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Problem Description

We consider
two-dimensional
gravity-driven
flow of a thin
fluid layer
having variable
fluid properties
down a heated
incline as
shown:

Scaling based on steady flow with constant fluid properties
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u(z) =
ρ0g sin β

2µ0

z(2H − z)

Ta

τ0 = ρ0gH sin β

Tb
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H

Length scale:

H =

(
3µ0Q

ρ0g sin β

)1/3

Velocity scale:

U = Q/H

Temperature scale:

∆T = Tb − Ta

Temperature difference:

T = T − Ta

Pressure scale:

ρ0U
2

Time scale:

H/U



Previous Work
I Isothermal flow has been studied extensively experimentally

(initially by Kapitza & Kapitza, 1949), theoretically (initially by
Benjamin, 1957) and using DNS (initially by Ramaswamy,
Chippada & Joo, 1996). Commonly used mathematical models
include the integral-boundary-layer model (Shkadov, 1967) and
the weighted residual model (Ruyer-Quil & Manneville, 2002).

I Non-isothermal flow has received much less attention. The focus
has been on the variation of surface tension with temperature
which gives rise to the Marangoni effect. A key contribution was
by Trevelyan et al. (2007). The studies by Goussis & Kelly (1985)
and Hwang & Weng (1988) considered variations in viscosity
only, while Kabova & Kuznetsov (2002) accounted for variable
viscosity and surface tension.

In the current study we investigate the influence that variable surface
tension (σ), density (ρ), viscosity (µ), thermal conductivity (K ) and
specific heat (cp) have on the stability of the flow.



Mathematical Formulation
For flow with variable fluid properties the governing equations in the
absence of viscous dissipation are (Spurk & Aksel, 2008):

Dρ
Dt

+ ρ

(
∂u
∂x

+
∂w
∂z

)
= 0

ρ
Du
Dt

= −∂p
∂x

+ gρ sinβ +
∂

∂x

[
2µ
∂u
∂x
− 2

3
µ

(
∂u
∂x

+
∂w
∂z

)]

+
∂

∂z

[
µ

(
∂u
∂z

+
∂w
∂x

)]

ρ
Dw
Dt

= −∂p
∂z
− gρ cosβ +

∂

∂z

[
2µ
∂w
∂z
− 2

3
µ

(
∂u
∂x

+
∂w
∂z

)]

+
∂

∂x

[
µ

(
∂u
∂z

+
∂w
∂x

)]

ρ
D(cpT )

Dt
=

∂

∂x

(
K
∂T
∂x

)
+

∂

∂z

(
K
∂T
∂z

)
− p

(
∂u
∂x

+
∂w
∂z

)



Variable Fluid Properties

The fluid properties are assumed to vary linearly with temperature as
follows:

ρ = ρ0 − α̂(T − Ta)

µ = µ0 − λ̂(T − Ta)

cp = cp0 + Ŝ(T − Ta)

K = K0 + Λ̂(T − Ta)

σ = σ0 − γ(T − Ta)

where ρ0, µ0, cp0, K0 and σ0 are reference values at T = Ta.



Dimensionless Equations

Using the Boussinesq approximation and the proposed scaling we
obtain:

∂u
∂x

+
∂w
∂z

= 0

Re
Du
Dt

= −Re
∂p
∂x

+3(1−αT )+
∂

∂x

(
(1− λT )

∂u
∂x

)
+
∂

∂z

(
(1− λT )

∂u
∂z

)

−λ∂T
∂x

∂u
∂x
− λ∂T

∂z
∂w
∂x

Re
Dw
Dt

= −Re
∂p
∂z
−3 cotβ(1−αT )+

∂

∂x

(
(1− λT )

∂w
∂x

)
+
∂

∂z

(
(1− λT )

∂w
∂z

)

−λ∂T
∂x

∂u
∂z
− λ∂T

∂z
∂w
∂z

PrRe
D
Dt

[(
1 +

S
∆Tr

)
T + ST 2

]
=

∂

∂x

[
(1 + ΛT )

∂T
∂x

]
+
∂

∂z

[
(1 + ΛT )

∂T
∂z

]



Boundary Conditions

Along the free surface z = h:

p =
2(1− λT )

ReF

([
∂h
∂x

]2
∂u
∂x

+
∂w
∂z
− ∂h

∂x
∂u
∂z
− ∂h
∂x

∂w
∂x

)
− (We −MaT )

F 3/2

∂2h
∂x2

−MaRe
√

F
(
∂T
∂x

+
∂h
∂x

∂T
∂z

)
= (1− λT )

[
G
(
∂u
∂z

+
∂w
∂x

)
− 4

∂h
∂x

∂u
∂x

]

w =
∂h
∂t

+ u
∂h
∂x

−Bi
√

FT = (1 + ΛT )

(
∂T
∂z
− ∂h
∂x

∂T
∂x

)

where F = 1 +

[
∂h
∂x

]2

, G = 1−
[
∂h
∂x

]2

On the bottom z = 0: u = w = 0 , T = 1



Dimensionless Parameters

Re =
ρ0UH
µ0

Reynolds number

We =
σ0

ρ0U2H
Weber number

Ma =
γ∆T
ρ0U2H

Marangoni number

Pr =
µ0cp0

K0
Prandtl number

Bi =
αgH
K0

Biot number

∆Tr =
Tb − Ta

Ta
Relative Temperature Difference

Also, α, λ,Λ,S represent dimensionless rates of change of density,
viscosity, thermal conductivity and specific heat with respect to
temperature.



Steady State Equations

Steady uniform flow in the streamwise direction given by h ≡ 1,
w ≡ 0, u = us(z), p = ps(z) and T = Ts(z) satisfies the following
boundary-value problems:

d
dz

[
(1 + ΛTs)

dTs

dz

]
= 0 , (1+ΛTs)

dTs

dz
+BiTs = 0 at z = 1 , Ts(0) = 1

d
dz

[
(1− λTs)

dus

dz

]
+ 3(1− αTs) = 0 ,

dus

dz
= 0 at z = 1 , us(0) = 0

Re
dps

dz
= −3 cotβ(1− αTs) , ps(1) = 0



Steady State Solutions

The steady state solutions are given by:

Ts(z) =
√

a− bz − 1
Λ

us(z) = a0 ln
(

A− λ
√

a− bz
A− λ√a

)
+ a1z − α

λ
z2 + a2(

√
a− bz −

√
a)

+a3[(a− bz)3/2 − a3/2]

ps(z) =
3 cotβ

Re

(
1 +

α

Λ

)
(1− z) +

2α cotβ
bRe

[(a− b)3/2 − (a− bz)3/2]

where the constants a,b,a0,a1,a2,a3 and A are related to the
parameters Λ,Bi , λ and α.



Stability Analysis

Now impose small disturbances on the steady state flow:

u = us(z) + ũ(x , z, t) , w = w̃(x , z, t) , p = ps(z) + p̃(x , z, t)

T = Ts(z) + T̃ (x , z, t) , h = 1 + η(x , t)

Next, substitute these into the governing equations, linearize and
assume the disturbances have the form:

(ũ, w̃ , p̃, T̃ , η) = (û(z), ŵ(z), p̂(z), T̂ (z), η̂)eik(x−ct)

where k (real & positive) represents the wavenumber of the
perturbation and c is a complex quantity with the real part denoting
the phase speed of the perturbation while the imaginary part is
related to the growth rate.



Perturbation Equations
The linearized perturbed equations become:

Dŵ + ik û = 0

Re[ik(us − c)û + ŵDus] = −ikRep̂ + k2(λTs − 1)û

+D[(1− λTs)Dû]− λT̂D2us − λDusDT̂ − ikλŵDTs − 3αT̂

ikRe(us − c)ŵ = −ReDp̂ + 3α cotβ T̂ − k2(1− λTs)ŵ

+D[(1− λTs)Dŵ ]− ikλT̂Dus − λDTsDŵ

PrRe(1 + S/∆Tr + 2STs)[ik(us − c)T̂ + ŵDTs]

= −k2(1 + ΛTs)T̂ + D2[(1 + ΛTs)T̂ ]

where the differential operator D is defined as:

D ≡ d
dz



Boundary Conditions

Along the free surface (z = 1) the perturbations will satisfy:

p̂ = −η̂Dps +
2

Re
(1− λTs)Dŵ + k2(We −MaTs)η̂

(1− λTs)(η̂D2us + Dû + ikŵ) = −ikMaRe(T̂ + η̂DTs)

D[(1 + ΛTs)T̂ ] + η̂D[(1 + ΛTs)DTs + BiTs] + BiT̂ = 0

ŵ = ik(us − c)η̂

while the bottom conditions are:

û(0) = ŵ(0) = T̂ (0) = 0



Small Wavenumber Expansion

Since small wavenumber perturbations are expected to be the most
unstable, we expand the perturbations in the following series:

û = u0(z) + ku1(z) + O(k2)

ŵ = w0(z) + kw1(z) + O(k2)

p̂ = p0(z) + kp1(z) + O(k2)

T̂ = T0(z) + kT1(z) + O(k2)

η̂ = η0 + kη1 + O(k2)

c = c0 + kc1 + O(k2)

and proceed to solve the eigenvalue problem asymptotically as
k → 0.



Special Cases:

For Bi = 0 the critical Reynolds number for the onset of instability can
be found exactly and is given by:

Recrit =
5
6

cotβ
(1− λ)2

(1− α)

Note that if the values of α and λ are such that 1− α = (1− λ)2, then
it follows that the effects of variable fluid properties cancel and the
threshold of instability is the same as that for isothermal flow.
Other special cases include Λ = λ = 0 and Bi →∞, both of which
lead to exact, but lengthy, expressions for Recrit .
For the general case, analytical expressions for the neutral stability
state have been obtained in the form of asymptotic expansions as
Bi → 0 or as Λ, λ→ 0.



Results:

Accuracy of the expansion as Bi → 0
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Ma = 1 and Pr = 7



Results:

Accuracy of the expansion as λ→ 0
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Results:

Steady-state temperature as a function of z
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Results:

Steady-state velocity as a function of z
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Results:

Scaled critical Reynolds number as a function of λ
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Results:

Scaled critical Reynolds number as a function of λ
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Results:

Scaled critical Reynolds number as a function of α
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Results:

Scaled critical Reynolds number as a function of α
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Results:

Scaled critical Reynolds number as a function of Ma
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Results:

Scaled critical Reynolds number as a function of Bi
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Conclusions

Through a combination of special cases and asymptotic expansions
focussing on long-wave perturbations, our linear stability analysis
uncovered the following key results:

I If Bi = 0, then the critical Reynolds number for the onset of
instability is given by:

Recrit =
5
6

cotβ
(1− λ)2

(1− α)

I If Λ = λ = 0 an exact lengthy expression for Recrit was obtained
which reproduces known results when appropriate limits are
taken.

I If Bi →∞ another lengthy expression for Recrit was obtained
which can confirm the result in the limit of large Bi .



I Increasing λ decreases viscosity which destabilizes the flow.

I Increasing α decreases density which, in general, stabilizes the
flow. Exceptions to this occur in extreme cases of large
variations in the specific heat and for large Marangoni numbers.

I In general, increasing Ma destabilizes the flow.

I The behaviour of Recrit with Bi is more complicated. As Bi
increases from zero Recrit initially decreases and reaches a
minimum value; as Bi is increases further Recrit increases. The
limiting values of Recrit as Bi → 0 and Bi →∞ can be found.

I This research has recently appeared in the:
International Journal of Engineering Science, 70, 73-90, 2013


