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Problem description

Applications

• Heat Exchangers

• Manufacturing Coatings

• Environmental Flows

Re = Q
ν

Reynolds number
We = σ0H

ρQ2 Weber number

δ = H
λb

Shallowness parameter

ζ(x) = Ab
H cos

(
2πx
λb

)
Bottom topography; Ab

H = ab

Bi =
αg H
ρcpκ

Biot number

Ma = γ∆T
ρU2H Marangoni number

δ1 =
√
κ

αH Permeability parameter
Pr ,Pe = RePr Prandtl and Peclet Numbers



Introduction Problem Formulation Linear Stability Non-linear Simulations Summary

Previous work

• Heating effects were investigated by Kalliadasis et al. [1] and
Trevelyan et al. [2]., using constant temperature and a specified heat
flux boundary conditions, and an even bottom.

• Heating effects with a constant temperature & wavy bottom were
investigated using the weighted residual model by D’Alessio et al. [3].

• A permeable bottom was considered by Pascal & Pascal and
D’Alessio [4,5] using the Beavers and Joseph [6] boundary condition.

• Heating and porosity were recently combined for the even bottom
case by Sadiq et al. [7].

The current study extends the weighted residual model to include the
combined effects of heating, bottom waviness, and permeability.
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Governing equations

∂u
∂x

+
∂w
∂z

= 0

δRe
(
∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= −δRe

∂P
∂x

+ 3 +
∂2u
∂z2 + δ2 ∂

2u
∂x2

δ2Re
(
∂w
∂t

+ u
∂w
∂x

+ w
∂w
∂z

)
= −Re

∂P
∂z
− 3 cotβ + δ

∂2w
∂z2

δPe
(
∂T
∂t

+ u
∂T
∂x

+ w
∂T
∂z

)
=
∂2T
∂z2 + δ2 ∂

2T
∂x2

The model is second order accurate in δ for O(1) parameters.
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Free surface boundary conditions

Dynamic conditions at the free surface, z = h + ζ, to O(δ2):

Pa + n̂ · τ · n̂ = −σ(T )~∇ · n̂ ⇒ p =
2δ
Re

∂w
∂z

n̂ · τ · t̂ = ~∇σ · t̂ ⇒ 0 =
∂u
∂z

+ MaReδ
(
∂T
∂x

+
∂(h + ζ)

∂x
∂T
∂z

)
Heat transfer at the Surface to O(δ2):

~∇T · n̂ =
−αg

ρcpk
(T − Ta) ⇒ −BiT =

∂T
∂z
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Surface and bottom boundary conditions

Kinematic condition at the free surface:

w = ∂h
∂t + u

(
ζ ′ + ∂h

∂x

)
at z = h + ζ

Bottom boundary conditions:

w = ζ ′u

δ1
∂u
∂z = u

T = 1


at z = ζ
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The Beavers and Joseph slip condition

 

-2.5

-2

-1.5

-1

-0.5

0

0.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

PorousInt

erface

Bottom

Bottom 

vel prof 4

Porous 

Vel 4

Wavy 

Free 

Surface

Slip

slip 

Beavers and Joseph 

(1967) 

modified from [17] 

z = 0 

Fluid Layer 

Porous Layer 

z 

x 

Figure modified from LeBars and Worster, 2006 [8]

uD = uS(0)− δ1
duS

dz
= uS(−δ1) where δ1 =

√
κ

αH
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Model derivation
• Combine momentum equations to eliminate pressure.
• Assume the following profile for velocity:

u(x , z, t) =
3q

2 (h3 + 3δ1h2)
b +

δMaRe
4h

∂θ

∂x
b1

where

b = (z − ζ) (2h − z + ζ) + 2δ1h , b1 = (z − ζ) (2h − 3 (z − ζ))

q =

∫ ζ+h

ζ

u dz

• Assume the following profile for temperature:

T = 1 +
θ − 1

h
(z − ζ) , θ(x , t) = T (z = h + ζ, x , t)

• Multiply by weight functions and integrate in z. Flow variables become h, q, θ.
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Final Model equations: continuity and momentum

∂h
∂t

+
∂q
∂x

= 0

δ (h + 2δ1)
∂q
∂t = δ3hWe

(
5
2
δ1 +

5
6

h
)(

ζ ′′′ + ∂3h
∂x3

)
+ δ2

Re

(
9
2 h ∂

2q
∂x2 − 9

2
∂q
∂x

∂h
∂x − 6q ∂2h

∂x2 − 15
4 qζ ′′ + q

h

(
4
(
∂h
∂x

)2 − 5 (ζ ′)
2 − 5

2
∂h
∂x ζ
′
))

+δ2hReMa
(

1
48 h2 ∂2θ

∂x∂t + 15
224 hq ∂2θ

∂x2 + 19
336 h ∂q

∂x
∂θ
∂x + 5

112 q ∂θ
∂x

∂h
∂x

)
+δ
(

9
7

q2

h
∂h
∂x −

45
16δ1

q2

h2 ζ
′ − 5

2 Ma ∂θ∂x

( h
2 + δ1

)
− 17

7 q ∂q
∂x

(
1 + δ1

h

))
+δ
(
− 5

2 h cot (β)
Re

(
∂h
∂x + ζ ′

)
(h + 3δ1)

)
+ 5

2
h

Re (h + 3δ1)− 5
2

q
hRe
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Final Model equations: energy

δh ∂θ∂t = δ2
(
− 3

2
Bi
Peθ
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ζ ′ + ∂h
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40 MaReh2 (∂θ
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+ h

Pe
∂2θ
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Pe
∂θ
∂x

∂h
∂x

)
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(
3
80 MaReh

(
h ∂

2θ
∂x2 + 2∂θ∂x

∂h
∂x

)
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Peh ζ
′ ∂h
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Peh

(
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)2 − 3
2Pe ζ
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Pe

∂2h
∂x2

)
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(
δ1
h

(
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40
∂q
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40

q
h ζ
′
)
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∂q
∂x

)
+δ q
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∂θ
∂x

(
21 δ1
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)
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Peh (θ − 1)− 3 Bi
Peθ
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Benney equation

Conduct linear stability analysis using first-order Benney Equation [9].
Variables u, w , P, and T are expanded in a perturbation series:

u = u0 + δu1 + O(δ2)

Substituting these into the governing equations, the O(1) and O(δ)

problems are considered, and the boundary conditions are used to
form a single equation for the evolution of the free surface, h(x , t).
Assume perturbations of the form ĥ = h0eik(x−ct) where h = hs + ĥ.
This gives the following critical Reynolds number (for hs = 1):

ReBen
crit = 5

6 cotβ 1+3δ1

1+6δ1+
25
2 δ

2
1+

5
12

MaBi
(1+Bi)2 (1+2δ1)
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Linear stability using Model equations

A linear stability analysis is also conducted using the model
equations.
The steady-state solutions for the even bottom case are:

hs = 1 , θs =
1

1 + Bi
, qs = 1 + 3δ1

Express variables as the steady-state value plus a perturbation:

h = hs + ĥ, θ = θs + θ̂, q = qs + q̂

The equations are then linearized in the perturbation.
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Linear stability using Model equations (cont’d)

The form of the perturbation is assumed:

ĥ = h0eikx+ωt , θ̂ = θ0eikx+ωt , q̂ = q0eikx+ωt

Requiring that real(ω) = 0 gives the neutral stability curve having
critical Reynolds number:

ReWRM
crit = 5

6 cotβ 1+3δ1

1+6δ1+
92
7 δ

2
1+

5
12

MaBi(1+2δ1)
(1+Bi)2

This critical Reynolds number matches the Benney result to O(δ1).
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Comparison of Recrit for limiting cases

Limiting Case ReWRM
crit ReBen

crit [9] ReTheor
crit [3,5,10,11]

Isothermal and
Impermeable 5

6 cotβ 5
6 cotβ 5

6 cotβ

Bi = Ma = δ1 = 0

Impermeable
δ1 = 0

5
6 cotβ

1+ 5MaBi
12(1+Bi)2

5
6 cotβ

1+ 5MaBi
12(1+Bi)2

5
6 cotβ

1+ 5MaBi
12(1+Bi)2

Isothermal

Bi = Ma = 0 5
6 cotβ

[
1+3δ1

1+6δ1+ 92
7 δ

2
1

]
5
6 cotβ

[
1+3δ1

1+6δ1+ 25
2 δ

2
1

]
5
6 cotβ

[
1+3δ1

1+6δ1+ 25
2 δ

2
1

]
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Comparison of Recrit with heating and porosity

The critical Reynolds number from each method is compared to results
from Sadiq et al. [7]

ReBen
crit = 5

6 cotβ 1+3δ1

1+6δ1+
25
2 δ

2
1+

5
12

MaBi
(1+Bi)2 (1+2δ1)

ReWRM
crit = 5

6 cotβ 1+3δ1

1+6δ1+
92
7 δ

2
1+

5
12

MaBi
(1+Bi)2 (1+2δ1)

ReSad
crit = 5

6 cotβ 1+3δ1

1+6δ1+
25
2 δ

2
1+

15
2 δ

3
1+

5
12

MaBi
(1+Bi)2 (1+2δ1)
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Neutral stability for a wavy bottom

Neutral stability curves are calculated numerically using Floquet theory. Each
variable equals the steady state value plus a perturbation:

h = hs(x) + ĥ , q = 1 + q̂ , θ = θs(x) + θ̂

The model equations are linearized in the perturbations:

∂ĥ
∂t

+
∂q̂
∂x

= 0 ,
∂q̂
∂t

+ f1
∂2q̂
∂x2 + f2

∂q̂
∂x

+ ... = 0 ,
∂θ̂

∂t
+ g1

∂2θ̂

∂x2 + g2
∂θ̂

∂x
+ ... = 0

The perturbations and coefficients are expanded in truncated Fourier series: ĥ
q̂
θ̂

 = eωteiKx
N∑

n=−N

 ĥn

q̂n

θ̂n

 ei2πnx ,

(
fj
gj

)
=

N∑
n=−N

(
fj,n
gj,n

)
ei2πnx

This leads to a generalized eigenvalue problem given by: A~V = ωB~V
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Growth rate of flow over a wavy bottom
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Neutral stability curves for a wavy bottom

Effect of surface
tension:
δ = 0.05 , δ1 = 0
cotβ = 4
Bi = Ma = 0
ab = 0 (top)
ab = 0.4 (bottom)
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Neutral stability curves for a wavy bottom

Effect of bottom
permeability:
δ = 0.05
We = 5
ab = 0.4
cotβ = 4
Bi = Ma = 0
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Neutral stability distribution for a wavy bottom

Effect of bottom
permeability reverses
for sufficiently large
bottom amplitude and
surface tension.
δ = 0.05
cotβ = 1
Bi = Ma = 0
We = 50 (top)
We = 400 (bottom)
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Comparison between CFX and Model

0 2 4 6 8 10
0

2

4

6

x

q

 

 
CFX

0 2 4 6 8 10
0

2

4

6

x

q

 

 
WRM



Introduction Problem Formulation Linear Stability Non-linear Simulations Summary

Conclusions

• The weighted residual model has been extended to include the
Marangoni effect, bottom permeability and bottom waviness.

• Both permeability and Marangoni effects destabilize flow over an even
bottom, and the combined effect is to further destabilize the flow; the
model equations accurately predict these effects.

• Weak surface tension and bottom topography stabilizes the flow, while
strong surface tension and bottom topography have the opposite effect.

• With strong surface tension and large bottom amplitude, permeability
can have a stabilizing effect.

• The model equations have been be solved numerically to predict the
development of the free-surface; an unstable case with bottom
permeability was shown to closely match the results of the full
Navier-Stokes equations obtained using CFX.
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