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Problem description

The stability of two-dimensional laminar flow of a thin fluid layer
down a heated inclined surface has been investigated
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Previous work

I Isothermal case: Benjamin (1957), Yih (1963) and
Benney (1966)

I Non-isothermal case: variable surface tension -
Trevelyan et al. (2007) & D’Alessio et al. (2010)
variable viscosity - Goussis & Kelly (1985) and
Hwang & Weng (1988)
variable surface tension & visocosity -
Kabova & Kuznetsov (2002)

I Pascal et al. (2013) considered variable density, viscosity,
surface tension, thermal conductivity and specific heat for
small parameter variations

Serge D’Alessio1, Cam Seth1, J.P. Pascal2 The effects of variable fluid properties on thin film stability



Outline
Introduction

Mathematical formulation
Stability analysis

Results

Governing equations
Dimensionless equations
Boundary conditions
Dimensionless parameters

Governing equations

In the absence of viscous dissipation, the governing equations for a
fluid possessing variable fluid properties are given by:

Dρ
Dt + ρ

(
∂u
∂x + ∂w

∂z

)
= 0

ρDu
Dt = −∂p

∂x +gρ sinβ+ ∂
∂x

[
2µ∂u∂x −

2
3µ

(
∂u
∂x + ∂w

∂z

)]
+ ∂
∂z

[
µ
(
∂u
∂z + ∂w

∂x

)]
ρDw

Dt = −∂p
∂z −gρ cosβ+ ∂

∂z

[
2µ∂w∂z −

2
3µ

(
∂u
∂x + ∂w

∂z
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+ ∂
∂x
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µ
(
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D(cpT )
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K ∂T

∂z

)
− p

(
∂u
∂x + ∂w

∂z

)
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Governing equations

Allow the fluid properties to vary linearly with temperature as
follows (in dimensionless form):

ρ
ρ0

= 1− αT denisity
µ
µ0

= 1− λT viscosity
cp
cp0

= 1 + ST specific heat
K
K0

= 1 + ΛT thermal conductivity
σ
σ0

= 1− γT surface tension

Here, α, γ, λ, Λ, S are positive dimensionless parameters
measuring the rate of change with respect to temperature and ρ0,
µ0, cp0, K0, σ0 represent values at the reference temperature Ta

(or T = 0 in dimensionless form).
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Dimensionless equations

To cast the equations in dimensionless form the following scales
are used. The length scale is the Nusselt thickness given by:

H =

(
3µ0Q

gρ0 sinβ

)1/3

corresponding to a uniform steady isothermal flow.
Here, Q is the constant volume flux.
The pressure scale is ρ0U

2 with U = Q/H.
The time scale is H/U.
The temperature scale is ∆T = Tb − Ta.
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Dimensionless equations

Using the Boussinesq approximation and in dimensionless form the
equations become:

∂u
∂x + ∂w

∂z = 0

Re Du
Dt = −Re ∂p∂x + 3(1− αT ) + ∂

∂x

(
(1− λT )∂u∂x

)
+ ∂

∂z

(
(1− λT )∂u∂z

)
−λ∂T∂x

∂u
∂x − λ

∂T
∂z

∂w
∂x

Re Dw
Dt = −Re ∂p∂z − 3 cotβ(1− αT ) + ∂

∂x

(
(1− λT )∂w∂x

)
+ ∂
∂z

(
(1− λT )∂w∂z

)
− λ∂T∂x

∂u
∂z − λ

∂T
∂z

∂w
∂z

PrRe D
Dt

[
(1 + S/∆Tr )T + ST 2

]
= ∂

∂x

[
(1 + ΛT )∂T∂x

]
+ ∂

∂z

[
(1 + ΛT )∂T∂z

]
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Boundary conditions

The dynamic conditions along the free surface, z = h(x , t), are:

p = 2(1−λT )
ReF

([
∂h
∂x

]2 ∂u
∂x + ∂w

∂z −
∂h
∂x

∂u
∂z −

∂h
∂x

∂w
∂x

)
− (We−MaT )

F 3/2
∂2h
∂x2

−MaRe
√
F
(
∂T
∂x + ∂h

∂x
∂T
∂z

)
= (1− λT )

[
G
(
∂u
∂z + ∂w

∂x

)
− 4∂h∂x

∂u
∂x

]
where F = 1 +

[
∂h
∂x

]2
, G = 1−

[
∂h
∂x

]2
Based on Newton’s Law of Cooling, the heat transfer across the
free surface can be expressed as:

−Bi
√
FT = (1 + ΛT )

(
∂T
∂z −

∂h
∂x

∂T
∂x

)
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Boundary conditions

The kinematic condition along the free surface is given by:

w = ∂h
∂t + u ∂h∂x

Lastly, the bottom temperature, no-slip and impermeability
conditions are:

T = 1 at z = 0

u = w = 0 at z = 0
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Dimensionless parameters

Re =
ρ0UH

µ0
Reynolds number

We =
σ0

ρ0U2H
Weber number

Ma =
γ∆T

ρ0U2H
Marangoni number

Pr =
µ0cp0
K0

Prandtl number

Bi =
αgH

K0
Biot number

∆Tr =
Tb − Ta

Ta
Relative Temperature Difference

Also, α, λ,Λ, S represent dimensionless rates of change of density,
viscosity, thermal conductivity and specific heat with respect to
temperature.
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Steady-state equations

Steady uniform flow in the streamwise direction is given by h ≡ 1,
w ≡ 0, u = us(z), p = ps(z), T = Ts(z) and satisfies the
following boundary-value problems (D ≡ d/dz):

D[(1+ΛTs)DTs ] = 0 , (1+ΛTs)DTs+BiTs = 0 at z = 1 , Ts(0) = 1

D[(1−λTs)Dus ]+3(1−αTs) = 0 , Dus = 0 at z = 1 , us(0) = 0

ReDps = −3 cotβ(1− αTs) , ps(1) = 0
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Steady-state solutions

The steady-state solutions are given by:

Ts(z) =
√
a− bz − 1

Λ

us(z) = a0 ln

(
A− λ

√
a− bz

A− λ
√
a

)
+ a1z −

α

λ
z2 + a2(

√
a− bz −

√
a)

+a3[(a− bz)3/2 − a3/2]

ps(z) =
3 cotβ

Re

(
1 +

α

Λ

)
(1− z) +

2α cotβ

bRe
[(a−b)3/2− (a−bz)3/2]

where the constants a, b, a0, a1, a2, a3 and A are related to the
parameters Λ,Bi , λ and α.
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Steady-state solutions

Some special cases:

Λ = 0 , Ts(z) = 1− Bi

1 + Bi
z

For Bi = 0,Ts(z) = 1 while as Bi →∞,Ts(z)→ 1− z

For Bi = 0, us(z) = 3

(
1− α
1− λ

)
z
(

1− z

2

)
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Perturbation equations

Next impose small disturbances on the steady-state flow:

u = us(z) + ũ(x , z , t) , w = w̃(x , z , t) , p = ps(z) + p̃(x , z , t)

T = Ts(z) + T̃ (x , z , t) , h = 1 + η(x , t)

Substitute these into the governing equations, linearize and assume
the disturbances have the form:

(ũ, w̃ , p̃, T̃ , η) = (û(z), ŵ(z), p̂(z), T̂ (z), η̂)e ik(x−ct)

where k (real & positive) represents the wavenumber of the
perturbation and c is a complex quantity with the real part
denoting the phase speed of the perturbation while the imaginary
part is related to the growth rate.
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Perturbation equations

The linearized perturbation equations become:

Dŵ + ikû = 0

Re[ik(us − c)û + ŵDus ] = −ikRep̂ + k2(λTs − 1)û

+D[(1− λTs)Dû]− λT̂D2us − λDusDT̂ − ikλŵDTs − 3αT̂

ikRe(us − c)ŵ = −ReDp̂ + 3α cotβ T̂ − k2(1− λTs)ŵ

+D[(1− λTs)Dŵ ]− ikλT̂Dus − λDTsDŵ

PrRe(1 + S/∆Tr + 2STs)[ik(us − c)T̂ + ŵDTs ]

= −k2(1 + ΛTs)T̂ + D2[(1 + ΛTs)T̂ ]
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Boundary conditions

Along the free surface (z = 1) the perturbations satisfy:

p̂ = −η̂Dps +
2

Re
(1− λTs)Dŵ + k2(We −MaTs)η̂

(1− λTs)(η̂D2us + Dû + ikŵ) = −ikMaRe(T̂ + η̂DTs)

D[(1 + ΛTs)T̂ ] + η̂D[(1 + ΛTs)DTs + BiTs ] + BiT̂ = 0

ŵ = ik(us − c)η̂

while along the bottom the conditions are:

û(0) = ŵ(0) = T̂ (0) = 0
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Small wavenumber expansion

Recall that for isothermal flow small wavenumber perturbations are
the most unstable. Assume this is also true for non-isothermal flow
and expand the perturbations in the following series:

û = u0(z) + ku1(z) + O(k2)

ŵ = w0(z) + kw1(z) + O(k2)

p̂ = p0(z) + kp1(z) + O(k2)

T̂ = T0(z) + kT1(z) + O(k2)

η̂ = η0 + kη1 + O(k2)

c = c0 + kc1 + O(k2)

This leads to a hierarchy of problems at various orders of k .
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Neutral stability

With the help of the Maple Computer Algebra System an exact,
but lenghty, expression for the critical Reynolds number, Recrit , has
been found having the functional form

Re∗crit = f (α, λ,Λ,∆Tr ,S ,Pr ,Ma,Bi) where Re∗crit =
Recrit
cotβ

which predicts the onset of instability. With no heating the
isothermal result, Re∗crit = 5/6, is recovered. Re∗crit does not
depend on We (as is the case with isothermal flow).
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Special case

For Bi = 0 the critical Reynolds number is given by

Re∗crit =
5

6

(1− λ)2

(1− α)

The dependence of Re∗crit on α, λ can be explained by examining
how the flow rate, Q, is influenced. Recall that

Q =
ρg sinβH3

3µ

for steady uniform isothermal flow.
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Comparisons with previous research

Comparison between
our exact results and
the asymptotic
expansions of
Pascal et al. (2013).
Parameter values:
α = 0.5, λ = 0.2,
Λ = 0.25,S = 1,
Ma = ∆Tr = 1,
Pr = 7
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Comparisons with previous research

Comparison between
our exact results and
the asymptotic
expansions of
Pascal et al. (2013).
Parameter values:
α = 0.5, λ = 0.7,
Λ = 0.7, S = 1,
Ma = ∆Tr = 1,
Pr = 7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Bi

R
e* cr

it

 

 
asymptotic, λ, Λ → 0
asymptotic, Bi → 0
exact
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Comparisons with previous research

With λ = Λ = α = S = 0 the expression for Re∗crit becomes:

Re∗crit =
10(1 + Bi)2

5MaBi + 12(1 + Bi)2

which coincides with the result obtained by D’Alessio et al. (2010).
Thus, thermocapillarity is destabilizing as Re∗crit decreases with Ma.
The scaled critical Reynolds number attains a minimum at Bi = 1,
given by Re∗crit,min = 40/(48 + 5Ma). The limit as Bi tends to
infinity is equal to the value at Bi = 0 which is given by
Re∗crit = 5/6 and corresponds to the isothermal case.
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Variation in density

For 0 < Bi <∞ a negative temperature gradient within the fluid
layer ensues which establishes a gravitationally unstable top-heavy
density gradient within the fluid layer. Increasing α triggers
competing stability mechanisms which is reflected in the Rayleigh
number, Ra:

Ra =
α̂g cosβH3∆T(

µ
ρ

)(
K
ρcp

) = 3ρ0 cotβ

(
αρcpQ

K

)

Increasing α does not necessarily increase Ra since both ρ and Q
decrease while holding cp,K constant.
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Variation in density

Parameter values:
λ = Λ = S = Ma = 0,
∆Tr = 1,Pr = 7
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Variation in density

Parameter values:
λ = Λ = S = Ma = 0,
∆Tr = 1,Pr = 30
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Marangoni effect

Parameter values:
λ = Λ = S = 0,
Bi = 1,∆Tr = 1,
Pr = 7
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Marangoni effect

Parameter values:
λ = Λ = S = 0,
Ma = 10,∆Tr = 1,
Pr = 7
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Variation in viscosity

Parameter values:
α = Λ = S = 0,
λ = 0.5,∆Tr = 1,
Pr = 7
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Variation in viscosity

Parameter values:
Λ = 0.5, S = 1,
Bi = 0.25,Ma = 10,
∆Tr = 1,Pr = 7
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Variation in ∆Tr

Parameter values:
λ = 0,Λ = 0.5, S = 1,
Ma = 10,Bi = 0.25,
Pr = 7
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Variation in S

Parameter values:
Λ = 0,Ma = 1,
∆Tr = 1,Pr = 7
Top panel:
α = 0.2, λ = 0
Bottom panel:
α = 0, λ = 0.15
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Variation in Λ

Parameter values:
S = 0,Ma = 1,
∆Tr = 1,Pr = 7
Top panel:
α = 0.2, λ = 0
Bottom panel:
α = 0, λ = 0.2
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Variation in perturbation phase speed, c0

Parameter values:
λ = Λ = 0.5
c0 does not depend on
Ma,S ,∆Tr ,Pr and
varies linearly with α
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Variation in perturbation phase speed, c0

Parameter values:
λ = 0.5,Λ = 0.7
For isothermal flow
c0 = 3
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