
Introduction
Mathematical formulation

Stability analysis
Results

Stability of differentially heated flow from a
rotating sphere

Serge D’Alessio1, Justin Wan2, Nat Leung3

1Faculty of Mathematics, 2Cheriton School of Computer Science,
University of Waterloo, Waterloo, Canada

3University of Toronto, Department of Computer Science, Toronto, Canada

BIFD 2015, July 15-17, Paris, France

Serge D’Alessio1, Justin Wan2, Nat Leung3 Stability of differentially heated flow from a rotating sphere



Introduction
Mathematical formulation

Stability analysis
Results

Introduction
Problem description and previous work

Mathematical formulation
Scaling and dimensionless parameters
Boundary conditions

Stability analysis
Steady state
Perturbation equations

Results
Parameters and validation
Discussion

Serge D’Alessio1, Justin Wan2, Nat Leung3 Stability of differentially heated flow from a rotating sphere



Introduction
Mathematical formulation

Stability analysis
Results

Problem description and previous work

The stability of a thin
fluid layer flowing over
a differentially heated
rotating sphere has
been investigated
assuming azimuthal
and equatorial
symmetry and using
the Boussinesq
approximation.
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Problem description and previous work

Some key previous studies include:

I Isothermal flow:
Marcus & Tuckerman (J. Fluid Mech. - 1987)

I Non-isothermal flow:
Hart et al. (J. Fluid Mech. - 1986),
Lesueur et al. (Geophys. Astrophys. Fluid Dyn. - 1999)

I Stability:
Lewis & Langford (SIAM J. Appl. Dyn. Sys. - 2008),
Walton (Q. J. Mech. Appl. Math. - 1982)
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Boundary conditions

In dimensionless form and in spherical coordinates the governing
Navier-Stokes and energy equations can be compactly formulated
in terms of the stream function, ψ, vorticity, ω, zonal velocity, W ,
and temperature, T :

ω = −δD2ψ

∂ω

∂t
+

δ

r2 sin θ

∂(ψ, ω)

∂(θ, r)
+δPrRa sin θ

∂T

∂θ
+

2δω

r2 sin2 θ

(
cos θ

∂ψ

∂r
− sin θ

r

∂ψ

∂θ

)
−
(

2δ2W

r2 sin2 θ
+

2δ2

Ro

)(
cos θ

∂W

∂r
− sin θ

r

∂W

∂θ

)
= δ2PrD2ω
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δ2PrD2W − ∂W

∂t
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)
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∂
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Boundary conditions

The dimensionless parameters include:

Ra =
αg0H

3∆T

νκ
Rayleigh number

Ro =
κ

HΩR
Rossby number

Pr =
ν

κ
Prandtl number

δ =
H

R
Shallowness parameter

Time and length are scaled as t̃ → H2

κ
t , r̃ → Rr

The adopted scaling for the flow variables is given by

(ψ̃, ω̃, W̃ )→ (
κR2

H
ψ,
κR

H2
ω,
κR

H
W )

where the tilde denotes a dimensional quantity.
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Boundary conditions

The equations are to be solved in the region

0 ≤ θ ≤ π

2
, 1 ≤ r ≤ 1 + δ

subject to the no-slip and impermeability boundary conditions

ψ =
∂ψ

∂r
= W = 0 on r = 1 and r = 1 + δ

The assumed symmetry requires imposing the following conditions
at the pole and equator

ψ = ω = W = 0 along θ = 0 and ψ = ω =
∂W

∂θ
= 0 along θ =

π

2

Note that the stream function is overspecified while the vorticity is
underspecified.
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The surface temperature is allowed to vary sinusoidally

T̃ = Tave −∆T cos(2θ)

with Tave denoting the average surface temperature. The scaled

temperature is defined as T =
T̃ − Tedge

Tave + ∆T − Tedge

where Tedge is the prescribed temperature along the top of the
fluid layer. In dimensionless form the temperature satisfies

T = 1− γ cos2 θ on r = 1 and T = 0 on r = 1 + δ

where γ =
2∆T

Tave + ∆T − Tedge

At the pole and equator zero heat-flux conditions are applied

∂T

∂θ
= 0 along θ = 0 and θ =

π

2
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Introduce the change of variables (z , µ) where r = 1 + δz and
µ = cos θ. This maps the domain to the unit square: 0 ≤ z , µ ≤ 1.
The transformed equations become:

δω = −D̂2ψ

∂ω

∂t
+

1

(1 + δz)2
∂(ψ, ω)

∂(z , µ)
+

2ω

(1− µ2)(1 + δz)2

[
µ
∂ψ

∂z
+
δ(1− µ2)

(1 + δz)

∂ψ

∂µ

]
− 2δW

(1− µ2)(1 + δz)2

[
µ
∂W

∂z
+
δ(1− µ2)

(1 + δz)

∂W

∂µ

]
− 2δ

R0

[
µ
∂W

∂z
+
δ(1− µ2)

(1 + δz)

∂W

∂µ

]
= δPrRa(1− µ2)

∂T

∂µ
+ PrD̂2ω
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∂T

∂t
+

1

(1 + δz)2
∂(ψ,T )

∂(z , µ)
= ∇̂2T

PrD̂2W − ∂W
∂t

=
1

(1 + δz)2
∂(ψ,W )

∂(z , µ)
− 2

R0

[
µ
∂ψ

∂z
+
δ(1− µ2)

(1 + δz)

∂ψ

∂µ

]
where

D̂2 =
∂2

∂z2
+
δ2(1− µ2)

(1 + δz)2
∂2

∂µ2

∇̂2 =
∂2

∂z2
+

2δ

(1 + δz)

∂

∂z
− 2µδ2

(1 + δz)2
∂

∂µ
+
δ2(1− µ2)

(1 + δz)2
∂2

∂µ2
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For small δ approximate steady-state solutions can be constructed
by expanding the flow variables in the following series:

ψ = ψ0 + δψ1 + δ2ψ2 + · · ·

ω = ω0 + δω1 + δ2ω2 + · · ·

W = W0 + δW1 + δ2W2 + · · ·

T = T0 + δT1 + δ2T2 + · · ·

The approximate solutions correct to second order in δ are:

ψs(z , µ) ≈ −2γδ2Raµ(1− µ2)F1(z)

ωs(z , µ) ≈ 2γδRaµ(1− µ2)

[
d2F1
dz2

+ δF2(z)

]
Ws(z , µ) ≈ 4γδ2Ra

PrR0
µ2(1− µ2)F3(z)
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where

F1(z) =
z4

24
− z5

120
− 7z3

120
+

z2

40

F2(z) =
z4

12
− z3

6
+

z

12
− 1

60

F3(z) =
z5

120
− z6

720
− 7z4

480
+

z3

120
− z

1440
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and Ts(z , µ) ≈ (1− γµ2)(1− z)(1− δz) + δ2T2(z , µ) with

T2(z , µ) = γ(1− 3µ2)z2
(

1− z

3

)
+ (1− γµ2)z2

(
1− z2

3

)

+γ2Raµ2(1− µ2)z3
(

z4

252
− z3

36
+

41z2

600
− 3z

40
+

1

30

)
−γRa(1− 3µ2)(1− γµ2)z4

(
z2

360
− z3

2520
− 7z

1200
+

1

240

)
+z

(
−2

3
(1− γµ2)− 2

3
γ(1− 3µ2)− 1

350
γ2Raµ2(1− µ2)

+
1

1400
γRa(1− 3µ2)(1− γµ2)

)
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The steady-state flow is perturbed by imposing small disturbances:

T = Ts + T ′ , ψ = ψs + ψ′ , ω = ωs + ω′ , W = Ws + W ′

Assuming the principle of exchange of stabilities holds, the
linearized perturbation equations become:

δω′ = −D̂2ψ′

∇̂2T ′ =
1

(1 + δz)2

(
∂(ψs ,T

′)

∂(z , µ)
+
∂(ψ′,Ts)

∂(z , µ)

)
PrD̂2W ′ =

1

(1 + δz)2

(
∂(ψs ,W

′)

∂(z , µ)
+
∂(ψ′,Ws)

∂(z , µ)

)
− 2

R0

(
µ
∂ψ′

∂z
+
δ(1− µ2)

(1 + δz)

∂ψ′

∂µ

)
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PrD̂2ω′+δPrRa(1−µ2)
∂T ′

∂µ
=

1

(1 + δz)2

(
∂(ψs , ω

′)

∂(z , µ)
+
∂(ψ′, ωs)

∂(z , µ)

)

+
2ωs

(1− µ2)(1 + δz)2

(
µ
∂ψ′

∂z
+
δ(1− µ2)

(1 + δz)

∂ψ′

∂µ

)
+

2ω′

(1− µ2)(1 + δz)2

(
µ
∂ψs

∂z
+
δ(1− µ2)

(1 + δz)

∂ψs

∂µ

)
− 2δWs

(1− µ2)(1 + δz)2

(
µ
∂W ′

∂z
+
δ(1− µ2)

(1 + δz)

∂W ′

∂µ

)
− 2δW ′

(1− µ2)(1 + δz)2

(
µ
∂Ws

∂z
+
δ(1− µ2)

(1 + δz)

∂Ws

∂µ

)
− 2δ

R0

(
µ
∂W ′

∂z
+
δ(1− µ2)

(1 + δz)

∂W ′

∂µ

)
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Following Walton, the disturbances are expanded in powers of δ:

T ′(z , µ) = (T (0) + δT (1) + δ2T (2) + · · · )exp

(
i

δ

∫ µ

0
k(ξ)dξ

)

ψ′(z , µ) = (ψ(0) + δψ(1) + δ2ψ(2) + · · · )exp

(
i

δ

∫ µ

0
k(ξ)dξ

)
ω′(z , µ) = (ω(0) + δω(1) + δ2ω(2) + · · · )exp

(
i

δ

∫ µ

0
k(ξ)dξ

)
W ′(z , µ) = (W (0) + δW (1) + δ2W (2) + · · · )exp

(
i

δ

∫ µ

0
k(ξ)dξ

)

Serge D’Alessio1, Justin Wan2, Nat Leung3 Stability of differentially heated flow from a rotating sphere



Introduction
Mathematical formulation

Stability analysis
Results

Steady state
Perturbation equations

The Rayleigh number and differential operators are also expanded
in similar series:

Ra = Ra(0) + δRa(1) + δ2Ra(2) + · · ·

D̂2 =
∂2

∂z2
+ δ2(1− µ2)

∂2

∂µ2
+ · · ·

∇̂2 =
∂2

∂z2
+ 2δ

∂

∂z
+ δ2

(
−2µ

∂

∂µ
+ (1− µ2)

∂2

∂µ2

)
+ · · ·

Substituting these into the perturbation equations leads to a
hierarchy of problems.
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T (0) and ψ(1) satisfy the coupled system[
∂2

∂z2
− k2(1− µ2)

]
T (0) = ik(1− γµ2)ψ(1)

[
∂2

∂z2
− k2(1− µ2)

]2
ψ(1) = ikRa(0)(1− µ2)T (0)

and can be combined to yield[
∂2

∂z2
− k2(1− µ2)

]3
ψ(1) = −k2Ra(0)(1− µ2)(1− γµ2)ψ(1)

The disturbance will be concentrated near the equator, so set
µ = 0: [

∂2

∂z2
− k20

]3
ψ(1) = −k20Ra(0)ψ(1)

where k0 = k(0).
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Solving subject to the conditions

ψ(1) =
∂ψ(1)

∂z
=

(
∂2

∂z2
− k20

)
ψ(1) = 0 at z = 0, 1

suggests looking for a solution of the form

ψ(1)(z , 0) = ceqz

where q are the roots of the equation

(q2 − k20 )3 = k20Ra
(0)

The problem bears a close resemblance to the classical
Rayleigh-Bénard problem with rotation having no influence. The
only difference lies in the allowable wavenumbers and the values of
Racrit and kcrit .
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Here, the allowable perturbation wavenumbers are kn = 2n where

n = 1, 2, 3, · · · . Ra
(0)
crit is defined as the minimum value of Ra(0)

having a real wavenumber k0,crit . From the table below it follows
that the minimum value of Ra(0) occurs when k0,crit = 4 and the

numerical solution to the algebraic equation yields Ra
(0)
crit ≈ 1879.

Hence, to leading order Racrit ≈ 1879.

k0 Ra(0)

2 2178

4 1879

6 3418

8 7085
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I Computations were carried out using γ = 0.5, Ro = 1 and
Pr = 0.7; δ and Ra were allowed to vary.

I Computational parameters used included:
80× 80 grid with uniform spacing of 1/80,
predefined tolerance of ε = 10−6, and
the uniform time step of ∆t = 0.01 was used in the unsteady
computations.

I The initial conditions used in the unsteady calculations were:

W = ψ = ω = 0 and T = Ts(z , µ)
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Loglog plot of the
maximum difference
between the analytical
and numerical
steady-state solutions
with Ra = 100.
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Contour plot of the
steady-state stream
function in (z , µ) and
(r , θ) coordinates for
Ra = 1500 and
δ = 0.1.
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Contour plot of the
steady-state stream
function in Cartesian
coordinates for
Ra = 1500 and
δ = 0.1.
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The steady-state
surface vorticity
distribution for
Ra = 1500 and
δ = 0.1.
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The steady-state zonal
velocity distribution for
Ra = 1500 and
δ = 0.1.
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The steady-state
temperature
distribution for
Ra = 1500 and
δ = 0.1.
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Streamline circulation
pattern in Cartesian
coordinates at t = 10.6
for Ra = 1870 and
δ = 0.1.
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Streamline circulation
pattern in Cartesian
coordinates at t = 8.5
for Ra = 1890 and
δ = 0.1.
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Streamline circulation
pattern in Cartesian
coordinates at t = 10.7
for Ra = 1890 and
δ = 0.1.
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Streamline circulation
pattern in Cartesian
coordinates at t = 12.9
for Ra = 1890 and
δ = 0.1.
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