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This paper solves the problem of unsteady free convection from an inclined elliptic cylinder both numer-
ically and analytically. An analytical solution valid for small times and large Grashof numbers is derived
and compared with numerical solutions to the governing Navier–Stokes and energy equations. The equa-
tions are expressed in terms of a streamfunction and vorticity and are solved subject to no-slip and con-
stant heat flux on the surface together with quiescent far-field and initial conditions. Comparisons
between the analytical and numerical solutions are made as well as with experiments. Satisfactory agree-
ment is found in all cases.
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1. Introduction

Free convective flows initiated impulsively occur naturally in
the environment and can be implicated in many industrial applica-
tions. Well-documented examples of these flows include impul-
sively generated free convection from horizontal and vertical flat
plates and from two-dimensional cylindrical bodies. Numerous
numerical, experimental and theoretical studies devoted to these
cases have appeared in the literature over the years. In these stud-
ies, some of which include [1–26], free convection is usually a con-
sequence of either a sudden change in surface temperature or a
sudden change in surface heat flux.

The focus of the present study is the unsteady problem of lam-
inar, two-dimensional free convective flow from an elliptic cylin-
der induced by a constant heat flux which is abruptly applied on
its surface at t ¼ 0. Since this represents a fundamental problem
in heat transfer, it is of interest for both theoretical and practical
reasons. Some related engineering applications include flow past
heated tubes, hot wire anemometry, thermal pollution, and the
designing of heat exchangers. The related problems of the heated
flat plate and the heated circular cylinder are well studied and
some of these works include [1–15].

This problem is addressed analytically and numerically and rep-
resents an extension of previous work for small Grashof number
flows subject to constant surface temperature [26] to large Grashof
number (Gr) flows subject to constant surface heat flux. As pointed
ll rights reserved.
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lessio).
out in [24,25], an important feature associated with the elliptic
geometry is the increase in the rate of heat transfer.

Closely related existing research on free convection from elliptic
cylinders includes the studies of Badr and Shamsher [16] and Mah-
fouz and Kocabiyik [17] for the symmetrical case and that of Badr
[18] for the asymmetrical case. Badr and Shamsher [16] considered
elliptic cylinders of various aspect ratios ranging from 0.1 to 0.964
(i.e. approaching a flat plate and circular cylinder, respectively)
suspended in air ðPr ¼ 0:7Þ. Numerical solutions were performed
for Rayleigh numbers ranging from 10 to 1000 for the case of an
isothermal surface. Mahfouz and Kocabiyik [17], on the other hand,
carried out a numerical study of the transient buoyancy driven
flow adjacent to a cylinder of elliptic cross-section with major axis
horizontal, whose surface was subjected to a sudden uniform heat
flux. This was executed for different values of the modified Ray-
leigh number ranging from 103 to 107, Prandtl numbers (Pr) rang-
ing from 0.1 to 10, and cylinder aspect ratios ranging from 0.05 to
0.998.

Some related experimental investigations are those by Huang
and Mayinger [19] for elliptic tubes at various inclinations and as-
pect ratios and by Elsayed, Ibrahim and Elsayed [20] for the case of
a constant heat flux from an elliptic tube at large Rayleigh num-
bers. As for comparisons with experimental studies, the work that
is closest to this study is the investigation by Elsayed, Ibrahim and
Elsayed [20] which dealt with free convection of air around the
outer surface of a horizontal elliptic tube maintained at constant
heat flux. In their experiments a stainless steel elliptic tube having
a major axis of 90 mm, a minor axis of 50 mm and a length of
1000 mm was used. A cylindrical 1 kW electrical heater having a
diameter of 10 mm was placed in the center of the tube and was
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Nomenclature

b; a cylinder semi-minor, semi-major axes, respectively
A;B;A0;B0;A1;B1 functions appearing in governing equations

c semi-focal length, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
D1;D2 functions appearing in the analytical solutions
Fn; fn Fourier coefficients for the streamfunction
g gravitational acceleration
Gr Grashof number, Gr ¼ agc3DT=m2

hz; hh uniform grid spacing in z; h directions, respectively
N number of terms retained in Fourier series
M metric of transformation
M0 metric evaluated on the cylinder surface
k thermal conductivity
K � L computational grid
p iteration counter
Pr Prandtl number, Pr ¼ m=j
q; q̂ functions representing right-hand sides
Q constant heat flux
r ellipse aspect ratio, r ¼ b=a
rn; sn Fourier coefficients for the vorticity
s scaled coordinate, s ¼ M0z
t time
Dt time increment in the numerical scheme
T dimensional temperature
DT temperature scale, DT ¼ cQ=k
U velocity scale, U ¼ ðacgDTÞ1=2

vn;vh velocity components
x; y Cartesian coordinates
X;Y ; f functions used in separation of variables /0ðw; tÞ ¼

XðwÞYðtÞ;XðwÞ ¼ e�w2=2f ðwÞ

w scaled coordinate, w ¼
ffiffiffiffiffi
Pr
p

M0z
z boundary-layer coordinate
z1 outer boundary

Greek symbols
a thermal expansion coefficient
b computational parameter, b ¼ nk
� tolerance
j thermal diffusivity
m kinematic viscosity
l separation constant
q fluid density
n; h elliptic coordinates
n0 constant related to r, tanh n0 ¼ r
n1 outer boundary
g angle of inclination
k boundary-layer parameter, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t=

ffiffiffiffiffiffi
Gr
pq

/ dimensionless temperature, / ¼ ðT � T0Þ=ðDTÞ
w streamfunction
f vorticity
v generic flow variable

Subscripts
0 surface value or leading order terms
1 value at infinity

Superscript
� dimensional quantity
* scaled quantity
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used as the heating element. The gap between the heater and the
inner surface of the tube was filled with fine sand. The supplied
electrical power was measured using a digital watt meter and eight
thermocouples were fixed on the tube’s surface to measure the lo-
cal surface temperature. The surface heat flux of the tube was cal-
culated from the electrical power imparted to the heater and the
total surface area of the tube. In the experiments the measure-
ments were recorded after 3–4 h of heating when steady-state con-
ditions were achieved. Later we will make comparisons with these
experiments by running large-time numerical simulations.

Concerning previous analytical studies, one problem worth
mentioning is that of laminar free convection induced by a line
source which has been thoroughly reviewed and studied by
Liñán and Kurdyumov [27], and by Leal [28]. This refers to a well
known analytical solution for steady free convection from a line
source of constant heat flux and can be regarded as the asymptotic
solution at large distances since from far away the cylinder can be
treated as a line source. For large Gr the governing equations can be
simplified by making boundary-layer approximations and rescal-
ing the horizontal coordinate and velocity by a factor of Gr1=4. An
exact similarity solution was found by Yih [29] for Prandtl num-
bers Pr ¼ 2;5=9. The analytical solution constructed here can be
thought of as the opposite extreme case in that the line source
solution is valid for large t (i.e. steady state) and at large distances
while the solution to be presented in this work is valid for small t
and close to the cylinder. It is interesting to point out that both
solutions involve the scaling factor of Gr1=4.

What distinguishes this study from the others listed above are
the following contributions. First, we have formulated an analytical
solution procedure for finding an approximate solution to the
problem for small time, t, and large Grashof number, Gr. This is
accomplished by expanding the flow variables in a double expan-

sion involving two small parameters: t and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t=

ffiffiffiffiffiffi
Gr
pq

. As we

will see, k is a parameter that appears naturally in the problem.
This extends the analytical solution procedure used in [26] for
small Gr (involving a single expansion in t) to large Gr. One of
the first studies to adopt a double expansion procedure for an ellip-
tic geometry is that in [30] which was used to study two-dimen-
sional laminar viscous incompressible flows past elliptic
cylinders. This work successfully formalizes the procedure for
adaption to heat transfer problems. Second, a spectral-finite differ-
ence method for numerically integrating the full Navier–Stokes
and energy equations is outlined. The method works well in cap-
turing both the small time and large time solutions and works
for a wide range of Gr. Third, detailed small-time comparisons be-
tween the analytical and numerical solutions are presented, as well
as large-time comparisons between experiments and numerical
solutions.

The paper is organized as follows. We next present a mathemat-
ical formulation of the problem and introduce the governing equa-
tions and accompanying boundary and initial conditions along
with a convenient coordinate system for the elliptic geometry. In
Section 3, we use asymptotic theory to construct an approximate
analytical solution which is valid for small times and large Grashof
numbers. Section 4 is devoted to outlining a numerical solution
procedure to solve the full unsteady Navier–Stokes and energy
equations. Following this, in Section 5, we present, discuss and
contrast the analytical, numerical and experimental results. Lastly,
we include a brief summary of the key points in the concluding
section followed by an Appendix A which contains much of the
mathematical details related to the asymptotic solution.
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2. Mathematical formulation

The equations governing the motion and heat transfer process
of a viscous incompressible fluid are the Navier–Stokes and energy
equations. The fluid is characterized by the following properties:
the kinematic viscosity, m, the thermal diffusivity, j, the thermal
expansion coefficient, a, and the thermal conductivity, k. While
these fluid properties are assumed to remain constant, the fluid
density, q, is allowed to vary with temperature, T, in the usual
fashion

qðTÞ ¼ q0½1� aðT � T0Þ�;

where q0 refers to a reference density and T0 the corresponding
reference temperature. The flow configuration is illustrated in
Fig. 1. To render the equations in dimensionless form the chosen
length scale is the semi-focal length of the ellipse, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
,

with a; b denoting the semi-major and semi-minor axis lengths,
respectively, the time scale is c=U where U is the velocity scale,
soon to be specified, and the temperature scale, DT , is related to
the surface heat flux, Q, through DT ¼ cQ=k. The velocity scale is
taken to be U ¼ ðacgDTÞ1=2 where g is the acceleration due to
gravity.

Since the flow is assumed to remain two-dimensional it makes
sense to work in terms of a streamfunction and vorticity. Also, be-
cause of the geometry of the problem it is natural to introduce the
modified polar coordinates ðn; hÞ which are related to the Cartesian
coordinates ðx; yÞ through the conformal transformation

xþ iy ¼ cosh½ðnþ n0Þ þ ih�:

The advantage of this is that the contour of the cylinder is trans-
formed to n ¼ 0 while the infinite region exterior to the cylinder
is mapped to the semi-infinite rectangular strip 0 < n <1;
0 6 h 6 2p. As shown in Fig. 1, h is measured in the counterclock-
wise direction with respect to the positive x axis which corresponds
to h ¼ 0. The constant n0 is defined by

tanh n0 ¼ r;

where r ¼ b=a is the ellipse aspect ratio. The above mapping holds
for all elliptic cylinders having 0 < r < 1 with r ¼ 0 denoting a flat
plate and r ¼ 1 a circular cylinder. Another important feature asso-
ciated with this transformation is that length scales close to the
cylinder are unchanged while those far away get contracted. This
is helpful from a numerical point of view since the flow field is
compressed.

In terms of the coordinates ðn; hÞ the dimensionless laminar
unsteady Navier–Stokes and energy equations for a viscous, incom-
pressible fluid in terms of the streamfunction, w, vorticity, f, and
temperature, /, then become
Fig. 1. The flow configuration.
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where

M2 ¼ 1
2
½coshð2ðnþ n0ÞÞ � cosð2hÞ�;

A ¼ sinhðnþ n0Þ cosðgÞ cosðhÞ � coshðnþ n0Þ sinðgÞ sinðhÞ;
B ¼ coshðnþ n0Þ cosðgÞ sinðhÞ þ sinhðnþ n0Þ sinðgÞ cosðhÞ:

The velocity components ðvn;vhÞ in the directions of increase of
ðn; hÞ are related to the streamfunction through

vn ¼ �
1
M
@w
@h

; vh ¼
1
M
@w
@n

;

while the vorticity is found through the expression

f ¼ 1
M2

@

@n
ðMvhÞ �

@

@h
ðMvnÞ

� �
:

The dimensionless parameters appearing in the equations include:
the Grashof number, Gr ¼ agc3DT=m2, the inclination, g, the Prandtl
number, Pr ¼ m=j, and the ellipse aspect ratio, r. The dimensionless
temperature, /, is related to the dimensional temperature, T,
through / ¼ ðT � T0Þ=DT where T0 is taken to be the constant far-
field temperature. Similarly, w ¼ ~w=ðcUÞ and f ¼ c~f=U with the tilde
denoting a dimensional quantity. Lastly, in arriving at the above
equations we have made the Boussinesq approximation to account
for buoyancy and have omitted viscous dissipation.

We assume that at t ¼ 0 an impulsive heat flux is applied to the
cylinder surface and that both the cylinder surface and surround-
ing fluid have an initial temperature of T0. Eqs. (1)–(3) are to be
solved subject to the no-slip and constant heat flux conditions on
the surface given by

w ¼ @w
@n
¼ 0 and

1
M
@/
@n
¼ �1 on n ¼ 0: ð4Þ

Inspecting these conditions we observe that two conditions for the
streamfunction are given while none for the vorticity is provided.
Later we will discuss a method to prescribe the surface vorticity.
Dennis and Quartapelle [31] have shown that the vorticity field sat-
isfies integral constraints. These conditions can be derived from the
no-slip boundary conditions using Green’s second identity and are
given by

Z 1

0

Z 2p

0
e�nnM2f sinðnhÞdhdn ¼ 0; n ¼ 1;2; . . . ;

Z 1

0

Z 2p

0
e�nnM2f cosðnhÞdhdn ¼ 0; n ¼ 0;1; . . . ð5Þ

At large distances we impose

w; f;/! 0 as n!1; ð6Þ

which correspond to a quiescent far-field flow maintained at a con-
stant temperature. Lastly, we need to specify initial conditions.
Since the fluid initially has a uniform temperature and the motion
starts from rest, the initial conditions are simply

wðn; h; t ¼ 0Þ ¼ fðn; h; t ¼ 0Þ ¼ /ðn; h; t ¼ 0Þ ¼ 0: ð7Þ
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To better resolve the early stages of the flow and heat transfer pro-
cess following the impulsive startup at t ¼ 0, the boundary-layer
coordinate, z, defined by

z ¼ n
k

where k ¼
ffiffiffiffiffiffiffiffiffiffi
4tffiffiffiffiffiffi
Gr
p

s
; ð8Þ

is introduced. Essentially, this change of variable stretches the ther-
mal-boundary layer with k describing the diffusive growth of the
evolving boundary layer. Another advantage of working in terms
of the coordinate z is that the physical coordinate n becomes a mov-
ing coordinate; that is, lines of constant z expand in time when plot-
ted in a Cartesian coordinate system. This is ideal from a numerical
point of view, since the grid lines are alive and allowed to expand
with the growing boundary layer to ensure adequate resolution
during the early stages. In terms of the coordinate z, Eqs. (1)–(3)
get transformed to
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while conditions (4)–(7) become

w ¼ @w
@z
¼ 0 and

1
M
@/
@z
¼ �k on z ¼ 0; ð12Þ

Z 1

0

Z 2p

0
e�nkzM2f sinðnhÞdhdz ¼ 0; n ¼ 1;2; . . . ;

Z 1

0

Z 2p

0
e�nkzM2f cosðnhÞdhdz ¼ 0; n ¼ 0;1; . . . ; ð13Þ

w; f;/! 0 as z!1; ð14Þ
wðz; h; t ¼ 0Þ ¼ fðz; h; t ¼ 0Þ ¼ /ðz; h; t ¼ 0Þ ¼ 0: ð15Þ

As a final note we emphasize that although the boundary-layer
coordinate z is utilized, the fully nonlinear Navier–Stokes and en-
ergy equations are to be solved and not the simplified thermal-
boundary layer equations. We next outline how to construct an
approximate analytical solution to the system of Eqs. (9)–(11).
3. Analytical solution procedure

While there are several analytical techniques available for
deriving an approximate solution for the early development of
the flow and heat transfer process, the approach adopted here is
the multiple series expansion method. The key advantage offered
by this method is that it provides a systematic procedure which re-
duces the problem to a set of linear ordinary differential equations
having a specific form. In addition, a multiple series expansion is
actually suggested by the physics of the problem. This can be seen
by examining Eqs. (1)–(3) and making the usual boundary-layer
type approximations which leads to the simplified set of equations
for the leading order terms ŵ; f̂ and /̂
@2ŵ

@n2 ¼ M2
0f̂; ð16Þ

@f̂
@t
¼ 1

M2
0

1ffiffiffiffiffiffi
Gr
p @2f̂

@n2 þ A0
@/̂
@n

 !
; ð17Þ

@/̂
@t
¼ 1

M2
0Pr

ffiffiffiffiffiffi
Gr
p @2/̂

@n2 ; ð18Þ

where M2
0ðhÞ ¼ M2ðn ¼ 0; hÞ and A0ðhÞ ¼ Aðn ¼ 0; hÞ.

Eqs. (16)–(18) can be thought of as the conduction equations
since they exploit the fact that for very small times the fluid can
be taken to be at rest and conduction in the radial direction is
the heat transfer mechanism responsible for establishing a temper-
ature gradient which in turn induces motion through the resulting
buoyancy force. The solution to this system of coupled linear par-
tial differential equations can be found by first solving the energy
Eq. (18). The solution satisfying the boundary conditions (4) and
(6) is found to be

/̂ðn; h; tÞ ¼

ffiffiffiffiffiffiffiffiffiffi
4tffiffiffiffiffiffi
Gr
p

s
1ffiffiffiffiffiffiffiffi
pPr
p exp �M2

0Prn2

4tffiffiffiffi
Gr
p

 !
� M0nffiffiffiffiffiffi

4tffiffiffiffi
Gr
p

q erfc

ffiffiffiffiffi
Pr
p

M0nffiffiffiffiffiffi
4tffiffiffiffi
Gr
p

q
0
B@

1
CA

2
64

3
75;

ð19Þ

where

erfðxÞ ¼ 2ffiffiffiffi
p
p

Z x

0
e�u2

du;

is the error function and erfcðxÞ ¼ 1� erfðxÞ is the complimentary
error function. Expressed this way we see that the solution natu-
rally involves the similarity variable z ¼ n=k and the parameter

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t=

ffiffiffiffiffiffi
Gr
pq

. This supports using Eqs. (9)–(11) to dictate the early

stages of the problem. The solutions for ŵ and f̂ can then be ob-
tained by substituting (19) into (17), although these details will
not be presented. As shown in Appendix A, the solution given by
Eq. (19) represents the first non-zero term in the expansion for
the temperature.

We now formally discuss the multiple series expansion method.
The procedure involves expanding the flow variables in powers of
the parameter k which will be small if t is small or if Gr is large. It
turns out that if this is done the resulting equations are still too
complicated to solve analytically. If t is taken to be small and Gr
is taken to be large then we can identify two small parameters
appearing in the problem, k and t, and it is then possible to expand
the flow variables in a double series as follows. First, we expand
/; f and w in a series of the form

/ ¼ /0 þ k/1 þ k2/2 þ � � � ;
f ¼ f0 þ kf1 þ k2f2 þ � � � ;
w ¼ w0 þ kw1 þ k2w2 þ � � � :

Then each /n; fn;wn;n ¼ 0;1;2; . . . ; are further expanded in a series
of the form

/nðz; h; tÞ ¼ /n0ðz; hÞ þ t/n1ðz; hÞ þ � � � ;
fnðz; h; tÞ ¼ fn0ðz; hÞ þ tfn1ðz; hÞ þ � � � ;
wnðz; h; tÞ ¼ wn0ðz; hÞ þ twn1ðz; hÞ þ � � � :

We note that when performing a double expansion the internal
orders of magnitudes between the expansion parameters should
be taken into account. In our case, k and t will be equal when
t ¼ 4=

ffiffiffiffiffiffi
Gr
p

, and thus, for a fixed value of Gr the procedure is
expected to be valid for times that are of order 1=

ffiffiffiffiffiffi
Gr
p

provided that
Gr is sufficiently large. Fortunately, asymptotic expansions are
known to have the redeeming feature that they often provide good
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results outside the domain of validity. This will be discussed in
more detail when we make comparisons with numerical solutions.

Since the governing equations also involve the functions M2;A
and B, it will be necessary to expand these functions as well. Doing
this yields:

M2 ¼ M2
0ðhÞ þ sinhð2n0Þkzþ coshð2n0Þk2z2 þ � � � ;

Aðz; hÞ ¼ A0ðhÞ þ A1ðhÞkzþ A0ðhÞ
2

k2z2 þ � � � ;

Bðz; hÞ ¼ B0ðhÞ þ B1ðhÞkzþ B0ðhÞ
2

k2z2 þ � � � ;

where

M2
0 ¼

1
2

coshð2n0Þ � cosð2hÞ½ �;

A0ðhÞ ¼ sinhðn0Þ cosðgÞ cosðhÞ � coshðn0Þ sinðgÞ sinðhÞ;
A1ðhÞ ¼ coshðn0Þ cosðgÞ cosðhÞ � sinhðn0Þ sinðgÞ sinðhÞ;
B0ðhÞ ¼ coshðn0Þ cosðgÞ sinðhÞ þ sinhðn0Þ sinðgÞ cosðhÞ;
B1ðhÞ ¼ sinhðn0Þ cosðgÞ sinðhÞ þ coshðn0Þ sinðgÞ cosðhÞ:

Substituting the above series into Eqs. (9)–(11) produces a hierar-
chy of problems at various orders. At each order the solution strat-
egy is similar to that in solving Eqs. (16)–(18); that is, we first solve
for the temperature and then use it to obtain the vorticity and final-
ly we solve for the streamfunction using the determined vorticity.

Applying this procedure we have derived the following approx-
imate solutions:

/ ¼ k/10 þ k2/20 þ Oðk2t2 þ k3Þ;
f ¼ tf01 þ Oðt2 þ ktÞ;
w ¼ k2tw21 þ Oðk3Þ:

The expressions for the various terms listed along with the mathe-
matical details can be found in Appendix A. Before comparing the
above constructed approximate analytical solutions with fully
numerical solutions, we first present the numerical solution proce-
dure in the following section.

4. Numerical solution procedure

As previously mentioned the early stages of the flow are to be
computed using Eqs. (9)–(11) involving the boundary-layer coordi-
nate z. Once the boundary layer thickens appreciably one can
switch back to the original coordinate n and solve Eqs. (1)–(3). A
convenient time to make the switch is when t ¼

ffiffiffiffiffiffi
Gr
p

=4 since at
this time k ¼ 1 and hence n ¼ z. However, for large Gr it is more
practical to work entirely in the boundary-layer coordinate z. We
will first outline the procedure for solving Eqs. (9)–(11) since these
are the equations dictating the initial stages.

We begin by discretizing the computational domain bounded
by 0 6 z 6 z1 and 0 6 h 6 2p into a uniform network of K � L grid
points located at

zi ¼ ihz; i ¼ 0;1; . . . ;K; where hz ¼
z1
K
;

and hj ¼ jhh; j ¼ 0;1; . . . ; L; where hh ¼
2p
L
;

with z1 denoting the outer boundary approximating infinity.
The streamfunction is solved by expanding it into the truncated

Fourier series

wðz; h; tÞ ¼ 1
2

F0ðz; tÞ þ
XN

n¼1

½Fnðz; tÞ cosðnhÞ þ fnðz; tÞ sinðnhÞ�;

where the Fourier coefficients satisfy
@2Fn

@z2 � n2k2Fn ¼ k2snðz; tÞ; n ¼ 0;1; . . . ; ð20Þ

@2fn

@z2 � n2k2fn ¼ k2rnðz; tÞ; n ¼ 1; . . . ; ð21Þ

with

snðz; tÞ ¼
1
p

Z 2p

0
M2f cosðnhÞdh and rnðz; tÞ ¼

1
p

Z 2p

0
M2f sinðnhÞdh:

Boundary conditions for the Fourier components can easily be
determined from those for the streamfunction. Further conditions
satisfied by the functions rnðz; tÞ and snðz; tÞ follow from the integral
conditions and are given byZ 1

0
e�nkzsnðz; tÞdz ¼ 0; n ¼ 0;1;2; . . .

and
Z 1

0
e�nkzrnðz; tÞdz ¼ 0; n ¼ 1;2; . . .

The above play an important role in determining the surface vortic-
ity as we shall shortly see.

Eqs. (20) and (21) at a fixed time are of the form

h00ðzÞ � b2hðzÞ ¼ gðzÞ;

where b ¼ nk and the prime refers to differentiation with respect to
z. These ordinary differential equations can be integrated using
step-by-step formulae. The important point to note here is that
the particular marching algorithm to be used is dependent on the
parameter b. Two sets of step-by-step methods were utilized: one
for b < 0:5 while another one for b P 0:5. The specific schemes used
can be found in [30].

To discuss the numerical method used to solve Eqs. (10) and
(11) we begin by rewriting them in the generic form

t
@v
@t
¼ qðz; h; tÞ:

The scheme used to discretize this equation is very similar to the
Crank–Nicholson implicit procedure. Assuming the solution at time
t is known, we advance the solution to time t þ Dt by integrating
the above. Integration by parts yields

vsjtþDt
t �

Z tþDt

t
vds ¼

Z tþDt

t
qds;

where Dt is the time increment. Approximating the integrals using
the trapezoidal rule results in the expression

vðz; h; t þ DtÞ ¼ vðz; h; tÞ þ Dt
2t þ Dt

� �
½qðz; h; t þ DtÞ þ qðz; h; tÞ�:

Since qðz; h; t þ DtÞ depends on vðz; h; t þ DtÞ and its spatial deriva-
tives the scheme is implicit. This equation is solved iteratively using
a Gauss–Seidel procedure. All spatial derivatives appearing in the
function q are approximated using central-differences; thus the
scheme given is second order accurate in both space and time.

The boundary conditions used in solving the energy equation
are straight-forward and require no explanation. For the vorticity
transport equation, on the other hand, careful attention must be
given to determine the surface vorticity. The surface vorticity can
be determined by inverting the expressions for rn and sn and leads
to the truncated Fourier series

fð0; h; tÞ ¼ 1
M2

0

1
2

s0ð0; tÞ þ
XN

n¼1

½rnð0; tÞ sinðnhÞ þ snð0; tÞ cosðnhÞ�
( )

;

where M2
0 ¼ M2ðz ¼ 0; hÞ. The quantities snð0; tÞ and rnð0; tÞ are com-

puted by enforcing the integral conditions; that is, off the cylinder
surface rn and sn can be computed using the most recent guess for
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f. Then, snð0; tÞ and rnð0; tÞ are computed by numerically satisfying
the integral constraints.

The numerical method used for solving Eqs. (1)–(3) is very sim-
ilar to the procedure described above. We will focus on the solu-
tion of Eqs. (2) and (3) since the method used to solve Eq. (1) is
identical to that used in solving (9). The only difference worth
pointing out is that for t >

ffiffiffiffiffiffi
Gr
p

=4 Eqs. (2) and (3) can be rewritten
in the generic form

@v
@t
¼ q̂ðn; h; tÞ:

Using the same differencing strategy as previously outlined we ar-
rive at the following scheme for solving the above transport
equation

vðn; h; t þ DtÞ ¼ vðn; h; tÞ þ Dt
2
½q̂ðn; h; t þ DtÞ þ q̂ðn; h; tÞ�:

We summarize the numerical method by listing the steps in-
volved in the procedure. Assuming all quantities are known at time
t and wish to advance the solution to time t þ Dt, we perform the
following steps (p denotes the iteration counter):

1. Solve for /ðpÞðz; h; t þ DtÞ,
2. Solve for fðpÞðz; h; t þ DtÞ everywhere except on the cylinder sur-

face (z ¼ 0),
3. Compute rðpÞn ðz; t þ DtÞ, sðpÞn ðz; t þ DtÞ for z – 0,
4. Calculate rðpÞn ð0; t þ DtÞ, sðpÞn ð0; t þ DtÞ by enforcing the integral

conditions and hence compute fðpÞð0; h; t þ DtÞ,
5. Solve for f ðpÞn ðz; t þ DtÞ, FðpÞn ðz; t þ DtÞ and thus obtain wðpÞðz; h;

t þ DtÞ, and
6. Repeat above steps till convergence is reached and increment p

by 1 after each complete iteration.

Step (4) indicates how the integral conditions are used in deter-
mining the surface vorticity. It may also be necessary to subject the
surface vorticity to under-relaxation in order to obtain conver-
gence. Convergence is reached when the difference between two
successive iterates of the surface vorticity falls below some speci-
fied tolerance �.
0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
ve

ra
ge

 S
ur

fa
ce

 T
em

pe
ra

tu
re

Fig. 2. The time variation of the average surface temperatu
Numerical results together with comparisons with the analyti-
cal solution and experimental data will next be presented.
5. Results, comparisons and discussion

The problem of free convection from an inclined elliptic cylin-
der is completely characterized by the parameters Gr; Pr;g and r.
After performing numerous numerical experiments, the following
computational parameters were chosen: N ¼ 25; � ¼ 10�6; z1 ¼
10. A typical grid size used was K � L ¼ 200� 120. Because of
the impulsive start, very small time steps of Dt ¼ 10�4 were used
initially to get past the singularity at t ¼ 0. As time increased the
time step was gradually increased to Dt ¼ 0:05. Results were ob-
tained for parameter values in the following ranges: r ¼
0:2—0:8;g ¼ 0—90

�
and Gr ¼ 102—107. For most of the simulations

the Prandtl number was fixed at Pr ¼ 0:7 which corresponds to air.
We begin by making comparisons between the analytical and

numerical results which will focus on the surface temperature
and vorticity. The time variation of the average surface tempera-
ture for the case Gr ¼ 106; r ¼ 0:5 and g ¼ 45

�
is contrasted in

Fig. 2. It is interesting to point out that for Gr ¼ 106 the analytical
solution is expected to be valid for times up to about
t � 4=

ffiffiffiffiffiffi
Gr
p

¼ 0:004. However, as the plot reveals the agreement is
good for much larger times and it worsens as time increases, which
is to be expected.

We next compare the surface temperature distribution at vari-
ous times for the case Gr ¼ 104; r ¼ 0:5 and g ¼ 45� in Fig. 3. It is
clear that the agreement is better over the flatter sections than
near the tips of the ellipse, located at h ¼ 0 and h ¼ 180�. We also
observe that the temperature profiles are symmetric with temper-
ature drops occurring near the tips due to curvature effects. Since a
constant heat flux is applied on the cylinder surface, the energy
transferred to each section is the same and thus the temperature
decreases more over sections having larger curvature than those
having smaller curvature. The agreement in the surface tempera-
ture distribution is not as good as that with the average surface
temperature. The averaging process has the effect of hiding the
larger errors occurring at the tips. Fig. 3 also illustrates how the
agreement persists for times outside the expected region of
5 6 7 8 9 10
t

Numerical
Analytical

re for the case Gr ¼ 106; Pr ¼ 0:7; r ¼ 0:5 and g ¼ 45� .
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Fig. 3. Surface temperature distributions for the case Gr ¼ 104; Pr ¼ 0:7; r ¼ 0:5 and g ¼ 45� at times t ¼ 0:05; 0:1; 0:2.
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validity 0 < t < 4=
ffiffiffiffiffiffi
Gr
p

. For larger Gr this agreement persists for
even larger times as shown in Fig. 4.

Shown in Fig. 5 are the surface vorticity distributions at times
t ¼ 0:05 and 0.1 for the case Gr ¼ 104; r ¼ 0:5 and g ¼ 45�. The
agreement between the numerical and analytical solutions is not
as good for the vorticity because fewer terms were retained in that
series. In fact, the agreement does not change much even if Gr is
increased to Gr ¼ 106 because the leading-order, and hence domi-
nant, term in the vorticity expansion does not depend on Gr. The
surface vorticity distributions, which resemble negative sine
curves, become zero at h � 25� and h � 200� and is positive (or ro-
tates counterclockwise) in the ranges 0 6 hK 25� and
200�K hK 360� and negative (or rotates clockwise) between
25�K hK 200�. This makes physical sense since the directions of
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Fig. 4. Surface temperature distributions for the case Gr ¼
rotation suggest the paths that buoyant fluid elements near the
surface will follow before ultimately rising vertically. It is worth
making some connections between the results obtained here and
those reported in [32] for the case of a cylinder having a constant
surface temperature at small Grashof numbers for small times.
Both problems involve an abrupt startup resulting from an initial
discontinuity. In [32] the initial discontinuity is in temperature
while here it is in the heat flux. The difference in the nature of
these discontinuities arise from the different boundary conditions
applied. Both discontinuities, however, lead to the same result
which is to heat the fluid adjacent to the surface by conduction
thus causing the heated fluid to rise. While quantitative compari-
sons in surface vorticity distributions cannot be made, qualitative
comparisons can be drawn. Apart from a scaling, the surface
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θ

Numerical
Analytical

=1

=0.5

106; Pr ¼ 0:7; r ¼ 0:5 and g ¼ 45� at times t ¼ 0:5;1.
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Fig. 5. Surface vorticity distributions for the case Gr ¼ 104; Pr ¼ 0:7; r ¼ 0:5 and g ¼ 45� at times t ¼ 0:05;0:1.
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vorticity distributions obtained here are very similar to those ob-
tained in [32]. This is quite interesting given that the equations
used in the two studies are significantly different due to the differ-
ent scalings adopted. The difference in the scaling of the vorticity
distributions is a result of the different ranges in Grashof numbers
considered; [32] focused on small Gr while this study focuses on
large Gr.

The level of agreement will also depend on the parameters r and
g. We expect the agreement to improve as r increases (approaching
a circular geometry), and when g ¼ 0� or 90� (i.e. minor or major
axis is aligned with gravity, respectively). Fig. 6, confirms this pre-
diction for the case g ¼ 90� and r ¼ 0:8. Similar agreement was
found when g ¼ 0. Notice that the temperature distribution is al-
most uniform as one would expect to get for a circular cylinder
since it has constant curvature. On the other hand, we expect the
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Fig. 6. Surface temperature distributions for the case Gr ¼ 10
agreement to worsen when r decreases and when g – 0;90� (i.e.
the cylinder configuration is not aligned with gravity). This is also
confirmed in Fig. 7 for the case r ¼ 0:3 and g ¼ 45�. Note that the
temperature distribution gets flatter as r decreases with larger
temperature changes near the tips. Recall that the mapping used
is valid for 0 < r < 1. We have observed that the analytical solution
gives physical results for the range 0:25 K r K 0:85. Outside this
interval the analytical solution breaks down; that is, there is a tem-
perature increment near the tips instead of a decrement.

Having established the small-time behavior, we next discuss
isotherm plots obtained by our numerical simulations for moder-
ate to large times. Shown in Figs. 8 and 9 are isotherm plots at
times t ¼ 2:5;100, respectively, for the case Gr ¼ 102; r ¼ 0:5 and
g ¼ 45�. In all isotherm plots to be presented the outermost con-
tour corresponds to / ¼ 0:05 and the spacing between consecutive
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4; Pr ¼ 0:7; r ¼ 0:8 and g ¼ 90� at times t ¼ 0:05;0:1;0:2.
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Fig. 7. Surface temperature distributions for the case Gr ¼ 104; Pr ¼ 0:7; r ¼ 0:3 and g ¼ 45� at times t ¼ 0:05;0:2.
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contours is D/ ¼ 0:05. For this case Eqs. (9)–(11) in the boundary-
layer coordinate z were integrated up to t ¼ 2:5 (i.e. k ¼ 1) after
which Eqs. (1)–(3) and were solved. The isotherms portrayed in
Fig. 8 appear to form concentric rings. For small to moderate times
this is to be expected as this corresponds to the conduction regime.
For large times, as depicted in Fig. 9, a well developed thermal
plume forms. In Fig. 10 the Grashof number is increased to
Gr ¼ 104. For this larger Grashof number computations were car-
ried out entirely in the boundary-layer coordinate. Witnessed in
the isotherm plot displayed in Fig. 10 at t ¼ 20 is the formation
of a well defined plume. For large Gr the plume develops much
sooner due to the enhanced buoyancy force. Lastly, surface tem-
perature and vorticity distributions are plotted in Figs. 11 and 12,
respectively, at various times again for Gr ¼ 104. As time advances
both distributions seem to be approaching a steady profile and
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Fig. 8. Isotherm plot at t ¼ 2:5 for the case
reveal a prominent maximum evolving in the vicinity of one of
the tips of the cylinder.

Our simulations suggest that the average surface temperature
appears to approach a steady-state value, /s, as time advances. This
provides an opportunity to make connections with the steady-state
experiments performed by Elsayed, Ibrahim and Elsayed [20]. The
parameters used in their experiments are: Pr ¼ 0:7; r ¼ 0:556 and
g ¼ 90�. The Grashof number varied according to the heat flux pre-
scribed and are listed in Table 1. From their five discrete data
points for the surface temperature (i.e. ðTs � T0Þ in Fig. 2 of Ref.
[20]) /s was estimated using
/s �
1

5DT

X5

i¼1

ðTs � T0Þi; where DT ¼ cQ
k
:

1 2 3

Gr ¼ 102; Pr ¼ 0:7; r ¼ 0:5 and g ¼ 45� .
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Table 1 compares the experimental values of /s with our corre-
sponding computed values for the heat fluxes applied in their
experiments. We see that the agreement worsens as the heat flux
increases. This should come as no surprise since our laminar Bous-
sinesq fluid model will eventually breakdown when the flow be-
comes turbulent. Also, as the heat flux increases so will the
resulting temperature difference between the surface and ambient
surroundings, ðTs � T0Þ, and our linear equation of state will no
longer be realistic.

The dependence of /s on the parameters Gr and Pr for the lim-
iting cases Gr 	 1; Pr 	 1 and Gr 	 1; Pr 
 1 can be established
from scaling arguments as follows. In the thermal-boundary layer
the dominant terms in the steady-state versions of Eqs. (1)–(3) are

@2w

@n2 ¼ M2
0f; ð22Þ

@w
@h

@f
@n
� @w
@n

@f
@h
þ 1ffiffiffiffiffiffi

Gr
p @2f

@n2 þ A0
@/
@n
¼ 0; ð23Þ
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Fig. 10. Isotherm plot at t ¼ 20 for the case
@w
@h

@/
@n
� @w
@n

@/
@h
þ 1ffiffiffiffiffiffi

Gr
p

Pr

@2/

@n2 ¼ 0: ð24Þ

We first rescale these equations for large Gr using

n� ¼ Gr1=4n; /� ¼ Gr1=4/; w� ¼ Gr1=4w; f� ¼ f

Gr1=4 :

The factor of Gr1=4 follows from the analytical solution given by (19)
and is also suggested in [28]. Also note that there is no scaling in h.
This transforms Eqs. (22)–(24) to the following

@2w�

@n�2
¼ M2

0f
�; ð25Þ

@w�

@h
@f�

@n�
� @w

�

@n�
@f�

@h
þ @

2f�

@n�2
þ A0

Gr1=4

@/�

@n�
¼ 0; ð26Þ

@w�

@h
@/�

@n�
� @w

�

@n�
@/�

@h
þ 1

Pr
@2/�

@n�2
¼ 0: ð27Þ
1 2 3 4 5

Gr ¼ 104; Pr ¼ 0:7; r ¼ 0:5 and g ¼ 45� .
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Fig. 11. Surface temperature distributions at various times for the case Gr ¼ 104; Pr ¼ 0:7; r ¼ 0:5 and g ¼ 45� .

Table 1
Comparison of /s values between the experiments in [20] and our numerical
simulations for the case with Pr ¼ 0:7; r ¼ 0:556 and g ¼ 90� .

Heat flux

½W=m2�
Grashof
number

Experimental Numerical Relative
error

Q Gr /s /s %

54 6:7� 105 0.18 0.15 17

356 4:4� 106 0.12 0.10 17

410 5:1� 106 0.14 0.11 21

600 7:5� 106 0.12 0.093 23

1200 1:5� 107 0.11 0.080 27

1620 2:0� 107 0.090 0.067 26
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At this point one may be tempted to discard the buoyancy term in
Eq. (26) owing to the factor of Gr�1=4. However, this term must be
retained since buoyancy is the driving force and omitting it will lead
to a contradiction in the analysis. We next apply similar scalings to
Eqs. (25)–(27) in terms of Pr:

n�� ¼ Pr2=5n�; /�� ¼ Pr2=5/�; w�� ¼ Pr3=5w�; f�� ¼ f�

Pr1=5 ;

for the case Pr 
 1, while

n�� ¼ Pr1=5n�; /�� ¼ Pr1=5/�; w�� ¼ Pr4=5w�; f�� ¼ Pr2=5f�;

for the case Pr 	 1, to obtain the relationships

/s / ðPrÞ�2=5ðGrÞ�1=4
;
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Fig. 12. Surface vorticity distributions at various times for the case Gr ¼ 104; Pr ¼ 0:7; r ¼ 0:5 and g ¼ 45� .
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for Gr 	 1, Pr 
 1 and

/s / ðPrÞ�1=5ðGrÞ�1=4
;

for Gr 	 1, Pr 	 1. Key points worth mentioning in order to arrive
at these results are twofold. First, the temperature gradient @/�=@n�

in Eqs. (26) and (27) must be O(1) because of the constant heat flux
condition (4). Second, Eq. (26) represents a three-way balance be-
tween inertia, viscosity and buoyancy and for the limiting case
Gr 	 1; Pr 	 1 the balance will be between buoyancy and viscosity
whereas for the other limiting case Gr 	 1; Pr 
 1 the balance will
be between buoyancy and inertia. Because of numerical difficulties
in obtaining solutions for large and small Pr, we were not able to
confirm these predictions. However, for Pr � Oð1Þ in the range
0:35 6 Pr 6 2:8 and for 102

6 Gr 6 106 our simulations suggest that
the following empirical relationship

/s �
3

ðPrGrÞ1=4 ;

holds reasonably well for an ellipse having r ¼ 0:5 inclined at
g ¼ 45�. Fig. 13 illustrates some of these time variations of the aver-
age surface temperature for selected values of Gr and Pr.

6. Summary

This paper discussed the unsteady problem of free convection
from an inclined elliptic cylinder emitting a constant surface heat
flux into an otherwise quiescent viscous incompressible fluid.
Some underlying assumptions made in this study include two-
dimensionality of the flow, the validity of the Boussinesq approxi-
mation, the neglect of viscous dissipation, and that the flow re-
mains laminar. This problem was investigated for the large
Grashof number regime both numerically and analytically.

The key contributions offered by this work include a mathemat-
ical formulation which is well-suited to address the initial develop-
ment of the flow and heat transfer process, an analytical solution
procedure which is successful in capturing the early stages of the
problem, and a robust numerical solution procedure tailored for
impulsively generated flows over a wide range of Gr. Direct com-
parisons with experiments for large-time numerical simulations
as well as extensive comparisons between the numerical and ana-
lytical solutions for small times were conducted and the agreement
in all cases was found to be satisfactory. The large-time simula-
tions have suggested that the average surface temperature appears
to approach a steady-state value which can be represented approx-
imately by the relationship

/s �
3

ðPrGrÞ1=4 ;

over the intervals 102
6 Gr 6 106 and 0:35 6 Pr 6 2:8 for r ¼ 0:5

and g ¼ 45�. Further, scaling arguments suggest that for
Gr 	 1; Pr 
 1

/s / ðPrÞ�2=5ðGrÞ�1=4
;

while for Gr 	 1, Pr 	 1

/s / ðPrÞ�1=5ðGrÞ�1=4
:

While the analytical solution derived in this study may have
limited usefulness, it is still important given that the exact solution
is still unknown. One important application it may serve is to fur-
nish an initial condition which can be used in conjunction with a
numerical solution procedure. As mentioned earlier, numerical
solutions involving impulsive startups require very small time
steps to get past the initial singularity. Using an analytical solution
as an initial condition at a small time beyond the singularity at
t ¼ 0 can assist a numerical procedure and make it run more
efficiently.
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Appendix A. Asymptotic solution

The details surrounding the double expansion procedure out-
lined in Section 3 are presented below. The leading-order term
for the temperature, /0, satisfies the equation
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1
PrM2

0

@2/0

@z2 þ 2z
@/0

@z
¼ 4t

@/0

@t
: ðA1Þ

If we introduce a new coordinate w ¼
ffiffiffiffiffi
Pr
p

M0z then the equation
simplifies further to

@2/0

@w2 þ 2w
@/0

@w
¼ 4t

@/0

@t
:

The most direct way to solve the above is by separation of variables
where we set /0ðw; tÞ ¼ XðwÞYðtÞ. A straight-forward calculation re-
veals that

YðtÞ � tl=4; XðwÞ � e�w2=2f ðwÞ;

where l is the separation constant and the function f ðwÞ satisfies

d2f

dw2 � ð1þ lþw2Þf ¼ 0;

whose solutions involve the Parabolic Cylinder Functions. By resort-
ing to properties of the Parabolic Cylinder Functions [33] it follows
that the only solution satisfying the conditions

@/0

@w
¼ 0 on w ¼ 0 and /0 ! 0 as w!1;

is the trivial solution /0 ¼ 0.
The first non-zero term in the temperature expansion corre-

sponds to /1 and satisfies the equation

1
PrM2

0

@2/1

@z2 þ 2z
@/1

@z
� 2/1 ¼ 4t

@/1

@t
: ðA2Þ

Separation of variables is not helpful in solving (A2) since the initial
condition is not known for /n;n – 0. Instead, we carry out a second
expansion in t in order to make analytical progress. In terms of the
coordinate w the equations that result are effectively differential
equations and are given by

d2/10

dw2 þ 2w
d/10

dw
� 2/10 ¼ 0; ðA3Þ

d2/1n

dw2 þ 2w
d/1n

dw
� ð2þ 4nÞ/1n ¼ 0; ðA4Þ

for n ¼ 1;2;3; . . . These equations must be solved subject to the
boundary conditions

d/10

dw
¼ � 1ffiffiffiffiffi

Pr
p ;

d/1n

dw
¼ 0 on w ¼ 0;

which follow from the flux condition (12), and the far-field
conditions

/10;/1n ! 0 as w!1:

Solving (A3) and (A4) yields

/10ðwÞ ¼
1ffiffiffiffi

p
p ffiffiffiffiffi

Pr
p e�w2 � wffiffiffiffiffi

Pr
p erfcðwÞ and /1nðwÞ

¼ 0 for n ¼ 1;2;3; . . .

Thus, we arrive at /1ðt;wÞ ¼ /10ðwÞ and the first-order approxima-
tion to the temperature becomes / � k/1 which is in complete
agreement with the solution given by (19).

Continuing this procedure we have found that

/20ðw; hÞ ¼
sinhð2n0Þ

8PrM3
0

erfðwÞ w2 þ 1
2

� �
�we�w2ffiffiffiffi

p
p

" #
and

/2nðw; hÞ ¼ 0 for n ¼ 1;3;4; . . . ;

while /22ðw; hÞ was not determined. Hence, we can conclude that
/2ðt;w; hÞ ¼ /20 þ Oðt2Þ. As expected, the procedure gets more and
more complicated as more terms are sought and higher-order terms
must be determined numerically. Given that a numerical solution
procedure for solving the full system of Eqs. (1)–(3) and (9)–(11)
is the focus of Section 4, there is no benefit in pursuing higher-order
terms. Summarizing, the approximate analytical solution for the
temperature is given by

/ðt;w; hÞ ¼ k/10 þ k2/20 þ Oðk2t2 þ k3Þ:

We next solve for the leading-order term in the vorticity expan-
sion. If we introduce another coordinate s ¼ M0z, then the leading-
order term, f0, satisfies the equation

@2f0

@s2 þ 2s
@f0

@s
¼ 4t

@f0

@t
� 4tA0

@/1

@s
: ðA5Þ

Further expanding in t, the problem reduces to solving the following
differential equations

d2f00

ds2 þ 2s
df00

ds
¼ 0;

d2f01

ds2 þ 2s
df01

ds
� 4f01 ¼ �4A0

d/10

ds
;

d2f0n

ds2 þ 2s
df0n

ds
� 4nf0n ¼ 0;

for n ¼ 2;3;4; . . . ; subject to the far-field conditions

f0n ! 0 as s!1 for n ¼ 0;1;2; . . . ;

along with the integral conditionsZ 1

0

Z 2p

0
M0f0n sinðn0hÞdhds ¼ 0;

Z 1

0

Z 2p

0
M0f0n cosðn0hÞdhds ¼ 0;

for n; n0 ¼ 0;1;2; . . . It immediately follows from the initial condi-
tion (15) that f00ðs; hÞ ¼ 0 while the general solution for f01 for
Pr ¼ 1 becomes

f01ðs; hÞ ¼ D1ðhÞ se�s2 �
ffiffiffiffi
p
p

s2 þ 1
2

� �
erfcðsÞ

� �

þ A0ðhÞ s2 � 1
2

� �
erfcðsÞ � s e�s2ffiffiffiffi

p
p

" #
;

whereas for Pr – 1 we obtain

f01ðs; hÞ ¼ D2ðhÞ se�s2 �
ffiffiffiffi
p
p

s2 þ 1
2

� �
erfcðsÞ

� �

� 2A0ðhÞ
1

ð1� PrÞ s2 þ 1
2

� �
erfcð

ffiffiffiffiffi
Pr
p

sÞ
� �

þ 2A0ðhÞ s2erfcð
ffiffiffiffiffi
Pr
p

sÞ þ
ffiffiffiffiffi
Pr
p

ffiffiffiffi
p
p
ð1� PrÞ

se�Prs2

" #
:

In the above D1ðhÞ and D2ðhÞ represent Fourier series that emerge
from enforcing the integral conditions above, and were computed
numerically. Further, we have shown that f0nðs; hÞ ¼ 0 for
n ¼ 2;3;4; . . ., and that f10ðs; hÞ ¼ 0. Summarizing, we obtain
f0ðt; s; hÞ ¼ tf01 and the approximate analytical solution for the vor-
ticity is

fðt; s; hÞ ¼ tf01 þ Oðt2 þ ktÞ:

Lastly, we solve for the streamfunction. Due to the no-slip and
impermeable boundary conditions on the surface given by (12),
it is easily shown that the first two terms in the series for the
streamfunction are simply w0 ¼ w1 ¼ 0. The non-zero leading-or-
der problem then corresponds to solving

@2w2

@z2 ¼ M2
0tf0: ðA6Þ
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Making use of the double expansion and s ¼ M0z, the problem re-
duces to solving the following differential equations

d2w21

ds2 ¼ f01 and
d2w2n

ds2 ¼ 0 for n ¼ 0;2;3; . . .

Solving these equations subject to the no-slip and impermeable
conditions, we find that w2nðs; hÞ ¼ 0 for n ¼ 0;2;3; . . . ; while for
Pr ¼ 1

w21ðs; hÞ ¼
ffiffiffiffi
p
p

16
D1ðhÞ þ

3A0ðhÞffiffiffiffi
p
p

� �
erfðsÞ

�
ffiffiffiffi
p
p

12
D1ðhÞerfcðsÞ � A0ðhÞffiffiffiffi

p
p erfcðsÞ

� �
s4

þ 1
12

D1ðhÞ �
A0ðhÞffiffiffiffi

p
p

� �
s3e�s2 þ 1

24
5D1ðhÞ þ

7A0ðhÞffiffiffiffi
p
p

� �
se�s2

�
ffiffiffiffi
p
p

4
D1ðhÞ þ

A0ðhÞffiffiffiffi
p
p

� �
s2erfcðsÞ � 1

3
D1ðhÞ þ

2A0ðhÞffiffiffiffi
p
p

� �
s;

and for Pr – 1

w21ðs; hÞ ¼
1

16
D2ðhÞ

ffiffiffiffi
p
p

erfðsÞ þ 3A0ðhÞ
8ð1� PrÞ þ

A0ðhÞ
4Prð1� PrÞ

� �
erfð

ffiffiffiffiffi
Pr
p

sÞ

� D2ðhÞ
ffiffiffiffi
p
p

12
þ PrA0ðhÞ

6ð1� PrÞ

� �
s4 þ A0ðhÞ

6ð1� PrÞ s
4erfð

ffiffiffiffiffi
Pr
p

sÞ

þ D2ðhÞ
ffiffiffiffi
p
p

12
s4erfðsÞ þ D2ðhÞ

12
s3e�s2 þ

ffiffiffiffiffi
Pr
p

A0ðhÞ
6ð1� PrÞ

ffiffiffiffi
p
p s3e�Prs2

þ 5D2ðhÞ
24

se�s2 � D2ðhÞ
ffiffiffiffi
p
p

2
þ A0ðhÞ
ð1� PrÞ

� �
s2

2

þ D2ðhÞ
ffiffiffiffi
p
p

4
s2erfðsÞ þ A0ðhÞ

2ð1� PrÞ s
2erfð

ffiffiffiffiffi
Pr
p

sÞ

þ A0ðhÞ
2ð1� PrÞ

ffiffiffiffiffiffiffiffi
Prp
p �

ffiffiffiffiffi
Pr
p

A0ðhÞ
12ð1� PrÞ

ffiffiffiffiffiffiffiffi
Prp
p

 !
se�Prs2

� D2ðhÞ
3
þ 2

ffiffiffiffiffi
Pr
p

A0ðhÞ
3ð1� PrÞ

ffiffiffiffi
p
p

 !
s:

Thus, we obtain w2ðt; s; hÞ ¼ tw21 and note that w21 diverges as
s!1. This is because we chose to apply the surface conditions in-
stead of the far-field condition when solving for w21. Finally, the
approximate analytical solution for the streamfunction becomes

wðt; s; hÞ ¼ k2tw21 þ Oðk3Þ:

As a final note, the expansion procedure has been continued
further numerically and more terms are reported in [34].
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