
UWlogo

Introduction
Governing equations

Analytical solution procedure
Numerical solution procedure

Results
Conclusions

Flow past a slippery cylinder

Serge D’Alessio

Faculty of Mathematics,
University of Waterloo, Canada

EFMC12, September 9-13, 2018, Vienna, Austria

Serge D’Alessio Flow past a slippery cylinder



UWlogo

Introduction
Governing equations

Analytical solution procedure
Numerical solution procedure

Results
Conclusions

Introduction
Problem description and background

Governing equations
Conformal mapping
Boundary conditions

Analytical solution procedure
Rescaled equations
Asymptotic expansion

Numerical solution procedure
Fourier series decomposition

Results
Circular cylinder
Elliptic cylinder

Conclusions

Serge D’Alessio Flow past a slippery cylinder



UWlogo

Introduction
Governing equations

Analytical solution procedure
Numerical solution procedure

Results
Conclusions

Problem description and background

The unsteady, laminar, two dimensional flow of a viscous
incompressible fluid past a cylinder has been investigated
analytically and numerically subject to impermeability and slip
conditions for small to moderately large Reynolds numbers. Two
geometries were considered: the circular cylinder and an inclined
elliptic cylinder.
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Figure 1: The flow setup for uniform right-to-left flow.
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Problem description and background

Some background information:

I There has been a lot work published for the no-slip case while
very little for the slip case

I The no-slip condition is known to fail for: flows of rarified
gases, flows within microfluidic / nanofluidic devices, and
flows involving hydrophobic surfaces

I The widely used Beavers and Joseph [1967] semi-empirical slip
condition was implemented in this study

Serge D’Alessio Flow past a slippery cylinder
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In dimensionless form and in Cartesian coordinates the governing
Navier-Stokes equations can be compactly formulated in terms of
the stream function, ψ, and vorticity, ω:

∂2ψ

∂x2
+
∂2ψ

∂y2
= ζ

∂ζ

∂t
=
∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y
+

2

R

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
where R is the Reynolds number.
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Introduce the conformal transformation x + iy = H(ξ + iθ) which
transforms the infinite region exterior to the cylinder to the
semi-infinite rectangular strip ξ ≥ 0 , 0 ≤ θ ≤ 2π. The governing
equations become:

∂2ψ

∂ξ2
+
∂2ψ

∂θ2
= M2ζ

M2∂ζ

∂t
=
∂ψ

∂θ

∂ζ

∂ξ
− ∂ψ

∂ξ

∂ζ

∂θ
+

2

R

(
∂2ζ

∂ξ2
+
∂2ζ

∂θ2

)
For the circular cylinder:

H(ξ + iθ) = exp(ξ + iθ) , M2 = exp(2ξ)

while for the elliptic cylinder:

H(ξ+ iθ) = cosh[(ξ+ ξ0) + iθ] , M2 =
1

2
[cosh[2(ξ+ ξ0)]− cos(2θ)

where tanh ξ0 = r with r denoting the aspect ratio.
Serge D’Alessio Flow past a slippery cylinder
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The conformal transformation for the elliptic cylinder is illustrated
below: CHAPTER 2. THE GOVERNING EQUATIONS 16

xy

θ

2π

0 ξ

x+ iy = cosh [(ξ + ξ0) + iθ]

Figure 2.1: The conformal transformation

where tanh ξ0 = r, and r = a
b

is the ratio of the semi-minor to semi-major axes of

the ellipse.

This choice of the constant ξ0 is such that the contour ξ = 0 will coincide with

the surface of the cylinder. In terms of the coordinates (ξ, θ), the domain is confined

to the semi-infinite rectangular strip ξ ≥ 0, 0 ≤ θ ≤ 2π, (see figure 2.1). In the

above figure, θ = 0 and θ = π correspond to the leading and trailing tips of the

cylinder respectively.

This transformation has been used in several other works, including D’Alessio

[4] and Saunders [15].

Recalling that:

coshx =
ex + e−x

2
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The velocity components (u, v) can be obtained using

u = − 1

M

∂ψ

∂θ
, v =

1

M

∂ψ

∂ξ

and the vorticity is related to these velocity components through

ζ =
1

M2

[
∂

∂ξ
(Mv)− ∂

∂θ
(Mu)

]
The surface boundary conditions include the impermeability and
Navier-slip conditions given by

u = 0 , v = β
∂v

∂ξ
at ξ = 0

where β denotes the slip length.

Serge D’Alessio Flow past a slippery cylinder
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In terms of ψ and ζ these conditions become

ψ = 0 ,
∂ψ

∂ξ
=

(
βM4

0

M2
0 + β

2 sinh(2ξ0)

)
ζ at ξ = 0

In addition, we have the periodicity conditions

ψ(ξ, θ, t) = ψ(ξ, θ + 2π, t) , ζ(ξ, θ, t) = ζ(ξ, θ + 2π, t)

and the far-field conditions

ψ → eξ sin θ (circular cylinder)

ψ → 1

2
eξ+ξ0 sin(θ + α) (elliptic cylinder)

ζ → 0 as ξ →∞
Serge D’Alessio Flow past a slippery cylinder
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Rescaled equations
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To adequately resolve the impulsive start and early flow
development we introduce the boundary-layer coordinate z and
rescale the flow variables according to

ξ = λz , ψ = λΨ , ζ = ω/λ where λ =

√
8t

R

The governing equations transform to

∂2Ψ

∂z2
+ λ2

∂2Ψ

∂θ2
= M2ω

1

M2

∂2ω

∂z2
+2z

∂ω

∂z
+2ω = 4t

∂ω

∂t
− λ2

M2

∂2ω

∂θ2
− 4t

M2

(
∂Ψ

∂θ

∂ω

∂z
− ∂Ψ

∂z

∂ω

∂θ

)
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Illustration of boundary-layer coordinates expanding with time:
t1 (left) and t2 > t1 (right).

Figure 1: Streamline plots for R = 1, 000 at t = 1, 2, 5, 10 from top to bottom, respectively with
β = 0 (left) and β = 1 (right). Serge D’Alessio Flow past a slippery cylinder
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For small times and large Reynolds numbers both λ and t will be
small. Based on this we can expand the flow variables in a double
series in terms of λ and t. First we expand Ψ and ω in a series of
the form

Ψ = Ψ0 + λΨ1 + λ2Ψ2 + · · ·
ω = ω0 + λω1 + λ2ω2 + · · ·

and then each Ψn, ωn, n = 0, 1, 2, · · · , is further expanded in a
series

Ψn(z , θ, t) = Ψn0(z , θ) + tΨn1(z , θ) + · · ·
ωn(z , θ, t) = ωn0(z , θ) + tωn1(z , θ) + · · ·

Serge D’Alessio Flow past a slippery cylinder
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We note that when performing a double expansion the internal
orders of magnitudes between the expansion parameters should be
taken into account. Here, λ and t will be equal when t = 8/R,
and thus, for a fixed value of R the procedure is expected to be
valid for times that are of order 1/R provided that R is sufficiently
large. The following leading-order non-zero terms in the expansions
have been determined:

Ψ ∼ Ψ00 + λ Ψ10 , ω ∼ λ ω10 + λ2 ω20

This approximate solution will be used to validate the numerical
solution procedure.

Serge D’Alessio Flow past a slippery cylinder
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Fourier series decomposition

The flow variables are expanded in a truncated Fourier series of the
form:

Ψ(z , θ, t) =
F0(z , t)

2
+

N∑
n=1

[Fn(z , t) cos(nθ) + fn(z , t) sin(nθ)]

ω(z , θ, t) =
G0(z , t)

2
+

N∑
n=1

[Gn(z , t) cos(nθ) + gn(z , t) sin(nθ)]

The resulting differential equations for the Fourier coefficients are
then solved by finite differences subject to the boundary and
far-field conditions. The computational parameters used were:

z∞ = 10 , N = 25 ,∆z = 0.05 , ∆t = 0.01 , ε = 10−6

Serge D’Alessio Flow past a slippery cylinder
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Circular cylinder
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For the circular cylinder the flow is completely characterized by the
Reynolds number, R, and the slip length, β. For the no-slip case
(β = 0) comparisons in the drag coefficient, CD , were made with
documented results:

R Reference CD

40 Present (unsteady, t = 25) 1.612
Dennis & Chang [1970] (steady) 1.522
Fornberg [1980] (steady) 1.498
D’Alessio & Dennis [1994] (steady) 1.443

100 Present (unsteady, t = 25) 1.195
Dennis & Chang [1970] (steady) 1.056
Fornberg [1980] (steady) 1.058
D’Alessio & Dennis [1994] (steady) 1.077

Serge D’Alessio Flow past a slippery cylinder
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Circular cylinder
Elliptic cylinder

Comparison in surface
vorticity distribution for
R = 1, 000 and
β = 0.5.
Numerical - solid line
Analytical - dashed line

0 50 100 150 200 250 300 350
−5

0

5

θ

ζ 0

0 50 100 150 200 250 300 350
−5

0

5

ζ 0

θ

0 50 100 150 200 250 300 350
−5

0

5

θ

ζ 0

t = 1

t = 0.5

t = 0.1

Serge D’Alessio Flow past a slippery cylinder



UWlogo

Introduction
Governing equations

Analytical solution procedure
Numerical solution procedure

Results
Conclusions

Circular cylinder
Elliptic cylinder

Streamline plots at
t = 15 for R = 500
and β = 0, 0.1, 0.5, 1
from top to bottom,
respectively.

Figure 1: Streamline plots at t = 15 for R = 500 and β = 0, 0.1, 0.5, 1 from top to bottom,
respectively.
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Time variation of CD

for R = 500 and
β = 0, 0.1, 0.5, 1.
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The distribution of the
pressure coefficient, P∗,
at t = 15 for R = 500
and β = 0, 0.1, 0.5, 1.
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Circular cylinder
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Streamline
plots for
R = 1, 000 at
t = 1, 2, 5, 10
from top to
bottom,
respectively,
with β = 0
(left) and
β = 1 (right).

Figure 1: Streamline plots for R = 1, 000 at t = 1, 2, 5, 10 from top to bottom, respectively with
β = 0 (left) and β = 1 (right).

Serge D’Alessio Flow past a slippery cylinder



UWlogo

Introduction
Governing equations

Analytical solution procedure
Numerical solution procedure

Results
Conclusions

Circular cylinder
Elliptic cylinder

For the elliptic cylinder the flow is completely characterized by the
Reynolds number, R, the slip length, β, the inclination, α, and the
aspect ratio, r . For the no-slip case (β = 0) comparisons in the
drag and lift coefficients (CD ,CL) were made with documented
results for R = 20 and r = 0.2:

Dennis & Young D’Alessio & Dennis Present
[2003] (steady) [1994] (steady) (unsteady, t = 10)

α CD CL CD CL CD CL

20◦ 1.296 0.741 1.305 0.751 1.382 0.737
40◦ 1.602 0.947 1.620 0.949 1.786 0.985
60◦ 1.911 0.706 1.931 0.706 2.228 0.748

Serge D’Alessio Flow past a slippery cylinder
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Circular cylinder
Elliptic cylinder

Comparison in |CD |,CL

between present (solid
line) and Staniforth
[1972] (dashed line)
no-slip results for the
case R = 6, 250,
r = 0.6 and α = 15◦.
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Circular cylinder
Elliptic cylinder

Comparison in surface
vorticity distributions
for the case
R = 1, 000, β = 0.5,
α = 45◦ and r = 0.5.
Numerical - solid line
Analytical - dashed line
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Circular cylinder
Elliptic cylinder

Streamline plots for
R = 500, r = 0.5,
α = 45◦ and β = 0 at
selected times t =
0.65, 0.75, 1, 3, 5, 9, 10
from top to bottom,
respectively.

Figure 1: Streamline plots for R = 500, r = 0.5, α = 45◦ and β = 0 at selected times
t = 0.65, 0.75, 1, 3, 5, 9, 10 from top to bottom, respectively.Serge D’Alessio Flow past a slippery cylinder
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Circular cylinder
Elliptic cylinder

Time variation in
|CD |,CL for the case
R = 500, r = 0.5,
α = 45◦ and β = 0.
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Circular cylinder
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Time variation in |CD |
for the cases R = 500,
r = 0.5, α = 45◦ and
β = 0, 0.25, 0.5.

0 5 10 15
0

0.5

1

1.5

2

2.5

3

t

|C
D
|

 

 
β = 0
β = 0.25
β = 0.5

Serge D’Alessio Flow past a slippery cylinder



UWlogo

Introduction
Governing equations

Analytical solution procedure
Numerical solution procedure

Results
Conclusions

Circular cylinder
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Time variation in CL

for the cases R = 500,
r = 0.5, α = 45◦ and
β = 0, 0.25, 0.5.
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Circular cylinder
Elliptic cylinder

Streamline plots for
R = 500, r = 0.5 and
α = 45◦ at
t = 3, 5, 7, 9, 10, 15
from top to bottom,
respectively, with
β = 0.25 (left) and
β = 0.5 (right).

Figure 1: Streamline plots for R = 500, r = 0.5, α = 45◦ at t = 3, 5, 7, 9, 10, 15 from top to
bottom, respectively with β = 0.25 (left) and β = 0.5 (right).
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Circular cylinder
Elliptic cylinder

Surface vorticity
distributions at t = 15
for R = 500, r = 0.5
and α = 45◦ with
β = 0, 0.25, 0.5.

0 50 100 150 200 250 300 350
−30

−20

−10

0

10

20

30

40

50

60

θ

ζ 0

 

 

β = 0

β = 0.25

β = 0.5

Serge D’Alessio Flow past a slippery cylinder



UWlogo

Introduction
Governing equations

Analytical solution procedure
Numerical solution procedure

Results
Conclusions

I Slip flow past a cylinder was investigated analytically and
numerically

I Circular and elliptic cylinders were considered over a small to
moderately large Reynolds number range

I Excellent agreement between the analytical and numerical
solutions was found

I Good agreement with previous studies for the no-slip case was
also found

I The slip condition was observed to suppress flow separation
and vortex shedding

I The key finding is a reduction in drag when compared to the
corresponding no-slip case

I For more details see the papers:
Acta Mechanica, 229, 3375 - 3392, 2018
Acta Mechanica, 229, 3415 - 3436, 2018
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