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a b s t r a c t

Discussed in this investigation is the three-dimensional gravity-driven flow of a thin fluid layer down
an incline and over topography. A new three-dimensional integral-boundary-layer (IBL) model is
proposed to describe the flow. Numerical simulations are presented and comparisons with lubrication
and two-dimensional IBL models are discussed for both steady and unsteady flows. Subcritical and
supercritical cases are considered, along with symmetrical and asymmetrical bottom topographies.
Also, good agreement was found with experiments.

© 2023 ElsevierMasson SAS. All rights reserved.
1. Introduction

Falling thin fluid layers occur often in a variety of settings [1–
]. For example, in industrial applications such layers can act as
coat to protect a surface as in bearings, painting and other
anufacturing processes [4]. In the environment thin flows can
e found in rivers or may appear as lava flows [5,6], ice flows [7],
ud slides [8] or even avalanches [9]. In living organisms thin

luid layers can play important roles such as lining the airways in
he lungs or forming a protective surface on the front of the eye as
n the case of a tear film [10]. Other examples include thin flows
n human-made structures such as aqueducts and spillways. Since
hin fluid layers are prone to interfacial instabilities, variations
n fluid thickness can occur which can lead to the formation
f relatively large amplitude waves along the surface. In some
ituations such waves can have an adverse effect, as in coating
pplications where they can produce an uneven coating. Because
f this, thin fluid layers have been studied extensively on various
evels: experimentally, theoretically, and numerically [11–17]. In
any previous investigations such flows were approximated as

wo dimensional, whereas in this study we investigate three-
imensional flows over various two-dimensional topographies
hich are much more realistic. Also, the proposed model applies
o an arbitrary bottom topography.

Considerable effort has been invested in modelling thin fluid
ayers. One class of models is known as integral-boundary-layer
IBL) models [15]. The basic idea behind these models is first

E-mail address: sdalessio@uwaterloo.ca.
ttps://doi.org/10.1016/j.euromechflu.2023.07.004
997-7546/© 2023 Elsevier Masson SAS. All rights reserved.
to simplify the governing Navier–Stokes equations by formulat-
ing them in terms of a shallowness parameter and neglecting
terms that are deemed to be small. Next, the cross-stream de-
pendence is eliminated by depth-integrating the equations and
prescribing the velocity variation with respect to depth. Another
class of models is known as weighted-residual models (WRM)
originally proposed by Ruyer-Quil and Manneville [16,17] to han-
dle isothermal flows down an even incline. Since then it has
been applied to more complicated flows. For example, Kalliadasis
et al. [18] extended the weighted-residual method to model flows
down an even heated incline, D’Alessio et al. [19] used it to
model isothermal flows over a wavy incline, while D’Alessio and
Pascal [20] successfully applied it to inclined isothermal flows
down an uneven porous surface. Several other extensions such
as incorporating surfactants [21] and heated flows over wavy
surfaces [22,23] have also been advanced. Although most of the
above cited WRM developed are second order, Veremieiev and
Wacks [24] have extended the weighted-residual method to in-
clude third and fourth-order terms. Slow viscous motion of a
thin fluid layer can also be modelled using lubrication theory,
or as Stokes flow [25–33], and many of these investigations are
summarized in the review by Aksel and Schörner [34].

The work in modelling three-dimensional thin fluid layers is
relatively rare compared to two-dimensional fluid layers. Here,
we will focus on some previous studies pertaining to three-
dimensional flows spreading over topography. Baxter et al. [29]
considered steady gravity-driven Stokes flow down an incline
and over hemispherical obstacles. The controlling parameters in
their investigation were the angle of inclination, the Bond num-

ber, and the obstacle geometry. A key finding is that the free
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urface profiles had a peak upstream of the obstacle followed
y a downstream trough. They also considered cases where the
bstacle penetrates the free surface, and in such cases a con-
act angle was specified. The study by Buttle et al. [35], on the
ther hand, considered the steady flow of an ideal fluid using
boundary-integral method. Both subcritical and supercritical

egimes were explored for a variety of bottom configurations.
heir focus was on the nonlinear features of the wave patterns
nd their relationship to ship wakes. Veremieiev et al. [36,37]
umerically investigated two and three-dimensional flow over
tep-like and trench topographies and obtained good agreement
ith the experimental results of Decré and Baret [38]. Three-
imensional flows over a wavy bottom was studied theoreti-
ally by Trifonov [39]; he derived a thin-film IBL model. Heining
t al. [40] also worked on three-dimensional flows over a wavy
ottom and solved the problem analytically, numerically and
xperimentally. Lastly, Hinton et al. [30] investigated the flow of
viscous free surface over bottom topography theoretically and
umerically through the lens of lubrication theory. Their work
as motivated by the interaction of lava flows with obstructions.
hey considered cases where the topography penetrated the free
urface, which they termed dry zones, and where dry zones
ould form in the wake of an obstacle. Rather than specifying
contact angle, they handled dry zones by introducing a small
ource term which had the effect of creating a virtual thin film
ver the dry zone.
In the present work we also investigate three-dimensional

ravity-driven flow over topography. However, the approach is
ifferent from the previous studies discussed in several respects.
irst, we consider both steady and unsteady flows and we are
nly concerned with dry-free zones (i.e. fully submerged topogra-
hies). In addition, several bottom topographies are entertained
ncluding smooth localized bumps, wavy periodic undulations,
nd a steep-sided trench. Second, a new IBL model to describe
he flow is proposed. This model takes into account both viscous
nd inertial effects, and hence, is inherently nonlinear. It can
e thought of as a hybrid model bridging lubrication theory
nd integral-boundary-layer formalism. This approach is novel in
he sense that to our knowledge it has never been attempted.
e conduct numerous numerical experiments of subcritical and

upercritical flows, outline some differences between two and
hree-dimensional flows, and make comparisons with a lubrica-
ion model to illustrate some deficiencies in lubrication theory.
hird, the proposed model is validated by drawing comparisons
ith the experiments conducted in [40] for the case of a two-
imensional wavy topography. The above factors distinguishes
his study from the previous ones listed. The paper is structured
s follows. In the next section we formulate the problem and
erive the IBL model. Following that, in Section 3 a numerical
olution procedure is proposed to solve the model equations. Nu-
erical results using Neumann and periodic boundary conditions
re then presented and discussed in Section 4 for various topogra-
hies. Comparisons are made with a three-dimensional steady
ubrication model, an unsteady two-dimensional IBL model, and
xperiments. Finally, in Section 5 we summarize the key findings.

. Mathematical formulation

We consider the three-dimensional, laminar, gravity-driven
sothermal flow of a viscous, incompressible, Newtonian, shallow
iquid layer of thickness h(x, y, t) down a non-porous surface
which is inclined at an angle of β with the horizontal. The
surface over which the fluid is flowing has a variable bottom
topography denoted by Mm(x, y). We define a coordinate system
(x, y, z) such that the down-slope coordinate is x, the cross-slope
coordinate is y, and the normal coordinate above the inclined
 w

19
Fig. 1. Cross section of the flow and setup.

surface is z. Illustrated in Fig. 1 is a cross-sectional view in the
x direction taken along the line of symmetry for the case of
symmetric bottom topography.

The continuity and Navier–Stokes equations expressed in di-
mensional form are given by
∂u
∂x

+
∂v

∂y
+

∂w

∂z
= 0 ,

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
= −

∂p
∂x

+ ρg sinβ

+ µ

(
∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

)
,

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −

∂p
∂y

+ µ

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
,

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −

∂p
∂z

− ρg cosβ

+ µ

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
,

here u, v, w are the velocity components in the x, y, z direc-
ions, respectively, p is the pressure, g is the acceleration due to
ravity, ρ is the density, and µ is the dynamic viscosity. We next
ast the governing equations in dimensionless form. In order to
chieve this we choose the Nusselt thickness of the liquid given
y

=

(
3µQ

gρ sinβ

)1/3

,

s the vertical length scale, while L to be the horizontal length
cale. In the above Q denotes the prescribed flow rate per unit
idth. The velocity scale is taken to be U = Q/H and the time
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cale is L/U . For the pressure we use ρU2 as the scale. Using these
cales we apply the following transformation

x, y, z) = (Lx∗, Ly∗, Hz∗) , h = Hh∗ , t =
L
U
t∗,

u, v, w) = U(u∗, v∗,
H
L

w∗) , p = ρU2p∗ .

ith these scalings in place, and dropping the asterisks for nota-
ional convenience, the dimensionless equations within the liquid
ayer to second order in the shallowness parameter δ = H/L
ecome

∂u
∂x

+
∂v

∂y
+

∂w

∂z
= 0 , (1)

δRe
(

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
= −δRe

∂p
∂x

+ 3

+ δ2
(

∂2u
∂x2

+
∂2u
∂y2

)
+

∂2u
∂z2

, (2)

δRe
(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −δRe

∂p
∂y

+ δ2
(

∂2v

∂x2
+

∂2v

∂y2

)
+

∂2v

∂z2
, (3)

δ2Re
(

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −Re

∂p
∂z

−3 cotβ + δ
∂2w

∂z2
.

(4)

In the above Re = ρQ/µ is the Reynolds number. These can be
viewed as the long-wave equations and mark the starting point
of our mathematical formulation.

Integrating Eq. (2) across the fluid layer from z = Mm to
= Mm + h and introducing the down-slope flow rate q(x, y, t)

defined by

q =

∫ Mm+h

Mm
udz ,

leads to the following

δRe
(

∂q
∂t

+
∂

∂x

∫ Mm+h

Mm
u2dz +

∂

∂y

∫ Mm+h

Mm
uvdz

)
= −δRe

∫ Mm+h

Mm

∂p
∂x

dz + 3h + δ2
∫ Mm+h

Mm

(
∂2u
∂x2

+
∂2u
∂y2

)
dz

−
∂u
∂z

⏐⏐⏐⏐
Mm

. (5)

In arriving at this expression we made use of the kinematic
condition

w =
∂h
∂t

+ u
(

∂h
∂x

+ M
∂m
∂x

)
+ v

(
∂h
∂y

+ M
∂m
∂y

)
on z = Mm + h ,

s well as the zero-shear condition
∂u
∂z

= 0 on z = Mm + h .

In order to estimate the various integrals and the last term
ppearing on the right-hand side of Eq. (5), we need to specify
, v and p. For the velocity u we propose the following

=
3q (

2(Mm + h)z − z2 − M2m2
− 2Mhm

)
, (6)
2h3

20
hich satisfies the down-slope flow rate definition. This parabolic
rofile is the three-dimensional equivalent of that which is com-
only used in modelling two-dimensional flows (for example,
ee [15–23]) and results from Eq. (2) by retaining only the dom-
nant terms
∂2u
∂z2

+ 3 = 0 ,

and applying the no-slip condition u = 0 on z = Mm and
he above zero-shear condition. The profiles for v and p can be
btained by considering the following first-order equations based
n (3) and (4)

∂2v

∂z2
= δRe

∂p
∂y

, (7)

Re
∂p
∂z

= −3 cotβ + δ
∂2w

∂z2
. (8)

Since the pressure term in Eq. (5) is already multiplied by δ
we only need to consider the first-order equation given by (8)
to guarantee second-order accuracy. On the other hand, we re-
tain first-order accuracy in the transverse component of veloc-
ity because we are dealing with flows that are mainly two-
dimensional and in the down-slope direction with weak flow in
the cross-slope direction.

Integrating (8) and applying the stress condition which to first
order in δ is given by

p =
2δ
Re

∂w

∂z
on z = Mm + h ,

leads to the following expression for the pressure

p =
3 cotβ
Re

(Mm + h − z) +
δ

Re
∂w

∂z
+

δ

Re
∂w

∂z

⏐⏐⏐⏐
Mm+h

, (9)

where
∂w

∂z
= −

(
∂u
∂x

+
∂v

∂y

)
.

ere, we have assumed that the Reynolds (Re) and Weber (We)
umbers are of order unity, and thus, the effects of surface ten-
ion do not make an appearance. Now, substituting (9) into (7),
ntegrating and applying the no-slip and zero-shear conditions

= 0 on z = Mm ,
∂v

∂z
= 0 on z = Mm + h ,

yields

v = 3δ cotβ
(

∂h
∂y

+ M
∂m
∂y

)[
1
2

(
z2 − M2m2)

− (Mm + h)(z − Mm)
]

. (10)

his equation for the transverse, or spanwise, velocity v is the
ame expression that emerges from lubrication theory (for exam-
le, see [30–33]), and it is proposed here as a means of extending
lows that are predominantly two dimensional to three dimen-
ions. Inserting (6), (9) and (10) into (5) one obtains the following
volution equation for the flow rate q after some algebra

∂q
∂t

+
∂

∂x

(
6
5
q2

h
+

3 cotβ
2Re

h2
)

=
3

δRe

(
h −

q
h2

)
−

3M cotβ
Re

h
∂m
∂x

+
δ

Re

[
7
2

∂2q
∂x2

−
9q
2h

∂2h
∂x2

−
3Mq
h

∂2m
∂x2

+
6
h

(
M

∂m
∂x

+
3
2

∂h
∂x

)
×

(
q
h

∂h
∂x

−
∂q
∂x

)
−

6M2q
2

(
∂m

)2

+
∂2q

2 −
3q
(

∂2h
2 + M

∂2m
2

)

h ∂x ∂y 2h ∂y ∂y
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−
3M2q
h2

(
∂m
∂y

)2

+

(
∂h
∂y

+ M
∂m
∂y

)(
3q
h2

∂h
∂y

−
3
h

∂q
∂y

)]
+

6
5
δ cotβh

[(
M

∂m
∂y

+
∂h
∂y

)(
h
∂q
∂y

+ 2q
∂h
∂y

)
+hq

(
∂2h
∂y2

+ M
∂2m
∂y2

)]
. (11)

An evolution equation for h can similarly be derived by consid-
ring the continuity Eq. (1). Integrating (1) across the fluid layer
rom z = Mm to z = Mm + h and implementing the kinematic
ondition along the free surface, the no-slip condition w = 0 at
= Mm, and Eq. (10) for v yields

∂h
∂t

+
∂q
∂x

= δ cotβ
∂

∂y

[
h3
(

∂h
∂y

+ M
∂m
∂y

)]
. (12)

he nonlinear coupled system of Eqs. (11)–(12) together with ini-
ial conditions and appropriate conditions along the boundaries
orms our three-dimensional (3D) IBL model for a specified bot-
om topography Mm(x, y). Although most of the terms retained
n these equations are correct to second order, the expression
or v used in the derivation of (12) is first order; also, the shear
conditions along the free surface correct to second order in δ are
given by

∂u
∂z

= δ2
[
2
∂ξ

∂x

(
2
∂u
∂x

+
∂v

∂y

)
+

∂ξ

∂y

(
∂u
∂y

+
∂v

∂x

)
−

∂w

∂x

]
,

∂v

∂z
= δ2

[
2
∂ξ

∂y

(
2
∂v

∂y
+

∂u
∂x

)
+

∂ξ

∂x

(
∂u
∂y

+
∂v

∂x

)
−

∂w

∂y

]
,

here ξ = h + Mm denotes the free surface. These have been
simplified to the zero-shear conditions
∂u
∂z

=
∂v

∂z
= 0 ,

and justification of this will be presented later. Thus, we think of
the system (11)–(12) as a 1.5 order model. Lastly, we note that
system (11)–(12) is invariant under the transformation

y → −y , v → −v ,

ince gravity acts in the x − z plane. This symmetry property
will be exploited when prescribing suitable cross-slope boundary
conditions. This property was also reported in [40].

3. Numerical solution procedure

Eqs. (11)–(12) were solved on the rectangular domain Lu ≤

x ≤ Ld, −W ≤ y ≤ W having a width 2W and a length
Ld−Lu. Simulations were carried out using two types of boundary
conditions along the boundaries. These include Neumann and
periodic boundary conditions. The computational domain was
discretized into I equally spaced subintervals in the x direction
and J equally spaced subintervals in the y direction forming a
network of (I − 1)× (J − 1) interior grid points (xi, yj) where xi =

Lu+i∆x, i = 1, 2, . . . , I−1 and yj = −W+j∆y, j = 1, 2, . . . , J−1
with ∆x = (Ld − Lu)/I and ∆y = 2W/J denoting the uniform grid
spacing in the x, y directions, respectively.

System (11)–(12) was solved using finite differences [41]. We
begin by casting equations (11)–(12) in the generic form
∂χ

∂t
= R(x, y, t) , (13)

here χ denotes either h or q, and the function R(x, y, t) refers
o all the remaining terms when brought to the right-hand side.
21
Assuming the solution at time t is known, we can advance the
solution to time t + ∆t by integrating (13) to obtain⏐⏐t+∆t

t =

∫ t+∆t

t
Rdτ ,

here ∆t is the time increment. We now approximate the inte-
ral using
t+∆t

t
Rdτ ≈ ∆t[ωR(x, y, t + ∆t) + (1 − ω)R(x, y, t)] ,

here ω is a weight factor. In general, 0 ≤ ω ≤ 1 and we
ave used ω = 1/2 which yields the well-known Crank–Nicolson
cheme. With this approximation in place we obtain

(x, y, t+∆t) = χ (x, y, t)+∆t[ωR(x, y, t+∆t)+(1−ω)R(x, y, t)] .

(14)

pon substituting the expression for R(x, y, t + ∆t) and replac-
ng all spatial derivatives using second-order, central-difference
pproximations, Eq. (14) becomes a nonlinear system of alge-
raic equations which is solved using the Gauss–Seidel iterative
rocedure to determine h and q at time t + ∆t for all the
nterior grid points. The convergence criterion adopted is that
he maximum difference between successive iterates must be less
han a specified tolerance ϵ.

Several numerical experiments were performed in order to
etermine optimal values for the computational parameters. Un-
ess otherwise stated, the following values were used in all the
imulations to be presented and no convergence problems were
ncountered: ∆x = ∆y = 0.04, ∆t = 0.001 and ϵ = 10−7.
s a numerical check the volume of fluid was computed at each
ime step and it was found to remain constant to several decimal
laces. The width of the domain was taken to be 2 W = 10, while

the length of the domain depended on the conditions applied
along the boundaries. For subcritical flows the limiting unsteady
simulations were observed to approach a steady solution, and
Neumann conditions were applied along the boundaries. On the
other hand, supercritical flows were found to be prone to insta-
bilities which were manifested by the formation of waves along
the surface. In this case it made more sense to apply periodic
conditions along the upstream and downstream boundaries re-
sulting from a topography that repeated itself in the x direction
with the length of the domain corresponding to the distance
between successive repetitions. Along the cross-slope boundaries
y = ±W we make use of the symmetry property discussed in
the previous section, and thus, apply Neumann conditions. For
subcritical flows the values Lu = −5 and Ld = 20 were used
yielding a length of Lu − Ld = 25, while for supercritical flows
the values Lu = −10 and Ld = 10 were used. Although most
f the topographies considered in this study can be described as
mooth localized bumps satisfying the condition that m(x, y) → 0
s x2 + y2 → ∞, wavy and trench-like topographies are also
xplored.
The Neumann conditions were obtained by examining the lin-

arized steady equations at large distances. For subcritical flows
e have that h, q → 1 as x2 + y2 → ∞. Thus, we set h = 1 + ĥ
nd q = 1 + q̂ where ĥ, q̂ denote small departures from their
ar-field values, and use them to linearize the steady versions of
qs. (11)–(12). To leading order this yields

∂ q̂
∂x

= 0 , 3ĥ − q̂ = 0 .

Based on this we apply the Neumann conditions given by

∂h
=

∂q
= 0 along x = Lu, Ld ,
∂x ∂x
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nd similarly
∂h
∂y

=
∂q
∂y

= 0 along y = ±W .

astly, the initial conditions implemented are h = q = 1
hroughout the entire domain.

. Results and discussion

The problem is completely characterized by the dimensionless
arameters Re, δ, cotβ , and the topography Mm(x, y). Unless oth-
rwise stated, in all the simulations to be presented the values
otβ = 1 and δ = 0.1 were used. For a given topography
nd Reynolds number the criticality of the flow was not known
priori, but rather was determined during the course of the

imulations. Once the criticality was established new simulations
ere performed using the appropriate boundary conditions.
The results are organized as follows. We begin with a sub-

ritical case having Re = 0.1 and two symmetrical bottom
opographies. Here, we will make comparisons with results ob-
ained using a steady 3D lubrication model (see Appendix A).
ollowing that we will explore a subcritical flow resulting from
n asymmetric bottom topography. Then we will discuss some
upercritical cases having Re = 1.5 together with various one and
wo-dimensional (2D) bottom topographies. Here, we will make
omparisons with an unsteady, second-order 2D IBL model (see
ppendix B) for some one-dimensional (1D) topographies. Lastly,
e will present some comparisons with experiments for the case
f a 2D wavy bottom.

.1. Subcritical symmetric flow: Re = 0.1

For small Reynolds numbers we expect the evolving unsteady
low to eventually approach a steady solution. Indeed, this was
bserved to be the case for Re = 0.1. This small Reynolds number
as selected in order to facilitate comparisons with a lubrication
odel which ignores the inertial terms in the Navier–Stokes
quations. The lubrication model was validated by comparing
ur results with those obtained by Hinton et al. [30]. For the
opography given by

= 0.5 , m(x, y) = e−(x2+y2) ,

the maximum and minimum values of the fluid thickness, hmax
nd hmin, respectively, were found to be hmax = 1.183 and hmin =

.519 and are in full agreement with those in [30]. The locations
f the extrema also appear to agree closely.
Plotted in Fig. 2 are steady contour plots of the fluid thickness

sing the lubrication and IBL models. Although the contour plots
ear a reasonable resemblance, we must keep in mind that the
ontour values are different in the two plots. Fig. 3 illustrates
ow quickly the IBL model approaches a steady solution. This
iagram shows cross sections of the fluid thickness along the
xis of symmetry, y = 0, at various times. We see that as
ime increases the agreement in the profiles persists for larger
ownstream distances. The profile at t = 15 lies on top of that
t t = 10, and hence, was not included. The corresponding
ross sections along the line x = 0 quickly approached a steady
olution. This is because the flow is mainly in the x direction, with
little spanwise flow.

Plotted in Fig. 4 is a comparison in the steady cross sections
of the fluid thickness h(x, y = 0) and h(x = 0, y) between
he lubrication and IBL models. Here, we notice some significant
ifferences. Although the profiles emerging from the two models
ave a similar form, the extreme values vary dramatically as
o their locations. The lubrication model predicts a much larger
ifference between the extrema. For example, the lubrication
22
Fig. 2. Top: Contour plot of h(x, y) for F = 0.1 using the steady lubrication
odel. The contours of h plotted are: 0.6, 0.7, 0.8, 0.9, 1.025, 1.05, 1.06, 1.07,
.08, 1.09, 1.1. Bottom: Contour plot of h(x, y, t) for Re = 0.1 using the unsteady
BL model at t = 15. The contours of h plotted are: 0.95, 0.96, 0.97, 0.98, 0.99,
.0025, 1.005, 1.0075, 1.01, 1.012, 1.014, 1.016, 1.018.

Fig. 3. Cross sections of the fluid thickness h(x, y = 0, t) at times t = 1, 5, 10.
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Fig. 4. Top: Comparison in the steady cross sections of the fluid thickness
h(x, y = 0). Bottom: Comparison in the steady cross sections of the fluid
thickness h(x = 0, y).

model yields hmax = 1.183 at location (x, y) = (1.15, ±1.55)
and hmin = 0.519 at location (x, y) = (0.95, 0), while the
IBL model yields the values hmax = 1.019 and hmin = 0.945
at locations (x, y) = (1.375, ±1.375) and (x, y) = (0.775, 0),
respectively. Both models, however, predict that hmax and hmin
occur downstream of the peak in topography. The steady free
surface cross sections h(x, y = 0) + Mm(x, y = 0) and h(x =

, y) + Mm(x = 0, y) are contrasted in Fig. 5. Also included in
hese diagrams is the bottom topography to provide a sense of
he relative positions of the free surface and bottom topography.
his clearly shows how close the lubrication model comes to the
ottom. Fig. 6 is a close-up contour plot which illustrates the
ocations of hmax and hmin for the IBL model. Also shown in the plot
is a level curve indicating where the bottom topography reaches
one half of the maximum height. We see that hmin occurs just
inside the backside of the bottom contour, whereas hmax occur
further downstream and above/below the bottom contour.

A simulation was also conducted using the topography given
by

M = 0.5 , m(x, y) =
1

1 + (x2 + y2)2
.

Although this topography has the same M value as the previous
case, the height diminishes much more slowly with distance from
the origin (x, y) = (0, 0). Despite this, the results obtained were
23
Fig. 5. Top: Comparison in the steady cross sections of the free surface h(x, y =

0)+Mm(x, y = 0). Bottom: Comparison in the steady cross sections of the free
surface h(x = 0, y) + Mm(x = 0, y).

Fig. 6. Close-up contour plot of h(x, y, t) for Re = 0.1 using the unsteady IBL
model at t = 15. The contours plotted are the same as in Fig. 2. The dashed
line corresponds to the bottom contour z = 0.25. Here, hmax is denoted by the
symbol ∗, while hmin is denoted by the symbol +.
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Fig. 7. Level curves for the asymmetric bottom topography. The contours of z
plotted are: 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.475.

very similar to the previous case. For example, the lubrication
model yields hmax = 1.220 and hmin = 0.542, while the IBL model
yields the values hmax = 1.023 and hmin = 0.949 which are close
to the values listed above.

4.2. Subcritical asymmetric flow: Re = 0.1

The previous topographies were symmetrical and this resulted
in a symmetrical flow. We next consider an asymmetric flow
resulting from a topography having

M = 0.5 , m(x, y) = e−[(x̄/a)2+(ȳ/b)2] ,

where

x̄ = x cosα + y sinα , ȳ = −x sinα + y cosα ,

α = 45◦ , a = 2 , b = 1 .

As shown in Fig. 7, the level curves corresponding to this topog-
raphy represent ellipses that are rotated by an angle of α = 45◦

in the counterclockwise direction about the positive x axis.
For the subcritical case having Re = 0.1 the unsteady solution

quickly approached a steady solution; beyond t = 10 little change
was observed in the unsteady solution. Shown in Fig. 8 is a com-
parison in the steady cross sections of the fluid thickness h(x, y =

0) and h(x = 0, y) between the lubrication and IBL models, while
Fig. 9 compares the steady free surface cross sections h(x, y =

0) + Mm(x, y = 0) and h(x = 0, y) + Mm(x = 0, y). The plots
reveal similar features as previously noted in Section 4.1. One
noteworthy difference is in the asymmetry in the cross section
x = 0 of the lubrication model, especially when compared to
Fig. 5.

Fig. 10 illustrates contour plots of the fluid thickness using the
IBL model at times t = 1 and t = 5, while Fig. 11 contrasts the
steady contour plots between the lubrication and IBL models. As
time advances we see the contours lengthen in the downstream
direction which is to be expected. The contour lines reveal two
peaks with a trough in between. Although the contour plots in
Fig. 11 portray very similar features, one must bear in mind
that the contour values plotted are different in the two plots.
There are significant differences in the extreme values of the
fluid thicknesses, but the locations of the extrema agree fairly
well. For example, the lubrication model yields hmax = 1.231 at
location (x, y) = (0.1, 1.375) and hmin = 0.649 at location (x, y) =

(1.025, −0.025), while the IBL model yields the values h =
max

24
Fig. 8. Top: Comparison in the steady cross sections of the fluid thickness
h(x, y = 0). Bottom: Comparison in the steady cross sections of the fluid
thickness h(x = 0, y).

1.017 and hmin = 0.962 at locations (x, y) = (−0.125, 1.125) and
(x, y) = (0.85, −0.075), respectively. This highlights the impact
of neglecting the inertial terms in the lubrication model, even
at the low Reynolds number of Re = 0.1 for both symmetrical
and asymmetrical flows. Fig. 12 shows a close-up contour plot
revealing the locations of hmax and hmin for the IBL model, as
well as a level curve which signals where the bottom topog-
raphy reaches one half of the maximum height. Here, we see
that hmax occurs near the upstream side of the bottom contour,
whereas hmin occurs near the downstream side of the bottom
contour which is in agreement with the discovery made by Baxter
et al. [29].

4.3. Supercritical flow: Re = 1.5

As the Reynolds number increases beyond Re = 0.1 the flow
eventually becomes unstable. For two-dimensional flow over a
flat bottom this occurs when Recrit = 5 cotβ/6 [12–14], and
the influence of wavy bottom topography on the stability of the
flow has been discussed in previous studies such as [19,42–48].
For example, in [19] using the WRM it is shown that for weak
to moderate surface tension bottom topography acts to stabilize
the flow, while for stronger surface tension bottom topography
can destabilize the flow provided that the wavelengths of the
bottom undulations are sufficiently short. The stabilizing effect
of bottom topography on inclined flows is also reported in [45]
for weak surface tension, whereas the reversal in the stabilizing
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Fig. 9. Top: Comparison in the steady cross sections of the free surface h(x, y =

)+Mm(x, y = 0). Bottom: Comparison in the steady cross sections of the free
urface h(x = 0, y) + Mm(x = 0, y).

action of bottom topography is noted in [42,48] using the WRM.
In [42] they investigated the inverse problem, that is, they sought
the corresponding bottom topography that gave rise to a free
surface profile. On the other hand, [48] addressed the direct
problem by expressing the equations of motion in terms of curvi-
linear coordinates relative to the bottom profile. The work in [43]
demonstrated that the critical Reynolds number of the neutral
stability curve shifts for gravity-driven films over corrugated bot-
toms compared to that over flat bottoms. Moreover, the shift
depends on several parameters. For large bottom corrugations
the study conducted in [44] shows that the fluid particles do not
follow the complete solid bottom contour; instead, the particles
slide on the separatrix of eddies created in the valleys of the
bottom corrugations. In these cases the neutral stability curve
changes drastically. For such complex flow structures IBL or WRM
methods are not available in the literature.

It is well known that a 2D IBL model overestimates the critical
Reynolds number and yields the prediction Recrit = cotβ for a flat
ottom. For this reason we set Re = 1.5 (with cotβ = 1) to guar-
ntee a supercritical flow for both two and three-dimensional
low. In these simulations periodic boundary conditions were
pplied along the upstream and downstream boundaries with
ocalized bottom topographies situated at the centre of the do-
ain. As previously noted, applying periodic boundary conditions

s equivalent to imposing a periodic topography.
25
Fig. 10. Contour plots of h(x, y, t) for Re = 0.1 using the unsteady IBL model at
t = 1 (top) and t = 5 (bottom). The contours of h plotted are: 0.96, 0.97, 0.98,
0.99, 1.0025, 1.005, 1.0075, 1.01, 1.012, 1.014, 1.016.

To test the proposed 3D IBL model we ran several simu-
lations using 1D topographies and compared the results with
those obtained using the second-order 2D IBL model outlined in
Appendix B. The first 1D topography considered is given by

M = 0.5 , m(x) = e−x2 .

For small times the output from the two models were indistin-
guishable. As time progressed small deviations between the two
models began to emerge. Fig. 13 contrasts the two models at
time t = 20. The plots illustrate waves propagating along the
free surface which confirms that the flow is unstable. We also
notice large peaks appearing in the flow rate q. The differences
between the two models, although noticeable, are actually quite
small and are the result of differences in the second-order terms
in the models. Specifically, the differences can be traced back to
the shear condition, ∂u

∂z , applied along the free surface; as outlined
in Appendix B, the 2D IBL model utilizes a second-order accurate
expression for the shear condition, while the 3D IBL model uses
a zero-shear condition. Thus, the impact of using the zero-shear
condition instead of a second-order accurate formula is small,
and the proposed IBL model behaves like a fully second-order IBL
model.
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Fig. 11. Top: Contour plot of h(x, y) for F = 0.1 using the steady lubrication
odel. The contours of h plotted are: 0.7, 0.8, 0.9, 1.025, 1.05, 1.075, 1.1, 1.125,
.15, 1.175, 1.2. Bottom: Contour plot of h(x, y, t) for Re = 0.1 using the unsteady

IBL model at t = 10. The contours of h plotted are: 0.96, 0.97, 0.98, 0.99, 1.0025,
1.005, 1.0075, 1.01, 1.012, 1.014, 1.016.

The second 1D topography considered corresponds to a wavy
bottom having

M = 0.5 , m(x) = cos(2πx) .

As in the previous case, the output from the two models were
very similar. For example, Fig. 14 illustrates the free surface
predicted by the two models at t = 20. We see that the free
surface from both models are close to one another and are in
phase with the bottom topography.

The last 1D topography considered is a steep-sided trench.
Previous studies [28,36,37] have approximated a trench using the
arctangent function given by

Mm(x) =
M

2 tan−1
( l
2λ

) [tan−1

(
x +

l
2

λ

)
− tan−1

(
x −

l
2

λ

)]
.

Here, l and M < 0, denote the length and depth of the trench,
respectively, while λ is a steepness parameter. Shown in Fig. 15
is a simulation with trench parameters l = 2, M = −0.5 and

= 0.005 at time t = 5 using the 3D IBL model (the 2D IBL
odel is not shown since the result was indistinguishable from
26
Fig. 12. Close-up contour plot of h(x, y, t) for Re = 0.1 using the unsteady IBL
model at t = 10. The contours plotted are the same as in Fig. 11. The dashed
line corresponds to the bottom contour z = 0.25. Here, hmax is denoted by the
symbol ∗, while hmin is denoted by the symbol +.

Fig. 13. Comparison in the free surface h+ Mm (top) and q (bottom) between
he 2D and 3D IBL models for Re = 1.5 at time t = 20.

the 3D IBL model). We see that the free surface closely mirrors
the topography except at the edges where it overshoots.
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Fig. 14. Comparison in the free surface h + Mm between the 2D and 3D IBL
models for Re = 1.5 at time t = 20.

Fig. 15. The free surface h+Mm for flow over a trench using the 3D IBL model
for Re = 1.5, δ = 0.1 and cotβ = 1 at time t = 5.

We next present a simulation having the 2D topography pre-
cribed by

= 0.5 , m(x, y) = e−(x2+y2) .

Plotted in Fig. 16 are contour plots of the fluid thickness using
the 3D IBL model at times t = 10 and t = 20. The plots clearly
emonstrate the unsteadiness of the flow, and how the patterns
ecome more complex with time. The contours portray a series
f peaks and troughs in fluid thickness which evolve in time,
nd resemble those of vortex shedding from a circular cylinder.
he difference is that instead of having eddies of recirculating
low, here we have eddies of fluid thickness. The topography
as a ripple effect in the downstream flow causing waves to
orm on the free surface. At t = 20 we see a series of waves
approaching the topography from the left as a result of the
periodicity conditions. Lastly, shown in Fig. 17 are cross sections
of the free surface and flow rate along the plane of symmetry
y = 0. Also shown in these diagrams are the results obtained
using the 2D IBL model to illustrate the three-dimensional nature
of the flow. We notice that the profiles for the free surface and
flow rate from the two models have similar forms. An apparent
difference is that the profile arising from the 3D model is shifted
27
Fig. 16. Contour plots of h(x, y, t) for Re = 1.5 using the 3D IBL model at t = 10
(top) and t = 20 (bottom). The contours of h plotted are: 0.95, 0.96, 0.97, 0.98,
0.99, 1.0025, 1.005, 1.0075, 1.01, 1.012, 1.014, 1.016, 1.017.

vertically downward from that obtained using the 2D model. This
is especially noticeable in the profile for q. This is due to the
spanwise flow which is responsible for diverting fluid from the
plane of symmetry in response to the bottom topography. Thus,
although the spanwise flow is small it does have an effect on
the flow causing some departures from two-dimensional flow.
To emphasize this we compare Figs. 13 and 17. In Fig. 13 both
models used the 1D topography m(x) = e−x2 which yielded good
agreement in the results at t = 20. On the other hand, in Fig. 17
the 2D IBL model used the topography m(x) = e−x2 , while the
3D IBL model used the topography m(x, y) = e−(x2+y2), and this
resulted in noticeable differences in the profiles at the smaller
time t = 10.

4.4. Comparisons with experiments

We conclude this section by discussing some comparisons
with experiments. For this purpose we have used the experi-
mental results from Heining et al. [40]. In their investigation
they considered steady gravity-driven free surface 3D flows over
periodic corrugations having

Mm(x) = M[cos x + cos y] ,
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Fig. 17. Comparison in the free surface h+ Mm (top) and q (bottom) between
the 2D and 3D IBL models for Re = 1.5 at time t = 10.

and tackled the problem analytically, numerically and experimen-
tally. The analytical work followed an integral-boundary-layer
approach, and took the form of an expansion in powers of the
steepness parameter which is valid for small M. The numerical
work, on the other hand, made use of the open source CFD
software OpenFOAM. The liquids used in the experiments were
silicone oils; the free surface was tracked mechanically using a
needle and highspeed camera while the free surface flow was
visualized using carbon powder tracer particles. They considered
both weakly and strongly corrugated topographies.

For our comparisons we will focus on the weakly corrugated
case where the bottom topography is fully submerged. The pa-
rameters used in our simulations matched those in the experi-
ment and are given by

Re = 0.0143 , β = 11◦ , δ =
√
0.019 , M = 0.442 .

omputations using the proposed 3D IBL model were carried
ut over the rectangular domain 0 ≤ x ≤ 2π , 0 ≤ y ≤ π

sing periodic conditions at x = 0 and x = 2π , and Neumann
onditions at y = 0 and y = π with a uniform grid spacing of
/100 in both the x and y directions. Simulations were run to
= 15 to ensure that a steady solution was attained. Shown

n Fig. 18 are cross sections of the free surface along y = 0
nd y = π , contrasting numerical and experimental results. We
ee good agreement between the IBL model predictions and the
xperiments which is comparable to the agreement between the
28
Fig. 18. Comparison in the cross section of the free surface h + Mm along
y = 0 (top) and y = π (bottom) between the 3D IBL model and experimental
data taken from [40].

numerics and analytics in [40]. Thus, this indirectly shows that
the IBL model agrees well with their analytical work as well as
the results obtained using the OpenFOAM software.

5. Conclusions

Presented in this paper is the three-dimensional steady and
unsteady gravity-driven flow down an incline and over one and
two-dimensional topographies. A new three-dimensional IBL
model was constructed for flows which are primarily unidirec-
tional by blending lubrication theory and IBL modelling. A numer-
ical investigation using Neumann and periodic far-field boundary
conditions was then conducted based on the derived model
where comparisons were made with a steady three-dimensional
lubrication model, an unsteady two-dimensional IBL model, and
with experiments. Various bottom topographies were considered
including smooth localized bumps, periodic corrugations, and a
steep-sided trench.

Although the lubrication model predictions have similar pro-
files as those of the new model, noticeable differences in extreme
values were observed which highlights a shortcoming of lubrica-
tion theory. In spite of the fact that the flow was mainly two di-
mensional, some departures were observed when contrasted with
the results obtained using an unsteady, two-dimensional, second-
order, IBL model. This shows that the spanwise flow, despite
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eing small, has an impact on the overall flow. For low Reynolds
umbers the unsteady flow approached a steady solution for
ll the symmetrical and asymmetrical topographies considered;
owever, for larger Reynolds numbers the flow became unstable
nd succumbed to the formation of waves along the surface.
astly, good agreement between the proposed IBL model and
xperiments was found for the case of a two-dimensional weakly
avy bottom.
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ppendix A. Three-dimensional lubrication model

The steady lubrication model employed in this investigation is
dentical to that derived by Hinton et al. [30]. Here, we will only
ighlight the departures from their model as per the recent work
y D’Alessio [33]. We begin by stating the governing equation
n dimensionless form developed in [30] for the fluid thickness,
(x, y), above the bottom topography denoted by Mm(x, y) where
is a dimensionless parameter

∂

∂x
(h3) = F

[
∂

∂x

(
h3 ∂h

∂x

)
+

∂

∂y

(
h3 ∂h

∂y

)]
+ M

[
∂

∂x

(
h3 ∂m

∂x

)
+

∂

∂y

(
h3 ∂m

∂y

)]
. (A.1)

n the above, the dimensionless parameter F = δ cotβ . As pointed
ut in the alternate formulation proposed in [33], for numerical
urposes it makes sense to introduce the flow variable η = h4.
q. (A.1) then takes the final form

∂η

∂x
= Fη1/4

(
∂2η

∂x2
+

∂2η

∂y2

)
+ 4Mη

(
∂2m
∂x2

+
∂2m
∂y2

)
+ 3M

(
∂m
∂x

∂η

∂x
+

∂m
∂y

∂η

∂y

)
, (A.2)

r more conveniently as

∂2η

∂x2
+

∂2η

∂y2
+ A

∂η

∂x
+ B

∂η

∂y
+ Cη = 0 , (A.3)

here

=
3

Fη1/4

(
M

∂m
∂x

− 1
)

, B =
3M
Fη1/4

∂m
∂y

,

=
4M
Fη1/4

(
∂2m
∂x2

+
∂2m
∂y2

)
.

Equation (A.3) was solved using finite differences [41]. We
ote that although A, B and C depend on η, in the iterative
olution procedure soon to be described we can use the previous
terate of η, and hence, view it as known, albeit approximately.
eplacing all derivatives by second-order, central-difference ap-
roximations results in the following nonlinear algebraic system
f equations

1 +
1
Ai,j∆x)ηi+1,j + (1 −

1
Ai,j∆x)ηi−1,j
2 2

29
+
(∆x)2

(∆y)2

(
1 +

1
2
Bi,j∆y

)
ηi,j+1

+
(∆x)2

(∆y)2

(
1 −

1
2
Bi,j∆y

)
ηi,j−1

=

[
2 + 2

(
∆x
∆y

)2

− Ci,j(∆x)2
]

ηi,j ,

where the notation ηi,j = η(xi, yj) was adopted and ∆x, ∆y de-
note the uniform grid spacings in the x, y directions, respectively.
The above system of equations was solved using a Gauss–Seidel
iterative procedure for all interior grid points (xi, yj). Along the
boundaries of the computational domain an asymptotic gradient
condition derived in [33] was implemented. As an initial guess
ηi,j = 1 was used throughout the entire computational domain
and along the boundaries. The convergence criterion adopted was
that the maximum difference between successive iterates must
be less than a specified tolerance ϵ. Once convergence is reached
we then switch back to the original variable using h = η1/4. No
convergence problems were encountered.

Appendix B. Two-dimensional IBL model

Here we briefly explain how an unsteady, two-dimensional,
second-order IBL model can be derived. We begin by listing the
continuity and horizontal momentum equations in dimensionless
form to second order
∂u
∂x

+
∂w

∂z
= 0 , (B.1)

δRe
(

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= −δRe

∂p
∂x

+ 3 + δ2
∂2u
∂x2

+
∂2u
∂z2

. (B.2)

he pressure can be eliminated by solving the first-order approx-
mation to the vertical momentum equation given by

e
∂p
∂z

= −3 cotβ + δ
∂2w

∂z2
,

subject to

p =
2δ
Re

∂w

∂z
at z = ζ + h ,

here ζ (x) denotes the one-dimensional bottom topography. We
hen integrate Eq. (B.2) from z = ζ to z = ζ + h and make use of
he following stress and kinematic conditions along the surface
= ζ + h

∂u
∂z

= 4δ2
(

ζ ′
+

∂h
∂x

)
∂u
∂x

− δ2
∂w

∂x
,

w =
∂h
∂t

+ u
(

ζ ′
+

∂h
∂x

)
,

and the no-slip conditions u = w = 0 along the bottom z = ζ . In
the above the prime refers to differentiation with respect to x.

Following a similar procedure as that outlined in Section 2
using the profile

u =
3q
2h3 (z − ζ )(2h − z + ζ ) where q =

∫ ζ+h

ζ

udz ,

then leads to the following second-order IBL equations

∂h
∂t

+
∂q
∂x

= 0 , (B.3)

∂q
+

∂
(
6 q2

+
3 cotβ

h2
)

=
3 (

h −
q
2

)
−

3 cotβ
hζ ′
∂t ∂x 5 h 2Re δRe h Re
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+
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Re

[
9
2

∂2q
∂x2

−
6q
h

∂2h
∂x2

−
9qζ ′′

2h
+

3qζ ′

h2

∂h
∂x

−
3ζ ′

h
∂q
∂x

−
6
h

∂h
∂x

∂q
∂x

+
6q
h2

(
∂h
∂x

)2

−
6q(ζ ′)2

h2

]
. (B.4)

ystem (B.3)–(B.4) was solved using the fractional-step method
nd the details can be found in [19].
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