −k2 Ra(0)(1 − µ2)(1 − γµ2)ψ (1).

Now, the most unstable region occurs at the equator (θ = π/2 or µ = 0) since the temperature difference between the
surface and the edge is largest. Likewise, the most stable region occurs at the pole (θ = 0 or µ = 1). Also, because of the
assumed equatorial symmetry the maximum wavelength that the domain can support will be the pole-to-pole distance
which is π . Thus, the allowable perturbation wavelengths are λn = π/n, where n = 1, 2, 3, . . . is a positive integer, and
the corresponding discrete meridional perturbation wavenumbers are kn = 2n. Since the disturbance will be concentrated
near the equator we set µ = 0 to obtain

∂2

∂z2
− k20

3
ψ (1)

= −k20 Ra
(0)ψ (1), (15)

where k0 = k(0).
Solving (15) subject to the conditions

ψ (1)
=
∂ψ (1)

∂z
=


∂2

∂z2
− k20


ψ (1)

= 0 at z = 0, 1,
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Table 1
Calculated values of Ra(0) for
various values of k0 .

k0 Ra(0)

2 2178
4 1879
6 3418
8 7085

suggests looking for a solution of the form

ψ (1)(z, µ) = f̂ (µ)eqz,

where q are the roots of the equation

(q2 − k20)
3

= k20 Ra
(0).

The roots are given by ±iq1,±q2,±q∗

2 where the asterisk denotes the complex conjugate and

q1 = k0

β − 1, Real(q2) =

k0
√
2


1 + β + β2 + 1 +

β

2

1/2

,

Imag(q2) =
k0
√
2


1 + β + β2 − 1 −

β

2

1/2

,

where β = (Ra(0)/k40)
1/3. Introducing z̄ = z − 1/2 forces an even solution of the form

ψ (1)(z̄, µ) = f̂ (µ)[A cos(q1z̄)+ B cosh(q2z̄)+ C cosh(q∗

2 z̄)].

Applying the boundary conditions yields a homogeneous system of equations for the constants A, B, C . Setting the
determinant of the coefficient matrix to zero and simplifying produces the dispersion relation

q1 tan
q1
2


+
(q3 +

√
3q4) sinh q3 + (

√
3q3 − q4) sin q4

cosh q3 + cos q4
= 0,

where q3 = Real(q2) and q4 = Imag(q2). We define Ra(0)crit as the minimum value of Ra(0) having a real wavenumber k0,crit .
From the allowable wavenumbers and the computed values listed in Table 1 it follows that the minimum value of Ra(0)

occurs when k0,crit = 4 and the numerical solution to the above algebraic equation yields Ra(0)crit ≈ 1879. Hence, to leading
order Racrit ≈ 1879.

We observe that the problem bears a close resemblance to the classical Rayleigh–Bénard problem with rotation having
no influence. The only differences lie in the allowable wavenumbers and the values of Racrit and kcrit , which assume the
numerical values of 1708 and 3.12, respectively, for the Rayleigh–Bénard problem.

4. Numerical solution procedure

Eqs. (7)–(10) are solved by a finite difference method where the spatial derivatives are discretized by central differences
and the time derivative by implicit time stepping [19]. Since we are working on a unit square, we take the grid spacing to
be uniform in both the z andµ directions. We discretize the interior of the unit square using the grid points zi = ih, µj = jk
for i = 1, . . . ,m1 and j = 1, . . . ,m2, where h = 1/(m1 + 1) and k = 1/(m2 + 1) denote the uniform spacing in z and µ
directions, respectively. In our numerical experiments we take h = k so m1 = m2 ≡ m.

The finite difference discretization for the steady and unsteady equations results in a systemof coupled discrete nonlinear
equations. Let (ψn, ωn, T n,W n) denote the numerical solution at time tn with the initial condition at t = t0 represented
by (ψ0, ω0, T 0,W 0). At each time step, the solution at time tn+1, namely (ψn+1, ωn+1, T n+1,W n+1), is computed by solving
the discrete nonlinear system using fixed point iteration described below.

We take the initial guess to be

(ψn+1
0 , ωn+1

0 , T n+1
0 ,W n+1

0 ) = (ψn, ωn, T n,W n),

which corresponds to the solution at the previous time step, and let (ψn+1
k , ωn+1

k , T n+1
k ,W n+1

k ) be an approximate solution
after k fixed point iterations of (ψn+1, ωn+1, T n+1, W n+1). From here the iteration procedure starts by solving Eq. (9) for
T n+1
k+1 using the known value of ψn+1

k . Similarly, we solve Eq. (10) to obtain W n+1
k+1 using ψn+1

k . The boundary conditions
for these two variables are handled using a standard approach, with the Neumann conditions being discretized along the
corresponding boundaries.

Specifically, in the (k + 1)-th fixed point iteration for time tn+1, we construct a matrix equation

(AT )
(n+1)
(k+1)T

n+1
k+1 = (bT )

(n+1)
(k+1),
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where, with a slight abuse of notation, T n+1
k+1 is a vectorized version of the discrete grid values of the state variable T in the

(k + 1)-th iteration at time tn+1. As long as the matrix and vector orderings match, it does not matter how T is vectorized.
After transforming the boundary conditions (5), (6) in terms of the coordinates (z, µ), we see that there are m(m + 1)
unknowns for T . The size of the matrix equation for T is thenm(m + 1)× m(m + 1). Given ψn+1

k , the interior equations on
(zi, µj) can be discretized as

T n+1
k+1 (zi, µj)− T n(zi, µj)

△t
= −

1
(1 + δzi)2


(ψn+1

k (zi+1, µj)− ψn+1
k (zi−1, µj))

2h
(T n+1

k+1 (zi, µj+1)− T n+1
k+1 (zi, µj−1))

2k

−
(T n+1

k+1 (zi+1, µj)− T n+1
k+1 (zi−1, µj))

2h
(ψn+1

k (zi, µj+1)− ψn+1
k (zi, µj−1))

2k



+
T n+1
k+1 (zi+1, µj)− 2T n+1

k+1 (zi, µj)+ T n+1
k+1 (zi−1, µj)

h2
+


2δ

1 + δz


T n+1
k+1 (zi+1, µj)− T n+1

k+1 (zi−1, µj)

2h



−


2µδ2

(1 + δz)2


T n+1
k+1 (zi, µj+1)− T n+1

k+1 (zi, µj−1)

2k


+


δ2(1 − µ2)

(1 + δz)2



×


T n+1
k+1 (zi, µj+1)− 2T n+1

k+1 (zi, µj)+ T n+1
k+1 (zi, µj−1)

k2


.

Along the boundariesµ = 0, 1we apply the Neumann condition ∂T/∂µ = 0. Using a second-order one-sided discretiza-
tion, this condition yields

−3T n+1
k+1 (zi, 0)+ 4T n+1

k+1 (zi, µ1)− T n+1
k+1 (zi, µ2) = 0, i = 1, 2, . . . ,m

along µ = 0 and

−3T n+1
k+1 (zi, µm−2)+ 4T n+1

k+1 (zi, µm−1)− T n+1
k+1 (zi, 1) = 0, i = 1, 2, . . . ,m

along µ = 1. The resulting (m2
+ 2m) equations in (m2

+ 2m) unknowns completely characterize the matrix (AT )
(n+1)
(k+1) and

the vector (bT )
(n+1)
(k+1) in the (k+1)-th fixed point iteration, givenψn+1

k . Similarly, one can construct the matrix (AW )
(n+1)
(k+1) and

the vector (bW )
(n+1)
(k+1) .

The determination of ωn+1
k+1 and ψn+1

k+1 , however, requires more care. We note that there are six boundary conditions for
ψ and only two boundary conditions for ω. The stream function ψ has two boundary conditions at both z = 0 and z = 1,
while ω has none. The lack of boundary conditions at z = 0 and z = 1 leads to an incomplete system for ω when Eq. (7) is
discretized. Various methods have been advanced to deal with this. These include the use of so-called integral conditions,
discretized boundary conditions based on Taylor expansions, and others [20–22].

Our strategy for solving Eqs. (7) and (8) is as follows. In the (k+1)-th iteration, we view these equations as a joint system,
and we seek to simultaneously determine ωn+1

k+1 andψn+1
k+1 . Forψ we needm2 equations becauseψ = 0 along the boundary,

whereas for ω we need (m2
+ 2m) equations because the values of ω are unknown along z = 0 and z = 1. Unfortunately,

Eq. (8) can only produce m2 equations. The remaining 2m equations are inferred from the extra boundary conditions for ψ
as follows.

We extend the grid and assume that Eq. (7) holds along z = 0 and z = 1. Adopting the notation fi,j ≡ f (zi, µj), and
discretizing Eq. (7) using central differences leads to

δωi,j = −
(ψi+1,j − 2ψi,j + ψi−1,j)

h2
−
δ2(1 − µ2

j )

(1 + δzi)2
(ψi,j+1 − 2ψi,j + ψi,j−1)

k2
,

where in our case h = k. Using the condition ψi,j = ψi,j±1 = 0 along the boundaries z = 0 and z = 1, the above simplifies
to

δωi,j = −
(ψi+1,j + ψi−1,j)

h2
.

Along the line z = 0 the unknown ψi−1,j lies outside the domain while along z = 1 the unknown ψi+1,j lies outside the
domain. These quantities can be eliminated by making use of the condition ∂ψ/∂z = 0 along z = 0 and z = 1 which
yields ψi−1,j = ψi+1,j along these lines. Thus, the surface vorticity (i.e. z = 0) is given by the second-order finite-difference
expression

ωi,j = −
2ψi+1,j

δh2
,
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while on z = 1 the corresponding expression is

ωi,j = −
2ψi−1,j

δh2
.

These expressions determine the remaining 2m equations. When put together, we have (2m2
+ 2m) equations for the same

number of unknowns. This approach results in a system that is about two times bigger thanwhat would have been obtained
if (ψ ,ω) were decoupled. However, the system is still sparse, and can be solved rapidly using efficient algorithms. Therefore,
given T n+1

k+1 and W n+1
k+1 , the matrix (Aω,ψ )

(n+1)
(k+1) and the vector (bω,ψ )

(n+1)
(k+1) can be determined.

This completes one iteration of the fixed pointmethod. Iterations are repeated until convergence is reached. The adopted
stopping criterion is given by

∥(ψn+1
k∗+1, ω

n+1
k∗+1, T

n+1
k∗+1,W

n+1
k∗+1)− (ψn+1

k∗ , ωn+1
k∗ , T n+1

k∗ ,W n+1
k∗ )∥∞ < tol,

where the subscript ∞ denotes the infinity norm. From our experience, if the system reaches a steady state after a certain
time tn, then it typically takes only a few iterations (k∗ < 10) to reach tol = 10−6. When convergence is reached, we assign
the converged values to be the solutions at the next time step, that is,

(ψn+1, ωn+1, T n+1,W n+1) = (ψn+1
k∗+1, ω

n+1
k∗+1, T

n+1
k∗+1,W

n+1
k∗+1).

A complete algorithm for advancing the system from time tn to time tn+1 is as follows.
Set (ψn+1

0 , ωn+1
0 , T n+1

0 ,W n+1
0 ) = (ψn, ωn, T n,W n).

for k = 0, 1, ... do
Compute (AT )

(n+1)
(k+1) and (bT )

(n+1)
(k+1) from ψn+1

k .
Solve

(AT )
(n+1)
(k+1)T

n+1
k+1 = (bT )

(n+1)
(k+1) .

Compute (AW )
(n+1)
(k+1) and (bW )

(n+1)
(k+1) from ψn+1

k .
Solve

(AW )
(n+1)
(k+1)W

n+1
k+1 = (bW )

(n+1)
(k+1) .

Compute (Aω,ψ )
(n+1)
(k+1) and (bω,ψ )

(n+1)
(k+1) from T n+1

k+1 and W n+1
k+1 .

Solve

(Aω,ψ )
(n+1)
(k+1)


ωn+1

k+1
ψn+1

k+1


= (bω,ψ )

(n+1)
(k+1) .

if ||(ψn+1
k+1 , ω

n+1
k+1 , T

n+1
k+1 ,W

n+1
k+1 )− (ψn+1

k , ωn+1
k , T n+1

k ,W n+1
k )||∞ < tol then

Break.
end if

end for
Set

(ψn+1, ωn+1, T n+1,W n+1) = (ψn+1
k+1 , ω

n+1
k+1 , T

n+1
k+1 ,W

n+1
k+1 ).

The above time stepping algorithm can be easily modified to solve the steady-state equations by simply setting the time
derivatives equal to zero in Eqs. (7)–(10). Equivalently, if the numerical discretization matrices are set up just as (AT )

(n+1)
(k+1)

above, then we could formally obtain the discretized steady-state linear systems by letting △t → ∞. We remark that
when Ra exceeds Racrit the flow becomes unstable, and consequently difficulties in obtaining numerical convergence to the
steady-state system may arise.

5. Results and discussion

Numerical solutions to the steady and unsteady equations have been obtained. In all of our computations we have set
γ = 0.5, Ro = 1 and Pr = 0.7 (corresponding to air) and have allowed the δ and Ra to vary. The computational parameters
used include m = 80 (i.e. 80 × 80 grid) implying a uniform grid spacing of 1/80, and for the unsteady computations the
uniform time step1t = 0.01 was used. The initial conditions used in the unsteady calculations wereW = ψ = ω = 0 and
T = Ts(z, µ).

We begin by making comparisons between the analytical and numerical steady-state solutions. Fig. 2 plots the absolute
value of the maximum difference (i.e. infinity norm) between the analytical and numerical solutions for various values of δ
and confirms the second-order accuracy in the approximate analytical solution.

Several grid refinement experimentswere conducted in order to ensure that the adopted grid sizewas able to adequately
resolve the flow. Table 2 lists the absolute value of the maximum difference between the analytical and numerical solutions
for various values of m. Since the analytical solution is second order accurate in δ, the maximum difference will depend on
both δ and m. To isolate the dependence on m we have set δ = 0.001 which is small enough that the maximum difference
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Fig. 2. Loglog plot of the maximum difference between the analytical and numerical steady-state solutions. Parameter values: Ra = 100, γ = 0.5, Pr =

0.7, Ro = 1.

Table 2
Maximum difference between the analytical and numerical
steady-state solutions for various values of m. Parameter
values: δ = 0.001, Ra = 100, γ = 0.5, Pr = 0.7, Ro = 1.

m Maximum difference

10 2.8 × 10−5

20 8.2 × 10−6

40 2.2 × 10−6

60 1.0 × 10−6

80 5.8 × 10−7

100 3.7 × 10−7

is dominated by changes in m. We see from the table that there is little change in going from an 80 × 80 grid to one that is
100 × 100. For the parameter values considered in this study an 80 × 80 grid was judged to be adequate.

Illustrated in Figs. 3, 4 are contour plots of the steady-state stream function in (z, µ) and Cartesian (i.e. physical)
coordinates, respectively, for Ra = 1500. Shown along the axes in Fig. 3 are both the spherical coordinates (r, θ) as well as
the (z, µ) coordinates. This serves to illustrate the nonlinear mapping between θ andµ. We note that the change of variable
µ = cos(θ) has the property of preserving the grid spacing near the equator while stretching the grid spacing near the pole.
This is precisely what is needed since the instability occurs near the equator and thus a finer grid is required there in order
to resolve it. Near the pole, on the other hand, a coarser grid can be used to adequately capture the flow in that region.

The circulation pattern shows ameridional Hadley cellwherebywarmer air rises at the equator, sinks at the pole and then
returns to the equator to complete the counterclockwise loop. This flow pattern transports excess heat from the equator to
the pole and it is seen to accomplish this through one large circulation. However, it is conceivable that for larger Ra it can
achieve this more efficiently through a flow pattern consisting of two or more cells. One large Hadley cell extending from
the equator to the pole was also reported in the studies of Lesueur et al. [9] and Lewis and Langford [16]. In [16] two or three
convection cells were observed as the equator-to-pole temperature difference was increased.

Nextwe contrast the steady-state surface vorticity distribution. Plotted in Fig. 5 are the numerical and analytical solutions
for Ra = 1500. The two solutions are seen to be in close agreement. Overall, good agreement was found between the
analytical and numerical steady-state solutions in all the flow variables for Rayleigh numbers up to about 1800. In addition,
for Rayleigh numbers up to about 1800 the unsteady solutions converged to the steady-state solutions.

The steady-state zonal velocity distribution is illustrated in Fig. 6 for Ra = 1500 and reveals a prominent westerly peak.
Based on the approximate analytical solution this peak is located at µ = 1/

√
2 (or θ = π/4) and z ≈ 0.74 or (x, y) ≈

(0.76, 0.76). This agrees well with the location of the peak obtained numerically which occurs at (z, µ) ≈ (0.73, 0.73) or
(x, y) ≈ (0.78, 0.73). This corresponds to a strong westerly flow which can be interpreted as the jet stream.

Lastly, Fig. 7 portrays the steady-state temperature distribution for Ra = 1500. As expected, the temperature decreases
radially from the surface as well as latitudinally from the equator and the warmest region is concentrated along the surface
near the equator. It is also clear from the diagram that the radial gradient in temperature is largest near the equator.

To numerically determine the critical Rayleigh number for the threshold of instability, Racrit , a perturbation was added
to the steady-state solution and used as an initial condition which was then marched in time. By monitoring the growth
or decay of the disturbance and stepping the Rayleigh number we were able to determine the interval over which the flow
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Fig. 3. Streamline circulation pattern in (z, µ) coordinates. Parameter values: Ra = 1500, δ = 0.1, γ = 0.5, Pr = 0.7, Ro = 1.

Fig. 4. Streamline circulation pattern in Cartesian coordinates. Parameter values: Ra = 1500, δ = 0.1, γ = 0.5, Pr = 0.7, Ro = 1.

changed from being stable to becoming unstable. The perturbation for the stream function was taken to be

ψ ′
= µ


1 − µ2z2(z − 1)2.

The form of the perturbation was chosen so as to satisfy all the boundary conditions. The corresponding perturbation for
the vorticity was obtained by numerically solving Eq. (7). The perturbations for the other flow variables were taken to be
zero. Because the stream function and vorticity are related through Eq. (7) which is independent of time, it is imperative
to perturb both the stream function and vorticity in order for the effects of the perturbations to spread to the remaining
equations.

We observed that as the Rayleigh number was increased beyond 1870 the unsteady solution began to show noticeable
departures from the steady-state solution. The formation of a small second cell near the equator started to appear. This
signals the onset of instability as predicted by the linear stability analysis. The small cell has a counterclockwise circulation
as previously described while the larger cell has a clockwise circulation. Shown in Fig. 8 is a contour plot for the unsteady
stream function for Ra = 1870 at t = 10.6. There was little change in the solution beyond t = 10.6 indicating that the
solution has reached a steady state. Figs. 9–11, on the other hand, illustrate contour snapshots at times t = 8.5, 10.7 and
12.9, respectively, for Ra = 1890 and clearly show the formation of an instability and the growth in the disturbance. Thus,
the flow becomes unstable in the interval 1870 < Ra < 1890 which agrees well with our prediction Racrit ≈ 1879.
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Fig. 5. Analytical (red) and numerical (blue) surface vorticity distributions. Parameter values: Ra = 1500, δ = 0.1, γ = 0.5, Pr = 0.7, Ro = 1. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. The zonal velocity distribution. Parameter values: Ra = 1500, δ = 0.1, γ = 0.5, Pr = 0.7, Ro = 1.

6. Conclusions

Discussed in this work was an analytical and numerical investigation of the differentially heated flow of a thin fluid
layer over a rotating sphere. Our results revealed that for Rayleigh numbers up to 1870 good agreement exists between the
analytical and numerical steady-state solutions. However, as the Rayleigh number is increased the flow becomes unstable
causing noticeable differences between the steady and unsteady numerical solutions.

To leading order the stability of the flow is well approximated by that of the classical Rayleigh–Bénard problem, that
is, the flow between two flat plates heated from below. This makes sense for a thin fluid layer since the flow can be
approximated by a series of flat plates at each value of θ . The most unstable configuration in the series will be that at the
equator, θ = π/2, where the temperature difference is largest. The difference between the problem investigated here and
the Rayleigh–Bénard problem lies in the allowed wavenumbers; here, the wavenumbers are restricted by the geometry of
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Fig. 7. The temperature distribution. Parameter values: Ra = 1500, δ = 0.1, γ = 0.5, Pr = 0.7, Ro = 1.

Fig. 8. Streamline circulation pattern in Cartesian coordinates at time t = 10.6. Parameter values: Ra = 1870, δ = 0.1, γ = 0.5, Pr = 0.7, Ro = 1.

the domain. Good agreement was found between the theoretical prediction of the onset of instability and the observed fully
nonlinear numerical simulations.

Although the presented model represents a gross simplification of the atmospheric circulation, ignoring effects such as
moisture and irregularities in the surface due to topography, it is able to reproduce somekey features such as the formation of
Hadley cells extending from the equator to the poles and the jet stream. Future workwill involve reformulating the problem
with a focus on the unsteady early development of the flow for very large Rayleigh numbers which should reveal a flow
pattern that is more consistent with that observed in our climate system which consists of three primary counterrotating
circulation cells known as Hadley, Ferrel and Polar cells.
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Fig. 9. Streamline circulation pattern in Cartesian coordinates at time t = 8.5. Parameter values: Ra = 1890, δ = 0.1, γ = 0.5, Pr = 0.7, Ro = 1.

Fig. 10. Streamline circulation pattern in Cartesian coordinates at time t = 10.7. Parameter values: Ra = 1890, δ = 0.1, γ = 0.5, Pr = 0.7, Ro = 1.

Fig. 11. Streamline circulation pattern in Cartesian coordinates at time t = 12.9. Parameter values: Ra = 1890, δ = 0.1, γ = 0.5, Pr = 0.7, Ro = 1.
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Appendix A. Primitive variable formulation

Here we present the Navier–Stokes and energy equations in dimensional form expressed in terms of the velocity and
pressure. For a Boussinesq fluid in a rotating reference frame these equations cast in vector form are given by [23]

∇⃗ · v⃗ = 0, (A.1)

∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗ + 2Ω⃗ × v⃗ = −

1
ρr

∇⃗P ′
+ α[g(r)ˆ⃗er + Ω⃗ × (Ω⃗ × r⃗)](T − Tr)+ ν∇2v⃗, (A.2)

∂T
∂t

+ (v⃗ · ∇⃗)T = κ∇2T . (A.3)

In the above r⃗ is the position vector and v⃗ represents the fluid velocity in a frame of reference that is rotating about the polar
axis at a rateΩ = |Ω⃗| where

Ω⃗ = Ω(cos θ ˆ⃗er − sin θ ˆ⃗eθ ),

and ˆ⃗er , ˆ⃗eθ are unit vectors in the radial and latitudinal directions, respectively. T denotes the temperature and P ′ refers to
the pressure deviation from P0 where P0 satisfies

1
ρr

∇⃗P0 + g(r)ˆ⃗er + Ω⃗ × (Ω⃗ × r⃗) = 0⃗.

It follows that

P ′
= P0 −

ρrg0R2

r
−
ρrΩ

2

2
r2 sin2 θ.

Here,

g(r) = g0


R
r

2

,

is the acceleration due to gravitywith g0 denoting the value on the surface, and R is the radius of the sphere. For a Boussinesq
fluid the density varies according to

ρ

ρr
= 1 − α(T − Tr),

where ρr represents the reference density corresponding to temperature Tr . All other fluid properties (i.e. ν, κ) are assumed
to remain constant.

For flow possessing both azimuthal and equatorial symmetry the continuity equation (A.1) in spherical coordinates can
be written as

∂

∂r


r2 sin θvr


+
∂

∂θ
(r sin θvθ ) = 0,

where vr , vθ are the velocity components in the r, θ directions, respectively. This equation will automatically be satisfied if
we introduce a meridional stream function defined by

vr =
1

r2 sin θ
∂ψ

∂θ
, vθ = −

1
r sin θ

∂ψ

∂r
. (A.4)

The pressure can be eliminated by forming the vorticity transport equation by taking the curl of Eq. (A.2). If we let
ζ⃗ = ∇⃗ × v⃗ and invoke vector identities, this leads to

∂ζ⃗

∂t
+ (v⃗ · ∇⃗)ζ⃗ − 2(Ω⃗ · ∇⃗)v⃗ − (ζ⃗ · ∇⃗)v⃗ = −

αg0
r
∂T
∂θ

ˆ⃗eφ + ν∇2ζ⃗ , (A.5)

where ˆ⃗eφ is the unit vector in the azimuthal direction. Here, we have made the approximation g(r)ˆ⃗er + Ω⃗× (Ω⃗× r⃗) ≈ g0 ˆ⃗er
where the term Ω⃗ × (Ω⃗ × r⃗) represents the centrifugal acceleration. For a thin spherical shell of thickness H ≪ R that is
not rapidly rotating this is an excellent approximation. Making use of (A.4), the azimuthal component of Eq. (A.2) is given
by

∂vφ

∂t
+

1
r2 sin θ

∂ψ

∂θ

∂vφ

∂r
−

1
r2 sin θ

∂ψ

∂r
∂vφ

∂θ

=
1

r3 sin2 θ
(vφ − 2Ω sin θ)


r cos θ

∂ψ

∂r
− sin θ

∂ψ

∂θ


+ ν


∇

2vφ −
vφ

r2 sin2 θ


, (A.6)
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while the azimuthal component of Eq. (A.5) becomes

∂ζφ

∂t
+

1
r2 sin θ

∂ψ

∂θ

∂ζφ

∂r
−

1
r2 sin θ

∂ψ

∂r
∂ζφ

∂θ
+
αg0
r
∂T
∂θ

=
2

r2 sin θ


W

r2 sin2 θ
+Ω


r cos θ

∂W
∂r

− sin θ
∂W
∂θ


+ ν


∇

2ζφ −
ζφ

r2 sin2 θ


, (A.7)

where ζφ denotes the azimuthal component of vorticity and W = r sin θvφ is the scaled zonal velocity with vφ referring
to the azimuthal, or zonal, velocity component. Following [24], we introduce the scaled vorticity, ω, which is related to ζφ
through the relation ω = r sin θζφ . In this investigation we work in terms of the flow variables ψ,ω,W and T . In terms of
these variables and cast in dimensionless form the stream function Eq. (1) follows directly from the relation ζφ = [∇⃗ × v⃗]φ ,
Eq. (A.7) transforms to Eq. (2), Eq. (A.6) produces Eq. (3), while Eq. (A.3) becomes Eq. (4). An advantage of working in terms of
these variables is that it reduces the number of equations from five to four. Although the introduction of the vorticity presents
complications associated with the lack of boundary conditions, working with the pressure also presents challenges.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cam.2015.03.025.
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