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Problem description and previous work

We consider the two-dimensional gravity-driven flow of a
power-law fluid flowing along a heated incline as shown below:

x

z g
z=h(x,t)

q
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Problem description and previous work

Previous studies on the stability of non-isothermal power-law film
flow include:

I Hu et al. (Phys. Fluids - 2017)
They considered a horizontal layer with a non-deformable
surface consisting of a shear-thinning fluid. Buoyancy effects
were included by assuming a temperature-dependent density.

I Sadiq & Usha (J. Fluid Eng. - 2009)
They assumed constant fluid properties and applied a thermal
insulation condition along the free surface. Consequently,
Marangoni stresses are not generated.

I Bernabeu et al. (Geo. Soc. London - 2016)
They studied lava flow with temperature dependence but do
not include the Marangoni effect.
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The conservation of mass and momentum equations are:
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The consistency, µn, and surface tension, σ, are assumed to vary
linearly with temperature, T , according to:

µn = µa − λa(T − Ta) , σ = σa − γ(T − Ta)

Conservation of energy yields the following equation for the
temperature:

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= κ

(
∂2T

∂x2
+
∂2T

∂z2

)
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The equations are scaled using the Nusselt thickness corresponding
to steady isothermal flow having a flow rate Q:

H =

(
µa

ρg sin θ

) 1
2n+1

Q
n

2n+1

(
2n + 1

n

) n
2n+1

The scaled quantities become

(x , z) = H

(
x∗

δ
, z∗
)
, h = Hh∗ , (u,w) = U(u∗, δw∗)

t =
H

Uδ
t∗ , p − pa = ρU2p∗ , T = Ta + ∆TT ∗

where U = Q/H,∆T = Tw − Ta, δ = H/L and λ = λa∆T/µa.
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The dimensionless equations become (dropping the asterisk for
notational convenience)
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∂z
= 0

Reδ
Du

Dt
= −Reδ ∂p

∂x
+ 2δ2

∂

∂x

[
(1− λT )η

∂u

∂x

]
+
∂

∂z

[
(1− λT )η

(
∂u

∂z
+ δ2

∂w

∂x

)]
+

(
2n + 1

n

)n

Reδ2
Dw

Dt
= −Re ∂p

∂z
+ 2δ

∂

∂z

[
(1− λT )η

∂w

∂z

]
+δ

∂

∂x

[
(1− λT )η

(
∂u

∂z
+ δ2

∂w

∂x

)]
−
(

2n + 1

n

)n

cot θ

δRePr
DT

Dt
= δ2

∂2T

∂x2
+
∂2T

∂z2

Serge D’Alessio1 and Jean-Paul Pascal2 The flow of a power-law fluid down a heated incline



Introduction
Mathematical formulation

Linear stability analysis
Nonlinear simulations

Results and discussion
Summary

Scaling
Boundary conditions
Dimensionless parameters
Long-wave equations

p =
2δ

ReF 2
η (1− λT )

[
δ2
(
∂h

∂x

)2 ∂u

∂x
+
∂w

∂z
− ∂h

∂x

(
∂u

∂z
+ δ2

∂w

∂x

)]

− δ
2

F 3

∂2h

∂x2
(We −MT ) at z = h(x , t)

−δMF

(
∂T

∂x
+
∂T

∂z

∂h

∂x

)
=
η (1− λT )

Re

[
−4δ2

∂h

∂x

∂u

∂x

+

(
1− δ2

(
∂h

∂x

)2
)(

δ2
∂w

∂x
+
∂u

∂z

)]
at z = h(x , t)

∂T

∂z
− δ2 ∂h

∂x

∂T

∂x
= −BFT at z = h(x , t)

w =
∂h

∂t
+ u

∂h

∂x
at z = h(x , t)

u = w = 0 , T = 1 at z = 0
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The equations can be simplified by discarding the O(δ2) terms:
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The simplified boundary conditions become:

−MReδ

(
∂T

∂x
+
∂T

∂z

∂h

∂x

)
= (1− λT )

(
∂u

∂z

)n

at z = h(x , t)

∂T

∂z
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w =
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+ u
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at z = h(x , t)

u = w = 0 , T = 1 at z = 0
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The steady-state solutions for T = Ts and w = ws are:

Ts(z) = 1−
(

B

B + 1

)
z , ws(z) = 0

The solution for u = us satisfies:

d

dz

[
(1− λTs)

(
dus
dz

)n]
+

(
2n + 1

n

)n

= 0

Although exact solutions for selected values of n have been
obtained, for other values an approximate solution based on small
λ was derived. Some exact solutions are:

us = α0

[
α1

(h + α1)
− (z + α1)

(h + α1)
+ ln

(
z + α1

α1

)]
for n = 1
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us = α0

[
h(h + 2α1)

α1(h + α1)
+

(z + α1)

(h + α1)
− (h + α1)

(z + α1)

+2 ln

(
α1
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for n =

1

2
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[√
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√
α1h
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(√
h
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)
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(√
h − z
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)]
for n = 2

where α0 =
(2n + 1)(h + α1)

n

(
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) 1
n

, α1 =
(1− λ)(1 + Bh)
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Next, impose small disturbances on the steady-state flow:

u = us + ũ , w = w̃ , T = Ts + T̃ , h = 1 + ζ

Then, substitute these into the long-wave equations, linearize and
assume the disturbances of the form:

(ũ, w̃ , T̃ , ζ) = (û(z), ŵ(z), T̂ (z), ζ̂)e ik(x−ct)

where k (real & positive) represents the wavenumber of the
perturbation and c is a complex quantity with the real part
denoting the phase speed of the perturbation while the imaginary
part is related to the growth rate.
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The perturbation equations were solved numerically for arbitrary k
using a collocation method based on polynomial interpolation with
Chebyshev points. In addition, the perturbation equations were
solved analytically for small wavenumbers by expanding in powers
of k as follows:

û = u0 + ku1 , ŵ = w0 + kw1 , T̂ = T0 + kT1

ζ̂ = ζ0 + kζ1 , c = c0 + kc1
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Nonlinear effects were also investigated by implementing a
first-order IBL model. The IBL equations were obtained by
integrating the long-wave equations across the fluid layer, and
hence, eliminating the z dependence. In terms of the flow rate, q,
where

q =

∫ h

0
udz

the continuity equation becomes

∂h

∂t
+
∂q

∂x
= 0

Next, we introduce the interfacial temperature,
φ(x , t) = T (x , z = h, t), the temperature profile

T = 1 +
(φ− 1)

h
z
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and the velocity profile given by

u =
q

Q0
b0 where Q0(x , t) =

∫ h

0
b0dz

and

b0(x , z , t) =

(
2n + 1

n + 1

)
A0

[
h

n+1
n − (h − z)

n+1
n

]
+A1

[
h

2n+1
n − (h − z)

2n+1
n

]
+

(
2n + 1

3n + 1

)
A2

[
h

3n+1
n − (h − z)

3n+1
n

]
A0 =

n2(1 + Bh)2 + λn(1 + Bh) + (n + 1)λ2

n2(1 + Bh)2

A1 =
λB[n(1 + Bh) + 2(n + 1)λ]

n2(1 + Bh)2
, A2 =

(n + 1)λ2B2

n2(1 + Bh)2
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Comparison between
the assumed and exact
velocity profiles for
n = 1/2, λ = 0.1,
h = 1 and B = 1.
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Using the assumed profiles the momentum and energy equations
become:

∂q

∂t
+

∂

∂x

[∫ h

0
u2dz + Mφ+

(
2n + 1

n

)n cot θ

2Re
h2
]

=
h

Reδ

[(
2n + 1

n

)n

−
(

1 +
(n + 1)λ2

2n

)
qn

Qn
0

]
h
∂φ

∂t
− 1

(4n + 1)(3n + 1)2(1 + Bh)

[
n(φ− 1)F1

∂q

∂x
+ qF2

∂φ

∂x

−n(2n + 1)λB(φ− 1)q

(1 + Bh)

∂h

∂x

]
= − 2

PrReδh
[(1 + Bh)φ− 1]

where F1 = (2n + 1)λBh − (3n + 1)(4n + 1)(1 + Bh)

and F2 = n(2n + 1)λBh − (3n + 1)(4n + 1)2(1 + Bh)

The IBL equations were solved using the fractional-step splitting
technique.
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Exact expressions for the critical Reynolds number were obtained
for special cases, such as the Newtonian case (n = 1):

Recrit =
D1

D2

where D1 = 1680 (B + 1)2 cot θ (3Bλ+ 4B + 4λ+ 4)

and D2 = (8064 + (231Pr + 18501)λ)B3

+ ((2240M + 339Pr + 58797)λ+ 3360M + 24192)B2

+ ((3360M − 816Pr + 64488)λ+ 3360M + 24192)B+24192λ+8064

Setting λ = 0 yields:

Recrit =
10 cot θ(1 + B)2

12(1 + B)2 + 5MB

which agrees with D’Alessio et al. (J. Fluid Mech., 2010) for the
case with constant viscosity.
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For the general power-law case under isothermal conditions we
obtain:

Recrit =
1

2

(
n

2n + 1

)2−n

(3n + 2) cotθ

which is in full agreement with the result reported by
Fernandez-Nieto et al. (J. Non-Newtonian Fluid Mech., 2010).
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The IBL model with λ = 0 and n = 1 predicts:

Re IBLcrit =
3 cotθ(1 + B)2

3(1 + B)2 + MB
compared to Refullcrit =

10 cotθ(1 + B)2

12(1 + B)2 + 5MB

Further, if M = B = 0 the IBL model yields:

Re IBLcrit = cotθ

which is in full agreement with the Shkadov IBL model (Izv. Akad.
Nauk SSSP, Mekh. Zhidk Gaza, 1967). As a final check if we set
λ = M = B = 0, then

Re IBLcrit =
n2−n cotθ

(2n + 1)1−n

which recovers the expression obtained by Ng & Mei (J. Fluid.
Mech. 1994).
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Recrit as a function of
λ for cot θ = 1, Pr = 7,
Bi = 1, n = 0.8 and
Ma = 1.1; comparison
between numerical and
analytical results.
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Recrit for the H mode
as a function of Bi for
cot θ = 1, Pr = 7,
Ma = 0.1, n = 1.
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Recrit for the H mode
as a function of Bi for
cot θ = 1, Pr = 7,
Ma = 0.1, n = 0.8.
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Comparison in Recrit
for the case n = 0.8,
λ = 0.1, B = 1,
cotθ = 1, δ = 0.1 and
Pr = 7.
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Time evolution of the
fluid thickness for the
case n = 0.8, cotθ = 1,
M = 5, B = 1, Pr = 7,
δ = 0.1, λ = 0.1 and
Re = 0.4.
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The fluid thickness and
surface temperature at
t = 10 for the case
n = 0.8, cotθ = 1,
M = 5, B = 1, Pr = 7,
δ = 0.1, λ = 0.1 and
Re = 0.4.
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I The stability of the flow of a power-law fluid down a heated
incline was studied.

I The consistency and surface tension were allowed to vary
linearly with temperature.

I A linear stability analysis was conducted both numerically and
analytically.

I Nonlinear simulations were also carried out using a first-order
IBL model.

I Reasonable agreement was found between numerical and
analytical results, and also with previous investigations.

I This research has recently appeared in AIP Advances, 8,
105215, 2018.
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