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Introduction

Flow Configuration

Fluid Properties:
y v - kinematic viscosity
K - thermal diffusivity
e n 9 k - thermal conductivity
« - thermal expansion coefficient

Equation of State:
P = poo[l — (T — To)]

Q Dimensionless Parameters:
agATc? -
Gr = ——5— where ¢ = Va2 - b?
Far Field Density, poo Y“Qc v
Far Field Temperature, T, and AT = o Pr=—n,r
K
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Motivation

Applications

Unsteady free convection from a heated tube is a fundamental
problem and is of interest for theoretical and practical reasons.
Applications include:

@ hot wire anemometry

@ thermal pollution

@ design of heat exchangers
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Motivation

The present study differs from previous investigations in the
following ways:
@ extend previous results on circular cylinders ([1])

@ propose a new robust numerical method designed to
capture the known physical behaviour

@ offer an analytical solution procedure useful for theoretical
and validation purposes
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Governing Equations

Coordinate System

<
8

x + iy = cosh [(§ + &) + 0]

39
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Governing Equations

Navier-Stokes & Temperature Equations

The dimensionless unsteady equations for a viscous,
incompressible fluid in terms of the streamfunction, 1, vorticity,

¢, and temperature, ¢, are:

oC _ 1 [9poC 0pac 1 ¢ a2c>+Aa¢_Ba¢]
81‘_/\/72{8085 D€ 06 @(ag 062 o 00

96 _ 1 [wos owos 1 (Po 0%
ot M2 00 0 0600  /GrPr \ 02 = 062
where functions M, A, B are related to the geometry.
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Governing Equations

Boundary, Initial & Integral Conditions

Surface conditions include no-slip and constant heat flux:

o0y 100
Y= o€ =0 and MoE
Far-field conditions: ¢, (, ¢ — 0 as & — x
Initial conditions: v =(=¢=0att=0
The vorticity can be shown to satisfy global conditions:

-1 on ¢=0

oo p2m
/ / e " M2(sin(nf)dods =0, n=1,2, -
0 0
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Governing Equations

Boundary Layer Transformation

4t

Introduce boundary-layer coordinate: £ = Az, A = Nier

The grid expands with time as illustrated below:
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Governing Equations

Boundary Layer Transformation

The governing equations then become:

>y - Azaz—w

2742
022 gz — M

1 9%¢C ¢ ¢ N 9%
LIS L0, oSS A YS
M2az2 Loz = ot T MR aeR

4t (999C 00 OC)  4tA Do  4tBOY
9200 900z) IM2oz ' M2 o0

1 9% op 0p N 9%¢ 4t <8¢8¢ 81/1(%)

M2\ 0z90 900z) IMRoz

TP 10,9 _ 4492
PrvEaz2 2%az = ot P 02 T e

0z 00 000z
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Numerical Solution Procedure

Discretization

Early stages of the flow are computed using the boundary-layer
coordinate z. Once the boundary layer thickens the flow is
computed using the original coordinate £. For large Gr it is
more practical to work entirely in the coordinate z.

The computational domain bounded by 0 < z < z,, and

0 < 6 < 27 is discretized into a uniform network of K x L grid
points located at

Zzi=ih,,i=01,....K, hz:%

. . 2
Qj:]hg,j:0,1,...,L, /’lng7T

L Wtétioo

Z, denotes the outer boundary approximating infinity.
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Numerical Solution Procedure

Solution of Streamfunction

The streamfunction is expanded into a truncated Fourier series

(2,0, 1) = %Fo(z, )+ XN:[F,,(Z, ) cos(nb) + fo(z, £) sin(n6)]
n=1
The Fourier coefficients satisfy
%2;" — MPX2F, = A25,(2, 1), 0,1,
‘222’;’ PNy = Nory(z, 1), n=1, - -

At a fixed time these equations are effectively ODEs and are Wa@
integrated using marching algorithms.
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Numerical Solution Procedure

Solution of Streamfunction

The functions ry(z, t) and s,(z, t) are given by

2
sn(z,1) = % i M?¢ cos(n@)de
1 (27
rm(z,t) = = M=( sin(n0)do
0

and satisfy the intergal conditions

/ e ™Zgy(z,t)dz=0, n=0,1,2,---
0

/ e ™ry(z,)dz=0,n=1,2,...
0
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Numerical Solution Procedure

Solution of Vorticity & Temperature

The transport equations for ¢, ¢ can be cast in generic form

ox
— = 0,t

5 — 4(2,0.1)

This equation is solved using the Crank-Nicholson implicit
procedure. The solution is advanced from time t to time t + At

by integrating the above

t+At t+At
xT|iTAt _/t xdr :/t qdr

Approximating the integrals using the trapezoidal rule yields

At
2t + At)[q(z’ 0,1+ A0 +q(z,0,0)] Whfetioo

The resulting algebraic system is then solved iteratively.

X(2,0,t+ At) = x(2,0, 1) + (
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Numerical Solution Procedure

Determination of Surface Vorticity

The surface vorticity is determined by inverting the expressions
for r, and s,. This leads to the truncated Fourier series

N
(0,0, 1) = /\:12{;80(0’ 0+ [1m(0, 1) sin(n6) + $(0, £) cos(nd)]}
0

n=1

The quantities s,(0, t) and r,(0, t) are computed by enforcing
the integral conditions. That is, off the cylinder surface r, and s,
can be computed using the most recent guess for . Then,
sn(0, t) and ry(0, t) are computed by numerically satisfying the
integral constraints.
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Numerical Solution Procedure

Summary of Numerical Algorithm

The following steps are performed (p = iteration counter ):
1. solve for ¢(P)(z,6, t + At),

2. solve for (P)(z,6, t + At) for z # 0,

3. compute riP(z,t + At), sP)(z, t + At) for z £ 0,

4. calculate riP(0, t + At), sP(0, t + At) by enforcing the
integral conditions and hence compute ¢(P)(0, 0, t + At),
5. solve for ) (z,t + At), F¥P)(z,t + At) and thus obtain
YP)(z,0,t+ At),

6. repeat above steps till convergence is reached and
increment p by 1.

Convergence is reached when the difference between two
successive iterates of the surface vorticity is less than e.
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Results and Comparisons

Computational Parameters

After performing numerous numerical experiments, the
following computational parameters were chosen:

N=25,¢=10"%, 2z, =10

A typical grid size used was K x L = 200 x 120. Because of
the impulsive start, small time steps of At = 10~2 were used
initially. As time increased the time step was gradually
increased to At = 0.05. Results were obtained using values

r=05,n=45°, Pr=0.7 for Gr=10° and Gr = 10*
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Results and Comparisons

Isotherm Plots

3

2F 4
Isotherm plot for 1 ]
Gr=10%n=1%,
Pr=0.7,r=05at or ]
t = 2.5 (conduction B |
regime).

4 ]
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Results and Comparisons

Isotherm Plots
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Isotherm plot for
Gr=10%n=17, 1
Pr=0.7,r=05at 15 1
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Results and Comparisons

Isotherm Plots

sl
Isotherm plot for 2
Gr:104,77:§, n
Pr=0.7,r=05at
t=15. °l
4
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Results and Comparisons

Isotherm Plots

o
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Isotherm plot for 3l

Gr=10%n=1%, J

Pr=0.7,r=0.5at

t = 20. il
o
i
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Results and Comparisons

Isotherm Plots

Isotherm plot for al
Gr:104,77:§, al
Pr=0.7,r=05at Al
t =25. A
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Results and Comparisons

Surface Vorticity Plots

t=5 /

Surface vorticity distributions
for Gr =10%n =%,
Pr=0.7,r =0.5.
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Results and Comparisons

Surface Temperature Plots

Surface temperature
distributions for
Gr=10%n= o3
Pr=07,r=0.5.

Surface Temperature

t=5
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Results and Comparisons

Analytical Validation

For large Gr and small t it is possible to expand the flow
variables in the double series:

X =xX0+Ax1+Xxa+ -
where each y, (n=0,1,2,---) is further expanded:
Xn(zaea t) = XHO(Z> 9) + tXITI (Za 9) + -

The leading-order solution for the temperature is:

27\/¥(e*””‘”522 — VrPrMyzerfc(v/ Privyz))

¢(Z7 97 t) ~
wPry/Gr Wa@m
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Results and Comparisons

Average Surface Temperature

Comparison of time variation
of average surface
temperature for
Gr=10%n=1%,

Pr=0.7,r =0.5. Good
agreement for small t;
agreement worsens with
time.

Average Surface Temperature
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Summary

Concluding Remarks

@ Impulsively generated convection from an elliptic cylinder
was investigated

@ The numerical method presented is successful for
computing unsteady flows for a wide range of Grashof
numbers

@ Numerical results were supported by analytical results

@ The technique can be easily extended to handle other
cross sections

@ Future work includes comparisons with experiments ([4])
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