Flow past a slippery cylinder

Serge D'Alessio

Faculty of Mathematics, University of Waterloo, Canada

EFMC12, September 9-13, 2018, Vienna, Austria

Introduction

Problem description and background

Governing equations

Conformal mapping Boundary conditions

Analytical solution procedure

Rescaled equations Asymptotic expansion

Numerical solution procedure

Fourier series decomposition

Results

Circular cylinder Elliptic cylinder

Conclusions

< ∃ >

Problem description and background

The unsteady, laminar, two dimensional flow of a viscous incompressible fluid past a cylinder has been investigated analytically and numerically subject to impermeability and slip conditions for small to moderately large Reynolds numbers. Two geometries were considered: the circular cylinder and an inclined elliptic cylinder.

Problem description and background

Some background information:

- There has been a lot work published for the no-slip case while very little for the slip case
- The no-slip condition is known to fail for: flows of rarified gases, flows within microfluidic / nanofluidic devices, and flows involving hydrophobic surfaces
- The widely used Beavers and Joseph [1967] semi-empirical slip condition was implemented in this study

Conformal mapping Boundary conditions

In dimensionless form and in Cartesian coordinates the governing Navier-Stokes equations can be compactly formulated in terms of the stream function, ψ , and vorticity, ω :

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \zeta$$

$$\frac{\partial \zeta}{\partial t} = \frac{\partial \psi}{\partial y} \frac{\partial \zeta}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \zeta}{\partial y} + \frac{2}{R} \left(\frac{\partial^2 \zeta}{\partial x^2} + \frac{\partial^2 \zeta}{\partial y^2} \right)$$

where R is the Reynolds number.

Conformal mapping Boundary conditions

Introduce the conformal transformation $x + iy = H(\xi + i\theta)$ which transforms the infinite region exterior to the cylinder to the semi-infinite rectangular strip $\xi \ge 0$, $0 \le \theta \le 2\pi$. The governing equations become:

$$\frac{\partial^2 \psi}{\partial \xi^2} + \frac{\partial^2 \psi}{\partial \theta^2} = M^2 \zeta$$
$$M^2 \frac{\partial \zeta}{\partial t} = \frac{\partial \psi}{\partial \theta} \frac{\partial \zeta}{\partial \xi} - \frac{\partial \psi}{\partial \xi} \frac{\partial \zeta}{\partial \theta} + \frac{2}{R} \left(\frac{\partial^2 \zeta}{\partial \xi^2} + \frac{\partial^2 \zeta}{\partial \theta^2} \right)$$

For the circular cylinder:

$$H(\xi + i\theta) = \exp(\xi + i\theta) , \ M^2 = \exp(2\xi)$$

while for the elliptic cylinder:

$$H(\xi + i\theta) = \cosh[(\xi + \xi_0) + i\theta], \ M^2 = \frac{1}{2}[\cosh[2(\xi + \xi_0)] - \cos(2\theta)]$$

where $tanh \xi_0 = r$ with r denoting the aspect ratio

Conformal mapping Boundary conditions

The conformal transformation for the elliptic cylinder is illustrated below:

Introduction Governing equations Analytical solution procedure Numerical solution procedure Results Conformal mapping Boundary conditions

The velocity components (u, v) can be obtained using

$$u = -\frac{1}{M} \frac{\partial \psi}{\partial \theta} , \ v = \frac{1}{M} \frac{\partial \psi}{\partial \xi}$$

and the vorticity is related to these velocity components through

$$\zeta = \frac{1}{M^2} \left[\frac{\partial}{\partial \xi} \left(M v \right) - \frac{\partial}{\partial \theta} \left(M u \right) \right]$$

The surface boundary conditions include the impermeability and Navier-slip conditions given by

$$u=0\;,\;v=etarac{\partial v}{\partial \xi}$$
 at $\xi=0$

where β denotes the slip length.

In terms of ψ and ζ these conditions become

$$\psi = 0 \ , \ \frac{\partial \psi}{\partial \xi} = \left(\frac{\beta M_0^4}{M_0^2 + \frac{\beta}{2} \sinh(2\xi_0)}\right) \zeta \text{ at } \xi = 0$$

In addition, we have the periodicity conditions

$$\psi(\xi, \theta, t) = \psi(\xi, \theta + 2\pi, t), \ \zeta(\xi, \theta, t) = \zeta(\xi, \theta + 2\pi, t)$$

and the far-field conditions

$$\begin{split} \psi &\to e^{\xi} \sin \theta \text{ (circular cylinder)} \\ \psi &\to \frac{1}{2} e^{\xi + \xi_0} \sin(\theta + \alpha) \text{ (elliptic cylinder)} \\ &\zeta &\to 0 \text{ as } \xi \to \infty \end{split}$$

Rescaled equations Asymptotic expansion

To adequately resolve the impulsive start and early flow development we introduce the boundary-layer coordinate z and rescale the flow variables according to

$$\xi = \lambda z$$
, $\psi = \lambda \Psi$, $\zeta = \omega / \lambda$ where $\lambda = \sqrt{rac{8t}{R}}$

The governing equations transform to

$$\frac{\partial^2 \Psi}{\partial z^2} + \lambda^2 \frac{\partial^2 \Psi}{\partial \theta^2} = M^2 \omega$$

$$\frac{1}{M^2}\frac{\partial^2\omega}{\partial z^2} + 2z\frac{\partial\omega}{\partial z} + 2\omega = 4t\frac{\partial\omega}{\partial t} - \frac{\lambda^2}{M^2}\frac{\partial^2\omega}{\partial \theta^2} - \frac{4t}{M^2}\left(\frac{\partial\Psi}{\partial\theta}\frac{\partial\omega}{\partial z} - \frac{\partial\Psi}{\partial z}\frac{\partial\omega}{\partial\theta}\right)$$

Rescaled equations Asymptotic expansion

Illustration of boundary-layer coordinates expanding with time: t_1 (left) and $t_2 > t_1$ (right).

Rescaled equations Asymptotic expansion

For small times and large Reynolds numbers both λ and t will be small. Based on this we can expand the flow variables in a double series in terms of λ and t. First we expand Ψ and ω in a series of the form

$$\Psi = \Psi_0 + \lambda \Psi_1 + \lambda^2 \Psi_2 + \cdots$$
$$\omega = \omega_0 + \lambda \omega_1 + \lambda^2 \omega_2 + \cdots$$

and then each $\Psi_n, \omega_n, n = 0, 1, 2, \cdots$, is further expanded in a series

$$\Psi_n(z,\theta,t) = \Psi_{n0}(z,\theta) + t\Psi_{n1}(z,\theta) + \cdots$$
$$\omega_n(z,\theta,t) = \omega_{n0}(z,\theta) + t\omega_{n1}(z,\theta) + \cdots$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Rescaled equations Asymptotic expansion

We note that when performing a double expansion the internal orders of magnitudes between the expansion parameters should be taken into account. Here, λ and t will be equal when t = 8/R, and thus, for a fixed value of R the procedure is expected to be valid for times that are of order 1/R provided that R is sufficiently large. The following leading-order non-zero terms in the expansions have been determined:

$$\Psi \sim \Psi_{00} + \lambda \ \Psi_{10} \ , \ \omega \sim \lambda \ \omega_{10} + \lambda^2 \ \omega_{20}$$

This approximate solution will be used to validate the numerical solution procedure.

The flow variables are expanded in a truncated Fourier series of the form:

$$\Psi(z,\theta,t) = \frac{F_0(z,t)}{2} + \sum_{n=1}^{N} [F_n(z,t)\cos(n\theta) + f_n(z,t)\sin(n\theta)]$$

$$\omega(z,\theta,t) = \frac{G_0(z,t)}{2} + \sum_{n=1}^{N} [G_n(z,t)\cos(n\theta) + g_n(z,t)\sin(n\theta)]$$

The resulting differential equations for the Fourier coefficients are then solved by finite differences subject to the boundary and far-field conditions. The computational parameters used were:

$$z_{\infty} = 10 \;,\; N = 25 \;, \Delta z = 0.05 \;,\; \Delta t = 0.01 \;,\; \varepsilon = 10^{-6}$$

For the circular cylinder the flow is completely characterized by the Reynolds number, R, and the slip length, β . For the no-slip case $(\beta = 0)$ comparisons in the drag coefficient, C_D , were made with documented results:

R	Reference	CD
40	Present (unsteady, $t = 25$)	1.612
	Dennis & Chang [1970] (steady)	1.522
	Fornberg [1980] (steady)	1.498
	D'Alessio & Dennis [1994] (steady)	1.443
100	Present (unsteady, $t = 25$)	1.195
	Dennis & Chang [1970] (steady)	1.056
	Fornberg [1980] (steady)	1.058
	D'Alessio & Dennis [1994] (steady)	1.077

Circular cylinder Elliptic cylinder

Comparison in surface vorticity distribution for R = 1,000 and $\beta = 0.5$. Numerical - solid line Analytical - dashed line

・ロト ・日本 ・モート ・モート

Circular cylinder Elliptic cylinder

Streamline plots at t = 15 for R = 500and $\beta = 0, 0.1, 0.5, 1$ from top to bottom, respectively.

Circular cylinder Elliptic cylinder

0

í٥

5

t

10

・ロト ・回ト ・ヨト ・ヨト

Circular cylinder Elliptic cylinder

・ロト ・日本 ・モート ・モート

Circular cylinder Elliptic cylinder

・ロト ・回ト ・ヨト ・ヨト

Streamline plots for R = 1,000 at t = 1, 2, 5, 10from top to bottom, respectively, with $\beta = 0$ (left) and $\beta = 1$ (right).

For the elliptic cylinder the flow is completely characterized by the Reynolds number, R, the slip length, β , the inclination, α , and the aspect ratio, r. For the no-slip case ($\beta = 0$) comparisons in the drag and lift coefficients (C_D , C_L) were made with documented results for R = 20 and r = 0.2:

	Dennis & Young		D'Alessio & Dennis		Present	
	[2003] (steady)		[1994] (steady)		(unsteady, $t=10$)	
α	C_D	C_L	C_D	C_L	C _D	C_L
20°	1.296	0.741	1.305	0.751	1.382	0.737
40°	1.602	0.947	1.620	0.949	1.786	0.985
60°	1.911	0.706	1.931	0.706	2.228	0.748

Circular cylinder Elliptic cylinder

Comparison in $|C_D|$, C_L between present (solid line) and Staniforth [1972] (dashed line) no-slip results for the case R = 6,250, r = 0.6 and $\alpha = 15^{\circ}$.

・ロト ・回ト ・ヨト

Circular cylinder Elliptic cylinder

Comparison in surface vorticity distributions for the case $R = 1,000, \beta = 0.5, \alpha = 45^{\circ}$ and r = 0.5. Numerical - solid line Analytical - dashed line

・ロト ・日本 ・モート ・モート

Circular cylinder Elliptic cylinder

Streamline plots for R = 500, r = 0.5, $\alpha = 45^{\circ}$ and $\beta = 0$ at selected times t = 0.65, 0.75, 1, 3, 5, 9, 10 from top to bottom, respectively.

Circular cylinder Elliptic cylinder

2.5

t

・ロト ・日本 ・モート ・モート

2.5

t

Circular cylinder Elliptic cylinder

・ロト ・日本 ・モート ・モート

Streamline plots for R = 500, r = 0.5 and $\alpha = 45^{\circ}$ at t = 3, 5, 7, 9, 10, 15 from top to bottom, respectively, with $\beta = 0.25$ (left) and $\beta = 0.5$ (right).

Circular cylinder Elliptic cylinder

Surface vorticity distributions at t = 15for R = 500, r = 0.5and $\alpha = 45^{\circ}$ with $\beta = 0, 0.25, 0.5$.

・ロト ・日本 ・モート ・モート

æ

- Slip flow past a cylinder was investigated analytically and numerically
- Circular and elliptic cylinders were considered over a small to moderately large Reynolds number range
- Excellent agreement between the analytical and numerical solutions was found
- Good agreement with previous studies for the no-slip case was also found
- The slip condition was observed to suppress flow separation and vortex shedding
- The key finding is a reduction in drag when compared to the corresponding no-slip case
- For more details see the papers: Acta Mechanica, 229, 3375 - 3392, 2018 Acta Mechanica, 229, 3415 - 3436, 2018