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Flow Configuration

Abstract

This study presents a numerical method for solving the unsteady problem of laminar free convection
from a heated tube in an otherwise quiescent fluid. The tube is taken to have an elliptic cross-section
with a constant surface heat flux. The fluid is viscous and incompressible and the Boussinesq approx-
imation is used to describe the buoyancy force driving the flow. Since the flow is assumed to remain
two-dimensional for all time, the Navier-Stokes and energy equations are formulated in terms of the
streamfunction and vorticity. A conformal mapping suitable for the elliptic geometry is introduced.
The setup is illustrated in Figure 1 and is completely characterized by the following dimensionless
parameters: the Grashof number, Gr, the Prandtl number, Pr, the angle of inclination of the tube
with the horizontal, η, and the tube aspect ratio, r = b/a.

The numerical scheme is designed to handle a large range of Grashof numbers and to capture the
physical behaviour inherent in the initial flow. For example, because of the impulsively applied heat
flux, Q, on the surface, a transformation which stretches the radial coordinate is introduced to better
resolve the thin thermal-boundary layer. This boundary-layer coordinate is used to compute the early
stages of the flow. However, once the boundary layer thickens appreciably the numerical scheme then
switches back to the original coordinate to integrate the equations for large times. To numerically solve
the governing equations a spectral finite-difference method is proposed. The temperature and vorticity
are advanced in time using an implicit scheme of Crank-Nicholson type. The streamfunction, on the
other hand, is expanded in a truncated Fourier series where an efficient marching algorithm is employed
to solve the resulting set of ordinary differential equations. To determine the surface vorticity exact
integral conditions are derived and incorporated into the numerical method.

The numerical results have been verified against derived analytical solutions which are valid for small
times. The numerical and analytical results were found to be in good agreement. The next stage is
to make connections with experimental results to further demonstrate that the proposed numerical
method realistically mimics the physical problem in the laminar regime.

Figure 1: The flow setup
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Fluid Properties:
ν - kinematic viscosity
κ - thermal diffusivity
k - thermal conductivity
α - thermal expansion coefficient
Equation of State:
ρ = ρ∞[1− α(T − T∞)]
Dimensionless Parameters:

Gr =
αg∆Tc3

ν2
where c =

√
a2 − b2

and ∆T =
Qc

k
, Pr =

ν

κ
, η, r
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Applications

Unsteady free convection from a heated tube is a fundamental
problem and is of interest for theoretical and practical reasons.
Applications include:

hot wire anemometry
thermal pollution
design of heat exchangers

Serge D’Alessio sdalessio@uwaterloo.ca Impulsively Generated Convection
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Goals

The present study differs from previous investigations in the
following ways:

extend previous results on circular cylinders ([1])
propose a new robust numerical method designed to
capture the known physical behaviour
offer an analytical solution procedure useful for theoretical
and validation purposes
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Coordinate SystemCHAPTER 2. THE GOVERNING EQUATIONS 16

xy

θ

2π

0 ξ

x+ iy = cosh [(ξ + ξ0) + iθ]

Figure 2.1: The conformal transformation

where tanh ξ0 = r, and r = a
b

is the ratio of the semi-minor to semi-major axes of

the ellipse.

This choice of the constant ξ0 is such that the contour ξ = 0 will coincide with

the surface of the cylinder. In terms of the coordinates (ξ, θ), the domain is confined

to the semi-infinite rectangular strip ξ ≥ 0, 0 ≤ θ ≤ 2π, (see figure 2.1). In the

above figure, θ = 0 and θ = π correspond to the leading and trailing tips of the

cylinder respectively.

This transformation has been used in several other works, including D’Alessio

[4] and Saunders [15].

Recalling that:

coshx =
ex + e−x

2
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Navier-Stokes & Temperature Equations

The dimensionless unsteady equations for a viscous,
incompressible fluid in terms of the streamfunction, ψ, vorticity,
ζ, and temperature, φ, are:

∂2ψ

∂ξ2 +
∂2ψ

∂θ2 = M2ζ

∂ζ

∂t
=

1
M2

[
∂ψ

∂θ

∂ζ

∂ξ
− ∂ψ

∂ξ

∂ζ

∂θ
+

1√
Gr

(
∂2ζ

∂ξ2 +
∂2ζ

∂θ2

)
+ A

∂φ

∂ξ
− B

∂φ

∂θ

]
∂φ

∂t
=

1
M2

[
∂ψ

∂θ

∂φ

∂ξ
− ∂ψ

∂ξ

∂φ

∂θ
+

1√
GrPr

(
∂2φ

∂ξ2 +
∂2φ

∂θ2

)]
where functions M,A,B are related to the geometry.
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Boundary, Initial & Integral Conditions

Surface conditions include no-slip and constant heat flux:

ψ =
∂ψ

∂ξ
= 0 and

1
M
∂φ

∂ξ
= −1 on ξ = 0

Far-field conditions: ψ , ζ , φ→ 0 as ξ →∞
Initial conditions: ψ = ζ = φ = 0 at t = 0
The vorticity can be shown to satisfy global conditions:∫ ∞

0

∫ 2π

0
e−nξM2ζ sin(nθ)dθdξ = 0 , n = 1,2, · · ·

∫ ∞

0

∫ 2π

0
e−nξM2ζ cos(nθ)dθdξ = 0 , n = 0,1, · · ·

Serge D’Alessio sdalessio@uwaterloo.ca Impulsively Generated Convection
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Boundary Layer Transformation

Introduce boundary-layer coordinate: ξ = λz , λ =
√

4t√
Gr

The grid expands with time as illustrated below:

Serge D’Alessio sdalessio@uwaterloo.ca Impulsively Generated Convection
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Boundary Layer Transformation

The governing equations then become:

∂2ψ

∂z2 + λ2∂
2ψ

∂θ2 = λ2M2ζ

1
M2

∂2ζ

∂z2 + 2z
∂ζ

∂z
= 4t

∂ζ

∂t
− λ2

M2
∂2ζ

∂θ2

+
4t
λM2

(
∂ψ

∂z
∂ζ

∂θ
− ∂ψ

∂θ

∂ζ

∂z

)
− 4tA
λM2

∂φ

∂z
+

4tB
M2

∂φ

∂θ

1
PrM2

∂2φ

∂z2 +2z
∂φ

∂z
= 4t

∂φ

∂t
− λ2

PrM2
∂2φ

∂θ2 +
4t
λM2

(
∂ψ

∂z
∂φ

∂θ
− ∂ψ

∂θ

∂φ

∂z

)
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Discretization

Early stages of the flow are computed using the boundary-layer
coordinate z. Once the boundary layer thickens the flow is
computed using the original coordinate ξ. For large Gr it is
more practical to work entirely in the coordinate z.
The computational domain bounded by 0 ≤ z ≤ z∞ and
0 ≤ θ ≤ 2π is discretized into a uniform network of K × L grid
points located at

zi = ihz , i = 0,1, . . . ,K , hz =
z∞
K

θj = jhθ , j = 0,1, . . . ,L , hθ =
2π
L

z∞ denotes the outer boundary approximating infinity.
Serge D’Alessio sdalessio@uwaterloo.ca Impulsively Generated Convection
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Solution of Streamfunction

The streamfunction is expanded into a truncated Fourier series

ψ(z, θ, t) =
1
2

F0(z, t) +
N∑

n=1

[Fn(z, t) cos(nθ) + fn(z, t) sin(nθ)]

The Fourier coefficients satisfy

∂2Fn

∂z2 − n2λ2Fn = λ2sn(z, t) , n = 0, 1, · · ·

∂2fn
∂z2 − n2λ2fn = λ2rn(z, t) , n = 1, · · ·

At a fixed time these equations are effectively ODEs and are
integrated using marching algorithms.

Serge D’Alessio sdalessio@uwaterloo.ca Impulsively Generated Convection
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Solution of Streamfunction

The functions rn(z, t) and sn(z, t) are given by

sn(z, t) =
1
π

∫ 2π

0
M2ζ cos(nθ)dθ

rn(z, t) =
1
π

∫ 2π

0
M2ζ sin(nθ)dθ

and satisfy the intergal conditions∫ ∞

0
e−nλzsn(z, t)dz = 0 , n = 0,1,2, · · ·∫ ∞

0
e−nλzrn(z, t)dz = 0 , n = 1,2, · · ·

Serge D’Alessio sdalessio@uwaterloo.ca Impulsively Generated Convection
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Solution of Vorticity & Temperature

The transport equations for ζ, φ can be cast in generic form

t
∂χ

∂t
= q(z, θ, t)

This equation is solved using the Crank-Nicholson implicit
procedure. The solution is advanced from time t to time t + ∆t
by integrating the above

χτ |t+∆t
t −

∫ t+∆t

t
χdτ =

∫ t+∆t

t
qdτ

Approximating the integrals using the trapezoidal rule yields

χ(z, θ, t + ∆t) = χ(z, θ, t) + (
∆t

2t + ∆t
)[q(z, θ, t + ∆t) + q(z, θ, t)]

The resulting algebraic system is then solved iteratively.
Serge D’Alessio sdalessio@uwaterloo.ca Impulsively Generated Convection
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Determination of Surface Vorticity

The surface vorticity is determined by inverting the expressions
for rn and sn. This leads to the truncated Fourier series

ζ(0, θ, t) =
1

M2
0
{1

2
s0(0, t)+

N∑
n=1

[rn(0, t) sin(nθ)+sn(0, t) cos(nθ)]}

The quantities sn(0, t) and rn(0, t) are computed by enforcing
the integral conditions. That is, off the cylinder surface rn and sn
can be computed using the most recent guess for ζ. Then,
sn(0, t) and rn(0, t) are computed by numerically satisfying the
integral constraints.

Serge D’Alessio sdalessio@uwaterloo.ca Impulsively Generated Convection
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Summary of Numerical Algorithm

The following steps are performed (p ≡ iteration counter ):
1. solve for φ(p)(z, θ, t + ∆t),
2. solve for ζ(p)(z, θ, t + ∆t) for z 6= 0,
3. compute r (p)

n (z, t + ∆t), s(p)
n (z, t + ∆t) for z 6= 0,

4. calculate r (p)
n (0, t + ∆t), s(p)

n (0, t + ∆t) by enforcing the
integral conditions and hence compute ζ(p)(0, θ, t + ∆t),
5. solve for f (p)

n (z, t + ∆t), F (p)
n (z, t + ∆t) and thus obtain

ψ(p)(z, θ, t + ∆t),
6. repeat above steps till convergence is reached and
increment p by 1.
Convergence is reached when the difference between two
successive iterates of the surface vorticity is less than ε.

Serge D’Alessio sdalessio@uwaterloo.ca Impulsively Generated Convection
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Computational Parameters

After performing numerous numerical experiments, the
following computational parameters were chosen:

N = 25 , ε = 10−6 , z∞ = 10

A typical grid size used was K × L = 200× 120. Because of
the impulsive start, small time steps of ∆t = 10−3 were used
initially. As time increased the time step was gradually
increased to ∆t = 0.05. Results were obtained using values

r = 0.5 , η = 45◦ , Pr = 0.7 for Gr = 102 and Gr = 104

Serge D’Alessio sdalessio@uwaterloo.ca Impulsively Generated Convection
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Isotherm Plots

Isotherm plot for
Gr = 102, η = π

4 ,
Pr = 0.7, r = 0.5 at
t = 2.5 (conduction
regime).
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Isotherm Plots

Isotherm plot for
Gr = 102, η = π

4 ,
Pr = 0.7, r = 0.5 at
t = 100 (well
developed plume).
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Isotherm Plots

Isotherm plot for
Gr = 104, η = π

4 ,
Pr = 0.7, r = 0.5 at
t = 15.
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Isotherm Plots

Isotherm plot for
Gr = 104, η = π

4 ,
Pr = 0.7, r = 0.5 at
t = 20.
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Isotherm Plots

Isotherm plot for
Gr = 104, η = π

4 ,
Pr = 0.7, r = 0.5 at
t = 25.
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Surface Vorticity Plots

Surface vorticity distributions
for Gr = 104, η = π

4 ,
Pr = 0.7, r = 0.5.
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Surface Temperature Plots

Surface temperature
distributions for
Gr = 104, η = π

4 ,
Pr = 0.7, r = 0.5.
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Analytical Validation

For large Gr and small t it is possible to expand the flow
variables in the double series:

χ = χ0 + λχ1 + λ2χ2 + · · ·

where each χn (n = 0,1,2, · · · ) is further expanded:

χn(z, θ, t) = χn0(z, θ) + tχn1(z, θ) + · · ·

The leading-order solution for the temperature is:

φ(z, θ, t) ∼ 2
√

t√
πPr

√
Gr

(e−PrM2
0 z2 −

√
πPrM0zerfc(

√
PrM0z))

Serge D’Alessio sdalessio@uwaterloo.ca Impulsively Generated Convection
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Average Surface Temperature

Comparison of time variation
of average surface
temperature for
Gr = 104, η = π

4 ,
Pr = 0.7, r = 0.5. Good
agreement for small t ;
agreement worsens with
time.
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Concluding Remarks

Impulsively generated convection from an elliptic cylinder
was investigated
The numerical method presented is successful for
computing unsteady flows for a wide range of Grashof
numbers
Numerical results were supported by analytical results
The technique can be easily extended to handle other
cross sections
Future work includes comparisons with experiments ([4])
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