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Abstract

Gravity currents play a major role in both natural and human-made settings. The driving buoyancy forces
for these %ows are due to density di4erences which may arise as a result of compositional di4erences (e.g.
salinity), the presence of suspended material in the %ow as in the case of turbidity currents, temperature
di4erences, or a combination of these mechanisms. This article reports on a study of surface gravity currents
moving horizontally over a slightly denser ambient %uid when these surface layers are subjected to an incoming
heat %ux which acts to enhance (or erode) the existing strati7cation. A general equation of state is adopted to
connect the density of the upper layer to its changing temperature. A two-layer hydraulic theory is developed
and conditions for its validity carefully speci7ed. Both analytical and numerical analyses are carried out in
order to examine the salient features of these %ows.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A gravity current consists of the %ow of one %uid within another when this %ow takes place
because of di4erences in density between two %uids. In natural or human-made aquatic settings such
as lakes, oceans or reservoirs there are a myriad of possible contributors to these density di4erences
including: temperature di4erences, salinity contrasts, suspended material, both organic and inorganic
(turbidity currents), as well as combinations of these mechanisms. In the arena of human activity,
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gravity currents produced in the atmosphere or oceans may acquire their driving buoyancy force as
a result of the accidental (or otherwise) release and subsequent suspension of industrial pollutants.
This buoyancy force drives the spread of oil slicks on the sea surface [13] and are also pivotal in
the formation of the so-called thermal bar in dimictic lakes [9]. In this latter example temperature
di4erences produce the buoyancy force. Temperature di4erences arising from the absorption of solar
radiation may also play a pivotal role in the spread of oil slicks. Buoyancy-driven %ows are also being
studied extensively with the aim of including their e4ects in design criteria for natural ventilation
of buildings [19]. This relatively new systematic application of these compositionally-driven %ows
holds great promise for energy savings in future designs. Gravity %ows are thus seen to be highly
complex %ows that are ubiquitous in nature and human activities and studies of them will be as
varied in their aim as the manifestations of these currents themselves.

Gravity currents are primarily horizontal, occurring as either top or bottom boundary currents or
as intrusions at some intermediate level. The majority of the theoretical work on gravity currents
from the early calculation by von KGarmGan [26] up to that by Benjamin [2] and right on through
into the mid 1980s dealt with compositionally-driven %ows treating them as steady and employing
a hydrostatic approximation. This hydraulic approach for 7xed interlayer density di4erences will,
however, not necessarily be valid for applications involving conditions such as rapid bed slope
changes, strong strati7cation or short period waves. Under these circumstances extensions to shallow
water theory may be required in order to gain suJcient accuracy [1]. In the cases where the density
in either layer is variable extreme care must be taken in order to ensure that the use of shallow
water theory is justi7ed. For example, in the case of turbidity currents with sedimenting particles,
horizontal gradients in particle concentration will rule out the use of hydraulic theory even for low
aspect ratio %ows [21].

Since our top boundary current will be subjected to some of the same dynamic balances as bottom
boundary currents with relation to the reverse %ow in the dense ambient %uid, we include a brief
summary of 7ndings from a set of experiments on time dependent compositionally-driven %ows
executed by Rottman and Simpson [24]. In these experiments they studied instantaneous releases for
0¡hi6 1, where hi is the initial depth ratio between the released heavy %uid and the total depth of
the two %uid system in the rectangular channel. In their work they focused on the %ow’s transition
to the self-similar phase. The key feature of their observations and one that has played a role in
all subsequent theoretical developments for bottom boundary currents, was that for hi equal to or
slightly less than unity the disturbance generated at the proximal end wall has the appearance of an
internal hydraulic drop. On the other hand, for smaller values of hi (. 0:7) this disturbance is a long
wave of depression. Currently there are no theoretical model-based calculations that can accurately
predict this bifurcation in behaviour which occurs in the experimental results as hi is varied. These
experiments did however serve to emphasize the importance of including the e4ects of the ambient
%uid on the bottom boundary current when the current initially occupies a large fraction of the total
depth.

D’Alessio et al. [5] employed a two layer shallow water model to study sudden releases for 7xed
volumes entering a lighter ambient %uid as a bottom gravity %ow. Using MacCormack’s method [18]
to integrate numerically the hyperbolic system they were able to achieve good qualitative agreement
with the experimental results of Rottman and Simpson [24] for transition to self-similarity. Also,
employing multiple scales arguments they were able to show analytically the dependence of internal
bore formation on initial fractional depth of the release volume. Their analysis, however, did not
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con7rm the value of hi � 0:7 referred to earlier but rather gave the lower value of hi = 0:5 as the
minimum fraction for bore initiation. This is perhaps not surprising when one contrasts the relative
simplicity of a shallow water (hydraulic) model for what is a complex %ow involving possible
nonhydrostatic e4ects in various regions of the %ow due to streamline curvature, unresolved small
scale dissipation and other e4ects.

In this article we develop a two layer model governing the sudden release of a 7xed volume of
light %uid whose initial density and temperature are �1 and T1, respectively, into a heavy ambient
%uid of density �2 ¿�1 overlying a mildly sloping bottom. We shall assume that the temperature and
hence density of this ambient %uid remains 7xed. This is consistent with the assumption that there is
no heat transferred into the bottom layer. The lighter upper %uid layer is assumed to be subjected to
an incoming heat %ux (such as radiation) which serves to enhance (or erode) the initial strati7cation
through volume changes. In the case of heating the enhanced strati7cation inhibits turbulent mixing
[23]. The neglect of viscous dissipation in the %ow stems from the assumption that the Reynolds
number is suJciently large [23].

2. Formulation

Consider a current produced by the release of a 7xed volume of %uid having initial density �1=�∗
into an ambient %uid of higher density �2 = �0 overlying a gently sloping bottom. The physical
con7guration is depicted in Fig. 1, where 	(x; t) represents the displacement of the free surface from
its undisturbed con7guration, (u; w) is the %uid velocity in Cartesian coordinates (x; z), H is the
mean depth of the two layer system measured from z = 0, h(x; t) is the thickness of the overlying
layer and the variable bottom is located at z = −sf(x), where s (0¡s�1) is a nondimensional

h 

u1, T1, ρ1 

u2, T2, ρ2 

H 

g 

x 

sf(x) 

z 

η

Fig. 1. The %ow con7guration of the two-layer %uid model.
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slope parameter. The %ow is driven by the buoyancy force arising because of the di4erence between
the temperature dependent density �1(T ) of the upper layer and the 7xed density �2 = �0 of the
ambient %uid. The relation between temperature and density for the upper layer is given in terms of
an equation of state which will be assumed to have the general form [20]

�1(T ) = �0[1 − �(T − T0)n]; (2.1)

wherein T0 is the 7xed temperature of the lower layer whose density is also 7xed at �0, � is the
thermal expansion coeJcient, and n¿ 0 is a power law index. Since the temperature of the lower
layer is assumed to remain 7xed we have chosen to measure the temperature T1 ≡ T of the upper
layer relative to this 7xed value. We shall take T∗ ¿T0 as the initial temperature of the upper layer
so that

�1(T∗) = �∗ = �0[1 − �(T∗ − T0)n]¡�0: (2.2)

While in much of this study n will be treated as a free parameter, detailed numerical results will be
presented for the special cases n=1 and 2 since these are natural choices. The case n=1 corresponds
to the usual description whereby the density decreases linearly with an increase in temperature [15].
The case n = 2 can be used to approximate the density of fresh water near the temperature of
maximum density, that is, T0 ≈ 4◦C with � = 1:65 × 10−5◦C−2 for water. The case having n = 0
removes the temperature dependence from the problem so that the equations of motion would then
be reduced in number by one and the problem would mirror the one analysed previously by Rottman
and Simpson [24] as well as by D’Alessio et al. [5] for bottom %ows.

Invoking the Boussinesq approximation gives for mass conservation in the upper (variable density)
and lower (7xed density) layers

@u1
@x

+
@w1

@z
= 0; (2.3)

@u2
@x

+
@w2

@z
= 0; (2.4)

respectively. In all that follows we further assume that the Reynolds number of the %ow is suJciently
large that viscous forces are negligible and that the %ow dynamics are dominated by a balance
between buoyancy and inertial forces. The equation of momentum balance in each layer then takes
the relatively simple vector form

�
Du
Dt

= −∇p+ �g; (2.5)

wherein p is the total %uid pressure and g the gravitational acceleration vector with � for the upper
layer taking the variable value �1(T ) speci7ed by (2.1).

We now adapt Eqs. (2.3)–(2.5) to study low aspect ratio %ows involving two coupled layers
consisting of an upper layer having a temperature dependent (and hence time dependent) density
overlying a homogenous %uid layer of 7xed density that is in contact with a gently sloping imper-
meable bottom.

The momentum equations for the upper layer may be written as

@u1
@t

+ u1
@u1
@x

+ w1
@u1
@z

= − 1
�0

@p∗
1

@x
; (2.6)
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@w1

@t
+ u1

@w1

@x
+ w1

@w1

@z
= − 1

�0

@p∗
1

@z
; (2.7)

where the total pressure in the upper layer has been expressed as

p1(x; z; t) = −�0[1 − �(T − T0)n]gz + p∗
1(x; z; t); (2.8)

with p∗
1 representing the dynamic pressure 7eld in the upper layer and a Boussinesq approximation

has been invoked. This decomposition allows us to eliminate the time dependent gravitational force
per unit mass from the vertical momentum equation (2.7). It should be emphasized, however, that if
the density in the upper layer varied in the horizontal coordinate then this decomposition would not
have been possible and the upper layer would no longer be in hydrostatic balance [23]. Developing
a hydraulic model therefore imposes fairly strong constraints on the heating/cooling of the upper
layer.

The idea behind this hydraulic approximation when applied to a layer of %uid is that to O(�2) in
the small parameter � the pressure is hydrostatic. This small parameter is known as the aspect ratio
[22] de7ned as

0¡� ≡ h0
L
�1; (2.9)

with h0 a vertical scale of the motion and L a horizontal scale. Standard scaling arguments applied
to the vertical momentum equation for the upper %uid layer give that

@p1

@z
= −�0[1 − �(T − T0)n]g+O(�2); (2.10)

and hence @p∗
1=@z=0 to O(�2). Integrating (2.10) and applying the boundary condition of vanishing

pressure at the free surface z = H + 	 gives

p1 = �0g[1 − �(T − T0)n](H + 	 − z): (2.11)

From (2.11) we have that the horizontal velocity in the upper layer will be independent of z. If,
however, the temperature and hence the density of this layer should vary in the horizontal coordinate
then the velocity 7eld will be depth dependent and shallow water theory violated.

Since our assumption of a spatially independent temperature 7eld provides for a depth independent
horizontal velocity 7eld in the upper layer, the horizontal momentum equation for that layer becomes

@u1
@t

+ u1
@u1
@x

+ g[1 − �(T − T0)n]
@	
@x

= 0: (2.12)

Integrating the continuity equation (2.3) and applying the kinematic boundary conditions at the lower
and upper boundaries of the upper layer gives the continuity equation for that layer as

@h
@t

+
@
@x

(hu1) = 0: (2.13)
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The momentum equations for the lower layer are now

@u2
@t

+ u2
@u2
@x

+ w2
@u2
@z

= − 1
�0

@p∗
2

@x
; (2.14)

@w2

@t
+ u2

@w2

@x
+ w2

@w2

@z
= − 1

�0

@p∗
2

@z
; (2.15)

where the total pressure 7eld in the lower layer has been expressed as

p2(x; z; t) = −�0gz + p∗
2(x; z; t); (2.16)

with p∗
2 being the dynamic pressure 7eld in the lower layer.

From (2.11) and (2.16) and the dynamic condition that the total pressure 7eld across the interface
at z = H + 	 − h must be continuous we have that

p2 = �0g[H + 	 − z − �h(T − T0)n]: (2.17)

From (2.17) we have, following the arguments employed for the upper layer, that u2 = u2(x; t) and
hence that the horizontal momentum equation for the lower layer is

@u2
@t

+ u2
@u2
@x

+ g
@	
@x

− �g(T − T0)n
@h
@x

= 0: (2.18)

The continuity equation (2.4) may now be integrated and the kinematic boundary conditions applied
to give

@
@t

(h − 	) +
@
@x

[(h − H − 	 − sf(x))u2] = 0: (2.19)

Our equations of motion now consist of (2.12), (2.13), (2.18) and (2.19) together with a heat
equation yet to be speci7ed. We shall now render in nondimensional form the above four equations
by introducing the nondimensional variables (denoted by a tilde) as follows:

x = Lx̃; z = h0z̃; t =
L
U

t̃; h= h0h̃; H = h0H̃ ;

(u1; u2) = U (ũ1; ũ2); (w1; w2) =
h0U
L

(w̃1; w̃2); (p∗
1 ; p

∗
2) = U 2�0(p̃∗

1 ; p̃
∗
2);

	=
U 2

g
	̃; s= �s̃; �= T − T0 = �0�̃; U 2 = g′h0: (2.20)

In (2.20), �0 is a temperature scale which we choose to be the initial temperature di4erence
between the two layers so that �0 = T∗ − T0 ¿ 0. Employing this scheme to nondimensionalize our
four equations of motion we obtain

@u1
@t

+ u1
@u1
@x

+
[
1 − g′

g
� n

]
@	
@x

= 0; (2.21)

@h
@t

+
@
@x

(hu1) = 0; (2.22)
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@u2
@t

+ u2
@u2
@x

+
@	
@x

− � n @h
@x

= 0; (2.23)

@
@t

(
h − g′

g
	
)
+

@
@x

[(
h − H − g′

g
	 − sf(x)

)
u2

]
= 0; (2.24)

where tildes have been dropped from nondimensional quantities for notational convenience. The
reduced gravity g′ introduced above is de7ned in terms of the initial density di4erence between
the two layers, that is

g′ =
�0 − �∗

�0
g= ��n

0g: (2.25)

It now remains for us to specify a heat equation for the temperature 7eld in the upper layer. This
heat equation may be written in terms of � as

@�
@t

+ u1
@�
@x

+ w1
@�
@z

= �∇2�+ Q; (2.26)

where u1; w1 are as previously de7ned, � is the thermal di4usivity, and Q the heat source term
which we assume to be independent of x. This assumption is consistent with a spatially uniform
heat %ux on the surface of the upper layer and as was mentioned earlier leads to a very signi7cant
simpli7cation of the model equations in that a hydraulic model applies. With Q independent of x the
temperature 7eld and hence the density of the upper layer will also be independent of x. Adopting the
well-mixed assumption of Zilitinkevich et al. [28] for the upper layer leads to a depth independent
temperature 7eld so that @�=@z=0 and ∇2�=0 so that our nondimensional heat equation reduces to

d�
dt

= Q(t);
(
Q =

U�0
L

Q̃
)

: (2.27)

Lastly, we point out that implicit in the assumption that there is no heat transfer between the two
layers is the criterion that the di4usive, or convective, time scale given by td ∼ h20=� is much larger
than the advective time scale L=U . This condition places constraints on the quantities h0 and L for
a given %uid having a speci7ed �.
Our dynamic equations now consist of (2.21)–(2.24) and (2.27). This set of equations contains

the parameters g′=g, s and H . The parameter g′=g is a measure of the importance of the free surface
on the %ow since letting g′=g → 0 7lters out surface wave phenomena [5]. The slope parameter s
determines the role of bottom topography in the %ow. The parameter H is useful in considering the
limiting case of a deep ambient layer as we shall shortly see. The system of equations (2.21)–(2.24)
and (2.27) is posed as an initial value problem subject to the initial conditions

u1(x; 0) = 0; u2(x; 0) = 0; 	(x; 0) = 0; h(x; 0) = G(x); �(0) = 1; (2.28)

the impermeability conditions

u1(0; t) = 0; u2(0; t) = 0; (2.29)

the slope conditions

@	
@x

(0; t) =
@h
@x

(0; t) = 0; (2.30)
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and the far-7eld conditions

u1(x; t) → 0; u2(x; t) → 0; 	(x; t) → 0; h(x; t) → 0; (2.31)

as x → ∞. The slope conditions (2.30) can easily be deduced from (2.21) and (2.23) by making
use of the impermeability conditions. In the above G(x) speci7es the initial con7guration of the
two-layer %uid system which is taken to be initially at rest. We are interested in initial rectangular
con7gurations of the form

G(x) =

{
h∗ if 06 x6 x0;

0 if x¿x0;
(2.32)

where h∗ is the nondimensional initial thickness of the surface gravity current. Lastly, the heat %ux
Q(t) and the power law index n will need to be speci7ed.

The 7rst distinguished limit model to be developed is a weakly strati:ed model wherein we
neglect terms of O(g′=g) on the assumption that the initial density di4erence is small. This then
gives the dynamic equations

@u1
@t

+ u1
@u1
@x

+
@	
@x

= 0; (2.33)

@h
@t

+
@
@x

(hu1) = 0; (2.34)

@u2
@t

+ u2
@u2
@x

+
@	
@x

− � n @h
@x

= 0; (2.35)

@h
@t

+
@
@x

[(h − H − sf(x))u2] = 0; (2.36)

d�
dt

= Q(t): (2.37)

A series of straightforward manipulations of Eqs. (2.33)–(2.36) gives the pair of relations (with
s= 0)

hu1 + (H − h)u2 = 0; (2.38)

hu21 + (H − h)u22 + H	+
� n

2
(H − h)2 = 0; (2.39)

from which we can obtain an expression for the de%ection of the free surface as

	= 	(u1; h; �) = − u21h
H − h

− � n

2H
(H − h)2; (2.40)

where we have used

u2 = − hu1
H − h

: (2.41)
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Our weak strati7cation model can then be written in terms of the pair of equations

@u1
@t

+
[
1 − 2h

H − h

]
u1

@u1
@x

+
[
� n

H
(H − h) − u21H

(H − h)2

]
@h
@x

= 0; (2.42)

@h
@t

+
@
@x

(hu1) = 0; (2.43)

together with the heat equation (2.37) and the algebraic relation (2.41) for u2.
Returning to our full set of model equations consisting of (2.21)–(2.24) together with the heat

equation (2.27) we can develop another distinguished limit model for a deep ambient layer without
making the weak strati7cation assumption. In (2.24) we let H → ∞ with h=O(1) to get u2 = 0 so
that from (2.23)

@	
@x

= � n @h
@x

: (2.44)

Our system of equations for this deep ambient layer can then be written as

@u1
@t

+ u1
@u1
@x

+
[
1 − g′

g
� n

]
� n @h

@x
= 0; (2.45)

@h
@t

+
@
@x

(hu1) = 0; (2.46)

d�
dt

= Q(t): (2.47)

If we further re7ne this model to the case of weak strati7cation we get the weakly strati:ed deep
ambient layer model as

@u1
@t

+ u1
@u1
@x

+ � n @h
@x

= 0; (2.48)

@h
@t

+
@
@x

(hu1) = 0; (2.49)

d�
dt

= Q(t): (2.50)

This same model can be obtained from the weakly strati7ed model represented by equations (2.33)–
(2.37) by letting H → ∞ with h=O(1) in that system.

3. Preliminary analysis

The system given by Eqs. (2.21)–(2.24) and (2.27) is too complex to solve exactly. To make
analytical progress we will focus on the weakly strati:ed and weakly strati:ed deep ambient layer
systems. The advantage o4ered by these reduced, or simpli7ed, systems is that they are better suited
for analytical examination while at the same time retaining the essential physics of the full system.
In this section analyses will be carried out on these two systems.
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We begin by casting the systems (2.42)–(2.43) and (2.48)–(2.49) in conservation form. Setting
H = 1 (thus 0¡h¡ 1) and de7ning the vector

U =

[
u1

h

]
; (3.1)

enables us to express the equations in the generic form

@U
@t

+
@
@x

F(U; t) = 0; (3.2)

where the %ux vector F is given by

F=

[
1
2 u

2
1 + 	(u1; h; �)

u1h

]
; (3.3)

for the weakly strati7ed model (using (2.40) for 	(u1; h; �)) and

F=

[
1
2 u

2
1 + � nh

u1h

]
; (3.4)

for the weakly strati7ed deep ambient layer model.
The eigenvalues associated with the Jacobian matrix @F=@U are:

!± =
u1(1 − 2h)

1 − h
± 1

1 − h

√
h(1 − h)[(1 − h)2� n − u21]; (3.5)

for the weakly strati7ed model and

!± = u1 ±
√
� nh; (3.6)

for the weakly strati7ed deep ambient layer model. These systems are classi7ed as hyperbolic where
!± are real [17]. By inspecting the eigenvalues it is clear that the region of hyperbolicity corre-
sponding to the weakly strati7ed model can be represented in the u1 − h plane by the set of all
points (u1; h) satisfying

(1 − h)2� n − u21¿ 0: (3.7)

The points (u1; h) lying on and inside the triangular region bounded by the vertices located at
(u1; h) = (−√

� n(t); 0); (
√

� n(t); 0); (0; 1) satisfy the above condition. This triangular region will
evolve in time due to the term � n(t). The weakly strati7ed deep ambient layer model, on the other
hand, is always hyperbolic.

It has been shown that the weakly strati7ed system can be expressed compactly in characteristic
form as

du1
dt

+


 u1
1 − h

±
√

1 − h
h

√
� n − u21

(1 − h)2


 dh

dt
= 0

along
dx
dt

=
u1(1 − 2h)

1 − h
±

√
h(1 − h)

√
� n − u21

(1 − h)2
; (3.8)
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which can be further simpli7ed to

d
dt

{
arcsin

(
u1

(1 − h)
√
� n

)
± arcsin

(
2

(
h − 1

2

))}
= − nu1Q(t)

2�
√

(1 − h)2� n − u21

along
dx
dt

=
u1(1 − 2h)

1 − h
±

√
h(1 − h)

√
� n − u21

(1 − h)2
: (3.9)

Similarly, the weakly strati7ed deep ambient layer system can be reduced to

d
dt

{
u1 ± 2

√
� nh

}
= ±n

√
� nhQ(t)
�

along
dx
dt

= u1 ±
√
� nh: (3.10)

Lastly, in order to assess the nonlinear nature of the characteristic 7elds !±(U) we must consider
the quantity

gradu!
± · r±; (3.11)

where r± are the corresponding right eigenvectors. The characteristic 7eld is classi7ed as genuinely
nonlinear if the above quantity is nonzero and linearly degenerate if it is zero [17]. It is a straight-
forward exercise to show that the characteristic 7elds for the weakly strati7ed system are locally
linearly degenerate about the state u1 = 0; h= 1

2 . This will be further investigated numerically.
The weakly strati7ed deep ambient layer system (2.48)–(2.50) admits similarity solutions for the

following choices of the heat %ux Q(t):

Q(t) = Q0; (3.12)

Q(t) = −k�: (3.13)

The case given by (3.12) represents a constant heat %ux which could be due to solar radiation
for Q0 ¿ 0, while the case (3.13) corresponds to Newton’s Law of Cooling where the surrounding
temperature is 7xed at T0. With Q(t) speci7ed according to (3.12) or (3.13), Eq. (2.50) can be
easily solved using the initial condition given by (2.28). The following solutions emerge for �(t):

�(t) = Q0

(
t +

1
Q0

)
; (3.14)

�(t) = e−kt ; (3.15)

for the cases (3.12), (3.13) respectively.
We next seek self-similar solutions having the form

u1(x; t) = #aV (&); h(x; t) = #bF(&); &= x#c; #= t +
1
Q0

; (3.16)

for case (3.12) and

u1(x; t) = eatV (&); h(x; t) = ebtF(&); &= xect ; (3.17)

for case (3.13). When these forms are substituted into (2.48)–(2.49) ordinary di4erential equations
for V and F will result provided that

a+ c = −1; 2a − b= n; (3.18)
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for case (3.12) and

a+ c = 0; a − b − c = −nk; (3.19)

for case (3.13). If we further impose the constraint that the volume of the surface gravity current
remains constant (that is, we ignore the e4ect of thermal expansion to leading order) then∫ ∞

0
h(x; t) dx = h∗x0; (3.20)

according to (2.32). This yields the additional requirement that

b= c; (3.21)

for both cases (3.12) and (3.13). Combining (3.18)–(3.19) and (3.21) leads to

a=
n − 1
3

; b= c = −(n+ 2)
3

; (3.22)

for case (3.12) and

a= −nk
3
; b= c =

nk
3
; (3.23)

for case (3.13).
The solution for V satisfying the impermeability condition (2.29) is

V (&) =
(n+ 2)

3
&; (3.24)

for case (3.12) and

V (&) = −nk
3

&; (3.25)

for case (3.13). Similarly, the solution for F satisfying the jump condition
1
2
ẋ2f = � nh(xf; t); (3.26)

where xf denotes the location of the shock front and ẋf the shock speed, is given by

F(&) =
(n+ 2)
18Qn

0
[(2n+ 1)&2f − (n − 1)&2]; (3.27)

for case (3.12) and

F(&) =
n2k2

18
[2&2f − &2]; (3.28)

for case (3.13). Here, &f corresponds to the shock front xf via equations (3.16)–(3.17). Further, &f

can be related to the initial volume by applying (3.20) and replacing the upper limit with xf. The
following expressions are obtained:

&f = 3
(

2Qn
0h∗x0

(n+ 2)(5n+ 4)

)1=3

; (3.29)

for case (3.12) and

&f = 3
(
2h∗x0
5n2k2

)1=3

; (3.30)

for case (3.13).
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We point out that for the case (3.12) having n= 0 (i.e. constant density di4erence with Q0 = 1),
(3.24), (3.27) and (3.29) are in full agreement with those of Fannelop and Waldman [8] and Hoult
[13]. Also, we add that for the case (3.12) with n= 1

ẋf = (2Q0h∗x0)1=3; (3.31)

that is the shock propagates at constant speed, while for n= 2

ẋf = 4
(
Q2

0h∗x0
28

)1=3

#1=3; (3.32)

the shock speed increases with time. In contrast, for constant density di4erence the shock speed
decreases with time. Examining the similarity solution for case (3.13) we observe that ẋf → 0 as
t → ∞ for n¿ 0. This suggests that the gravity current eventually comes to rest. This is physically
plausible since in the limit of large t the upper layer approaches the same density and temperature
as the ambient %uid.

4. Numerical results and discussion

We next discuss the technique used to numerically integrate the equations. The numerical solution
will be used to validate the weakly strati7ed and weakly strati7ed deep ambient layer models, as
well as the analytical results. As in the previous section, we set H =1 and so the parameter h∗ now
represents the initial depth ratio.

In obtaining numerical results to nonlinear hyperbolic conservation laws the diJculty lies mainly
in accurately approximating discontinuous solutions. One of the major challenges is eliminating the
spurious numerical oscillations associated with second-order accurate schemes. An e4ective strategy is
to limit the antidi4usive term in the numerical %ux in such a way as to obtain a TVD (total variation
diminishing) scheme which yields solutions that are second-order accurate on smooth regions, and
converge in a non-oscillatory manner to the correct entropy solutions. It turns out, however, that
most TVD schemes, when applied to systems of conservation laws, require a speci7c linearization
of the Jacobian of the %ux vector, and a subsequent decomposition into characteristic 7elds. For
large, highly coupled systems as the system given by (2.21)–(2.24), this approach is not practical.
The alternative is to use a component-wise scheme which does not involve the Jacobian matrix. A
widely used scheme is MacCormack’s method, which is a second-order shock-capturing scheme. To
deal with the numerical oscillations, an arti7cial viscosity term, such as the one proposed by Lapidus
[16], can easily be imbedded into the scheme. Introducing arti7cial viscosity guarantees convergence
to the correct entropy solution, as well as dampens the oscillations. However, the restriction imposed
on it by the desired second-order accuracy prevents the complete elimination of oscillations.

To obtain oscillation-free solutions to our problem, we employed a second-order accurate TVD
scheme arising from a modi7cation to MacCormack’s scheme recently advanced by Yu and Liu [27].
The modi7cation is made by adding a %ux limiter to the antidi4usive term. Depending on the struc-
ture of the solution, the limiter switches the scheme from MacCormack to that of Beam-Warming. It
is known that the Beam-Warming scheme and that of MacCormack produce oscillations on opposite
sides of a discontinuity (see Le Veque [18]). The elimination of oscillations then results from the
solution dependent interchange between these two schemes. In the linear case, Yu and Liu’s method
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Fig. 2. The thickness of the gravity current obtained using the full model with n= 1, Q0 = 1, g′=g= 0:01, h∗ = 0:9, and
s = 0, at t = 3.

reduces to the TVD scheme devised by Sweby [25] by adding a %ux limiter to the Lax-Wendro4
method. For our problem, the results are in excellent agreement with those obtained by the standard
MacCormack’s scheme using Lapidus’ arti7cial viscosity. As illustrated by the plot presented in
Fig. 2, the TVD scheme yields oscillation-free solutions while maintaining a shock resolution equiv-
alent to that provided by the standard MacCormack scheme. Numerical experiments yield close
agreement between the results obtained using space increments of Tx = 0:005 with those using
Tx = 0:01. This serves as an indication of the convergence of the numerical technique as the grid
spacing is re7ned. The numerical results presented in this paper were calculated using Tx = 0:005
except for those cases which involved a large space domain, where Tx = 0:01 was used instead.
In all of our calculations the scheme proved to be stable provided the time step was selected to be
between 10−3 and 10−4.

Figs. 3a and b illustrate the evolution of the gravity current as it spreads over the ambient layer
for the case Q(t) = 1 (i.e. Q0 = 1 and �(t) = t + 1). The case presented in Fig. 3a corresponds to
a relatively shallow ambient layer (h∗ = 0:9), while in Fig. 3b the ambient layer is relatively deep
(h∗ = 0:3). The evolution revealed in Fig. 3a indicates the formation of an internal bore behind the
head of the gravity current which is evident from t = 3 to t = 7. The bore is generated when the
reverse %ow in the ambient layer reaches the wall at x=0 causing a sudden change in the %ow rate
of the gravity current. The bore propagates downstream along the interface between the two layers
and eventually catches up to the front, which then results in the collapse of the head portion of the
gravity current. If the ambient layer is deep, this reverse %ow is insuJcient to generate a rear bore.
Instead, a long depression wave propagates along the interface towards the front.

The dependence of the general shape and evolution of the gravity current on the initial depth
ratio is similar to that observed in previous studies [5,24] involving the spread of bottom gravity
currents as a result of a constant density di4erence. An interesting di4erence, however, exists in
the structure of the head region. As shown in Fig. 3a, the shape of the head region appears to be
trapezoidal instead of rectangular as observed in [5,24]. We found that by considering a constant
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Fig. 3. (a) The evolution of the two-layer system obtained using the full model with n=1, Q0 = 1, g′=g=0:01, h∗ =0:9,
and s = 0. (b) The evolution of the two-layer system obtained using the full model with n = 1, Q0 = 1, g′=g = 0:01,
h∗ = 0:3, and s = 0.

density di4erence in the current model (obtained by setting Q(t) = 0), this yielded pro7les with
rectangular head regions. This suggests that the trapezoidal structure of the head is an artifact of the
time varying density di4erence. This trapezoidal head shape has been observed in other situations
where the density di4erence varies in time. For example, in the works of Bonnecaze et al. [4] and
Moodie et al. [22] where particle deposition from turbidity currents provided for a time-varying bulk
density the current pro7le displayed a pronounced trapezoidal head shape. We also note on comparing
Figs. 3a and b that the larger the value of h∗ the faster the gravity current advances. Since the rate
at which the temperature rises and hence the density changes is independent of the local current
thickness in our model this di4erence in the rate of advance must be a result of the heightened
reverse %ow in the denser ambient %uid due to increased values of h∗. This same phenomenon has
been observed for 7xed density two layer bottom %ows as well [5].

The e4ect of rising temperature and hence decreasing density on the %ow rate of the upper current
can readily be discerned from both Figs. 3a and b where the rate of advance is seen to increase
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Fig. 4. The thickness of the gravity current obtained using the full model and the weakly strati7ed model with n = 1,
Q0 = 1, and h∗ = 0:9 at t = 3.

with time and increased buoyancy force. For example, in Fig. 3a the di4erence between the rate of
advance over the two time intervals between t=3 and 5 and that for t=7 and 9 shows an increase
on the order of 26.3%. Similar increases with time are displayed in Fig. 3b although the overall
rate of advance for this smaller release volume is not as great. Figs. 3a and b provide snapshots of
the evolution of the two-layer system. Of special interest, though, is the gravity current itself, and
in particular how the various parameters in the problem in%uence its development. The evolution of
the gravity current can best be tracked by examining the variation of its thickness along its length.
This is best portrayed by a graph of h as a function of x which will be presented in the remaining
plots, with the exception of Fig. 11.

Comparisons between the numerical solutions of the full model equations (2.21)–(2.24) and (2.27)
with those obtained from the weakly strati7ed and weakly strati7ed deep ambient layer models will
now be drawn. As before, these comparisons were made using Q(t) = 1. The results shown in
Fig. 4 verify that as g′=g → 0 the solution to the full model approaches that of the weakly
strati7ed model, as expected. Good agreement was also observed between the solutions of the full
model and those of the weakly strati7ed deep ambient layer model, for small values of the parameter
h∗. This is illustrated in Fig. 5. We point out that the results plotted in Figs. 4 and 5 were obtained
using n= 1. Similar agreement was found when n= 2.
We next present comparisons between the similarity and the numerical solutions. A comparison

with the similarity solution is given in Fig. 6 for the case Q(t)=1. It is clearly seen that, as expected,
the agreement improves as time increases. Shown in Fig. 7a is the evolution of the gravity current
for the case of Newton’s Law of Cooling using the weakly strati7ed deep ambient layer model with
n=1. The similarity solution is not included since it predicts a spike to form at the origin. Although
the similarity solution gives poor agreement with the numerical solution, it does correctly predict two
important features: the forming of a spike and the slowing down of the current, both of which are
illustrated in Fig. 7a. Thus, the similarity solution fails only in its prediction of the front location.
The formation of the spike is due to the variation in the horizontal velocity within the gravity
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current. Illustrated in Fig. 7b is the horizontal velocity distribution along the length of the current
at various times. It reveals that the maximum horizontal velocity is attained not at the front of the
current, as in the heating case, but rather at an interior point. Because of the decrease in velocity as
the front is approached, this causes %uid to accumulate near the front which consequently leads to
the observed spike. Since the buoyancy force will diminish in time as a result of the cooling of the
upper layer, the front will decelerate and this will further contribute to the piling up of %uid near
the front of the gravity current. The ultimate form of the spike for very large times will resemble a
delta function having an in7nite height with vanishing thickness. Lastly, the characteristic ‘peaking’
of the gravity current at its leading edge displayed in Fig. 7a as it loses density contrast with its
surroundings and slows has been observed in other situations involving the loss of buoyancy force
with time. For example, in the case of particle-driven %ows with sedimenting particles [23].
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Fig. 7. (a) Evolution of the gravity current with n = 1, k = 0:1, and h∗ = 0:3. (b) Evolution of the horizontal velocity
distribution with n= 1, k = 0:1, and h∗ = 0:3.

As a 7nal comparison, Fig. 8 illustrates the in%uence of the initial depth ratio parameter h∗ on the
formation of the rear bore. The numerical results suggest that the rear bore forms when h∗ & 0:5.
This is consistent with our earlier 7nding, namely that

gradu!
± · r± = 0

when h∗ = 1
2 which denotes local linear degeneracy.

A comparison between the gravity currents having the power law indexes n=1 and 2 is presented
in Fig. 9 for the case Q(t) = 1. We see that the basic structure and development of the gravity
current is similar for both n = 1 and 2. The only noticeable di4erence is in the rate of spreading,
which is due to the di4erence in front speeds. This di4erence arises because of an increased rate of
density decrease for the case n=2 owing to the nonlinear dependence of the density on temperature
di4erences. The e4ect of increasing the value of Q0 can be assessed by comparing the evolutions
in Figs. 9 and 10. It can be seen that Q0 does not a4ect the evolutionary structure of the current, it
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Fig. 8. The in%uence of h∗ on the gravity current obtained using the weakly strati7ed model with n = 1 and Q0 = 1 at
t = 3.

Fig. 9. Comparison of the evolution of the gravity current with n = 1 and 2 obtained using the weakly strati7ed model
with Q0 = 1 and h∗ = 0:9.

also appears to only a4ect the rate at which spreading occurs. In Fig. 11 we show the evolution of
the gravity current relative to the ambient layer with a sloping bottom having

f(x) = 1 − e−x:

Contrasting this evolution with that in Fig. 3a for a %at bottom, we observe that there is an important
di4erence in the progression of the rear bore. In the case with a sloping bottom a rear bore is
generated, however it appears to gradually dissipate, unlike in the %at bottom case where the bore
persists until it reaches the front of the current. The results displayed in Fig. 11 would suggest
that as the current moves out into deeper surroundings the role of release %ow in maintaining the
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Fig. 10. The evolution of the thickness of the gravity current obtained using the weakly strati7ed model with n = 1 and
h∗ = 0:9.

Fig. 11. The evolution of the two-layer system obtained using the full model with n=1, Q0 = 1, g′=g=0:01, h∗ =1, and
s = 0:8.

rear bore is diminished. The plots in Fig. 12 indicate that this e4ect is accentuated as the bottom
becomes steeper (i.e. as s is increased). Judging from the positions of the fronts, these results also
suggest that the rate of spreading of the gravity current increases with s, which appears to happen
at the expense of having a thinner head. We point out that for all the cases in Fig. 12 the same
initial volume was released. The initial position of the %uid in all cases is indicated by the dash line
shown in Fig. 11.

As a 7nal comment regarding the case n=2, we point out that this serves as a simple model for
the thermal bar phenomenon observed in dimictic lakes. The thermal bar arises from the fact that the
shallow, near-shore regions of a lake tend to warm and cool faster than the deeper, o4-shore regions,
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Fig. 12. Comparison of the evolution of the thickness of the gravity current with bottom slope obtained using the full
model with n= 1, Q0 = 1, g′=g= 0:01, and h∗ = 1 at t = 4.

as well as due to the existence of a density maximum in the equation of state. For water near the
temperature of maximum density of 4◦C, the equation of state is well approximated by Eq. (2.1)
with n=2 [6]. The 4◦C isotherm is termed the thermal bar; it advances out from the shore and will
eventually reach the deepest parts of the lake, after which the lake becomes strati7ed. Consequently,
a double cell circulation pattern with downwelling occurring in the vicinity of the 4◦C isotherm is
produced. The thermal bar appears in the spring as a lake is being heated above 4◦C and re-appears
in the fall when a lake cools below 4◦C. Many investigations have been devoted to the thermal bar,
some of which include [9,28] and [3,7,10–12,14]. Since g′=g = 0 corresponds to the start-up of the
thermal bar from zero initial strati7cation, the weakly strati7ed model presented here could provide
insightful information into the initial development of the thermal bar.

5. Weakly nonlinear analysis

In this section we will further investigate the formation of the rear bore behind the head of the
gravity current as observed in the numerical simulations for h∗ & 0:5. Since shock formation is
a nonlinear phenomenon, we employ a weakly nonlinear analysis, similar to that in [5], on the
weakly strati7ed model equations given by (2.42) and (2.43) with H = 1. We 7rst expand the %ow
variables about the basic state given by (u; h) = (0; h∗), taking u ≡ u1, which corresponds to the
release con7guration. The weakly strati7ed model equations can then be reduced to the following
quadratically nonlinear system:

@û
@t

+
(1 − 3h∗)
(1 − h∗)

û
@û
@x

+ � n(1 − h∗ − ĥ)
@ĥ
@x

= 0; (5.1)

@ĥ
@t

+ (h∗ + ĥ)
@û
@x

+ û
@ĥ
@x

= 0; (5.2)
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where the hat denotes the deviation from the basic state (0; h∗). Eqs. (5.1) and (5.2) can be combined
to yield a single equation given by (dropping the hats)

htt − h∗(1 − h∗)� nhxx = −(uh)xt − h∗� n(hhx)x +
(1 − 3h∗)h∗
(1 − h∗)

(uux)x; (5.3)

with subscripts denoting partial di4erentiation.
In the analysis that follows we will illustrate the procedure for the speci7c case Q(t) = Q0 and

n= 2 where 0¡Q0 = *�1, so that

�(t) = 1 + *t: (5.4)

This particular choice corresponds to a case discussed in some detail in this study and also minimizes
the algebra involved. Other values of n can be tackled in a similar manner. The reason for the
restriction Q0�1 is twofold. As alluded to earlier, the hydraulic model imposes constraints on the
rate of heating/cooling. This restriction guarantees that Eq. (5.3) will remain valid for suJciently
large times. Secondly, the heating/cooling rate brings in another time scale which then suggests
introducing the slow time variable T = *t. As a 7nal note we add that the condition Q0�1 is
consistent with the spirit of this study, in that we are looking at the enhancement of gravity driven
%ows brought on by heating/cooling superimposed on an existing strati7ed system.

The next step involves the de7ning of better-suited coordinates given by

&= x − c(t)t; 	= x + c(t)t; T = *t; (5.5)

where the phase speed, c(t), is given by

c(t) = c0
(
1 +

*
2
t
)
; c0 =

√
h∗(1 − h∗): (5.6)

In addition, we expand the variables in the following series

h= *h(0)(&; 	; T ) + *2h(1)(&; 	; T ) + · · · ; (5.7)

u= *u(0)(&; 	; T ) + *2u(1)(&; 	; T ) + · · · : (5.8)

To transform equation (5.3) we make use of

@x = @	 + @&;

@t = c0(1 + T )(@	 − @&) + *@T ;

@2xt = c0(1 + T )(@2		 − @2&&) + *@T (@	 + @&); (5.9)

then to leading order we obtain:

h(0)	& = 0; (5.10)

c0(@	 − @&)u(0) = −(1 − h∗)(1 + T )(@	 + @&)h(0); (5.11)

where (5.11) follows from (5.1). These can be easily solved to give

h(0) = +(&; T ) +  (	; T ); (5.12)

u(0) =
(1 − h∗)(1 + T )

c0
(+(&; T ) −  (	; T )): (5.13)
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Employing these results we are able to 7nd the correction h(1). After some algebra we obtain

− 4c20h
(1)
	& = A(&; T ) + B(&; 	; T ) + C(	; T ); (5.14)

where

A(&; T ) =
2c0

(1 + T )
+T& +

3
2
(1 − 2h∗)(+2)&&; (5.15)

B(&; 	; T ) = −(1 − 2h∗)[+ 		 +  +&& + 2 	+&]; (5.16)

C(	; T ) = − 2c0
(1 + T )

 T	 +
3
2
(1 − 2h∗)( 2)		: (5.17)

To ensure that h(1) remains bounded as &; 	 → ±∞ we impose A = 0 and C = 0 as solvability
conditions. Since the equations A = 0 and C = 0 are very similar, we will present only the details
for the solution of A= 0.

Integrating A= 0 with respect to & gives

+T +
3(1 − 2h∗)(1 + T )

2c0
++& = 0; (5.18)

where + is assumed to have compact support. If we let +(&; 0)=f(&) represent the initial condition,
then the solution to (5.18) can be expressed implicitly in parametric form in terms of the parameter
s as

+(&; T ) = f(s) along &=
3(1 − 2h∗)

4c0
[(1 + T )2 − 1]f(s) + s: (5.19)

Shock formation occurs when |+&| → ∞ where

+& =
4c0f′(s)

4c0 + 3(1 − 2h∗)f′(s)[(1 + T )2 − 1]
; (5.20)

which becomes in7nite when

T (s) = −1 ±
√

1 − K(s); K(s) =
4c0

3(1 − 2h∗)f′(s)
: (5.21)

Thus, a shock will form for T ¿ 0 when K(s)¡ 0. For f′(s)¿ 0 (i.e. the back side of the rightward
propagating smooth initial wave) this will happen provided h∗ ¿ 1

2 and con7rms our numerical
observations. The 7rst breaking time, TB, will be given by

TB =min
s

[T (s)]: (5.22)

A similar conclusion would be drawn by considering the equation C = 0.
We conclude this section with a brief discussion of the case of constant cooling (i.e. Q(t) = Q0

where −1�Q0 = *¡ 0). This analysis still predicts that a rear bore should form for h∗ ¿ 1
2 and

has also been con7rmed numerically. The only point worth mentioning about this case is that the
analysis is restricted to the interval 0¡T ¡ 1. This, however, makes physical sense since for T ¿ 1
the upper layer becomes denser than the ambient layer and thus the con7guration is unstable.
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6. Concluding remarks

Discussed in this paper is the problem of a surface gravity current acted upon by a heat %ux.
The mathematical formulation was based on shallow-water theory for a two-layer %uid model. Under
conditions of weak strati7cation and deep ambient layer thickness, three limiting models have been
identi7ed. These include the weakly strati7ed, deep ambient layer, and weakly strati7ed deep ambient
layer models. These limiting models constitute a simpli7ed system consisting of two equations for the
upper layer velocity and thickness together with algebraic expressions for the remaining unknowns.
Two types of results were obtained: analytical results using the simpli7ed systems and numerical
results using both the full and the simpli7ed systems. The analyses carried out include similarity
solutions to predict the long-term behaviour and a weakly nonlinear analysis to explain the rear
bore formation. The numerical solutions, obtained by a recently-advanced numerical scheme for
solving systems of nonlinear hyperbolic conservation laws, con7rmed the analytical predictions and
the validity of the simpli7ed systems. A distinguished feature of these %ows is the formation of a
rear bore behind the head of the current for certain h∗ ratios, similar in appearance to what has been
observed with bottom boundary currents. Also, the head of the gravity current takes on a trapezoidal
shape rather than the familiar rectangular shape reported in previous studies involving 7xed density
%ows.
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