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Introduction

The steady flow of a thin fluid
layer over a sphere occurs
naturally in a globe fountain as
shown. A globe fountain
consists of a sphere with a hole
at the top whereby water is
pumped out at a constant rate.
An analytical study of the flow
has been carried out in this
study.
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Introduction

Problem description
Related problem
Previous work

The kugel fountain shown here
involves a massive granite
sphere which floats and spins
on a thin film of flowing water
which is pumped out of a hole
at the base of the fountain.
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Introduction

Problem description
Related problem

Previous work

» Takagi & Huppert (JFM, 2010) studied a constant volume of
fluid released at the top of a sphere using lubrication theory.
Their analytical results agreed well with their experiments.
They also investigated the onset of instability of the
advancing front as it split into a series of rivulets.

» The dynamics of the kugel fountain was recently analysed by
Snoeijer & van der Weele (Am. J. Phys., 2014), again using
lubrication theory.
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Governing equations
Mathematical formulation Scaling
Dimensionless equations

Boundary conditions

Formulated in spherical coordinates (r, 6, ¢) with the hole oriented
about the polar axis § = 0 and assuming azimuthal symmetry, the
governing steady-state Navier-Stokes equations become:
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Governing equations
Mathematical formulation Scaling

Dimensionless equations
Boundary conditions

Here, u, v denote the velocity components in the # and radial
directions, respectively, P refers to the pressure, v = 1/p
represents the kinematic viscosity while u is the dynamic viscosity
and p is the fluid density whereas g is the acceleration due to
gravity. The thickness of the fluid layer is scaled by the Nusselt
thickness, H, which for a vertical incline is given by

3@
g 7

H3

where Q is the constant flow rate exiting the small hole. For a fluid
layer having a width of unity @ = UH where U is the velocity scale.
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Governing equations
Mathematical formulation Scaling

Dimensionless equations
Boundary conditions

The coordinate y is introduced which is related to r through the
relation r = R + y with R referring to the radius of the sphere.
This can be scaled as

r Yy

L),

R + H
where the dimensionless parameter 6 = H/R < 1 denotes the

shallowness parameter. With this scaling the dimensionless flow
variables and coordinate y are given by

(u,v,P,y) — (Uii,sUv, pU?P, HY) ,
where the tilde denotes a dimensionless quantity.
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Governing equations
Mathematical formulation Scaling

Dimensionless equations
Boundary conditions

In dimensionless form and suppressing the tildes the governing
equations become:

f?y (1 + dy)?vsing] + 889 [(1+dy)usinf] =0,
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where Re = Q/v denotes the Reynolds number.
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Governing equations
Mathematical formulation Scaling

Dimensionless equations
Boundary conditions

Along the air-fluid interface dynamic conditions along the steady
free surface y = n(0) are applied:
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Governing equations

Mathematical formulation Scaling
Dimensionless equations

Boundary conditions

Here, We = oH/(p@?) is the Weber number with o denoting
surface tension, P, the constant ambient air pressure, n = h/H
with h being the thickness of the fluid layer, and the prime denotes
differentiation with respect to . The kinematic condition along
the free surface y = n(0) is given by

v=—

(1+ 577)77 ’

and the no-slip and impermeability conditions on the surface of the

sphere are
u=v=0aty=0.
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Small § expansion
Leading-order problem
O(6) problem

Analytical solution

For small § an approximate analytical solution can be constructed
by expanding the flow variables in the following series

u(y,0) = uo(y,0) +our(y,0)+--- ,

V(yve):Vo(y70)+6vl(y79)+"'7
P(y?e):PO(Y70)+5Pl(y70)+"'7
n(0) = no(0) + om(0) +--- -

Substituting these expansions into the equations of motion and
expanding the dynamic conditions in powers of § leads to a
hierarchy of problems.
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Small § expansion
Leading-order problem
O(6) problem

Analytical solution

The leading-order problem is governed by the system

% B _3cos€
dy  Re ’
82
8y”2° — _3sind |
0 0
sinf ( aVO + a?) + ugcosd =0,
subject to
Py =P, , %:O at y =no,
dy

up=v=0 at y=0.
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Small § expansion
Leading-order problem
O(6) problem

Analytical solution

The solutions are easily found to be

3 cosb

P — P,
O(ya 0) + Re

(no—y) »

3 .
uO(yu 0) = E.y 5'n9(2770 - J/) )

2
vo(y,0) = —%(67}0 cost) + 3 sinf — 2y cosh) .

Thus, to leading order the pressure is hydrostatic and the velocity
in the 6 direction, wug, has a parabolic profile in y which is
consistent with flow down an inclined surface at an angle of 6 with
the horizontal. Further, the velocity component ug is symmetric
about the plane 6 = /2. I
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Small § expansion
Leading-order problem

Analytical solutiol N
nalyti ution O(6) problem

The leading-order term for the unknown free surface can be
determined by applying the kinematic condition which when
transferred from y = 7 to y = 1o takes the form

vo = Uony at y =1 -
This leads to the differential equation and solution given by

_ 2nq cost C

3sinf = o(f) =

A —_— =75
o sin2/3¢

The constant C is found by applying 1o = hg at 8 = 6y where hg

and 6y are free dimensionless parameters. Thus, C = hg sin2/300

and the singularity at 0 = 0 is removed. Since we expect the flow

to separate from the surface before reaching the bottom of the
sphere, the singularity at 6 = 7 is also resolved. g
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Small § expansion
Leading-order problem
O(8) problem

Analytical solution

The O(0) problem satisfies the system

62U1 0 2 c')uo
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Small § expansion
Leading-order problem
O(8) problem

Analytical solution

The kinematic condition applied at y = 1y yields the differential
equation for the free surface correction, 1, given by

vt 4 (080 OO\ e
071 o Ay dy m 1T To%olo — Mol
subject to

m=0at 6=20q.

The solution to the O(J) problem is significantly more complicated
and was obtained using the Maple computer algebra system. For
example, the solution for uy is:
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Small § expansion
Leading-order problem

Analytical solution 0(5) problem

u(y,0) = Z/—O (—Rey5 sinf cos + 6 CRey* sin'/36 cost)

+15CRenfy> sin*/30 + 60y? sind + 60y [} cosf — 3C sin'/30] + F(H))
where

F(0) = 1201 sin0+240C? sin~*/30[n} costi+sin8] —60 C* Rerjl sin /30
+240C(np)? sin'/30—120Cnf sin~2/30 cosh—24C Re sin™ /36 cosh .
The solution for 11 can be expressed in the form

512C2 0

—_ fla)da,
945sin%/30 Jy, ()

m(0) =

Whfetioo
and can be integrated numerically. ®
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Small § expansion

. . Leading-order problem
Analytical solution o F

O(8) problem

The function f(«a) is defined as:

f(a) = sin?/3a (—180C3Re sin?/3a cos2a — 396C3Resin?/3a

+280C cos3a + 2520C cosa + 385sin?/3ar cos3a — 2625sin?/ 3o cosa) /

(462+cos12a—12 cos10a+66 cos8ar—220 cosba+495 cosda—792 cos2a) .
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Results and discussion

The leading-order, 1y,
and first-order
correction, 11, to the
free surface with
Re=1,=0.1,

00 = 0.2 and ho = 0.5.

0.5 1 15 2 25 3
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Results and discussion

The free surface

1N = no + dn1 shown in
Cartesian coordinates
with Re =1, § = 0.1, 05 sprer
00 = 0.2 and ho = 0.5.

i - freesurtace
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Results and discussion

The dimensionless flow rate per unit width, Q, and dimensionless
average streamwise velocity, U, can be computed using the
leading-order solution as follows

N

0 N
Q= / uo(y,8)dy = n3sind , U=
0

|

=g sinf .
"o

Substituting no = C/ sin?/30 yields Q = C3/sinf and
U=c?/ sinl/36. Both the flow rate and average speed decrease

as 6 increases from 6y to m/2 which leads to a decrease in fluid
thickness. Note that @ sin6 is constant!
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Results and discussion

The leading-order, ug,
and first-order
correction, uq, to the
velocity profile with
Re=1,6=0.1,

fp = 0.2 and hg =1 at
0 =m/4.

Serge D'Alessiol, J.P. Pascal®

0.15/

0.05

0

Waterioo

The dynamics of the globe fountain



Results and discussion

0.2 =

The velocity profile
u = ug + dup using 015
Re=1,6 =0.1, .

fp = 0.2 and hg =1 at /
0 =m/4and 6 =7/2. oo

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
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Results and discussion

The point of separation can be estimated by using the zero-stress
condition:

ou

— =0 at y=0.

oy Y
Using u = ug leads to 370(6)sinfd = 0 and yields the separation
angle 6; = 7. Including the first-order correction u = ug + duq

requires solving the equation
) ]
3n0(0) sinf + %F(G) =0,

to determine 0. Here, F(0) was previously defined. As expected,

fs occurs near the bottom of the sphere with little dependence on

Re and 6. When hy = 1 and 6y = 0.2 separation occurs at

ts ~ 3.045 while when hy = 0.5 and 6y = 0.3 separation occurs at ...
fs ~ 3.085.
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Results and discussion

The calculation was repeated for the problem of thin flow over a
cylinder and very similar streamwise velocity profiles were obtained.
However, the free surface was found to vary more rapidly with 6
for the sphere than it does for the cylinder. Expressions for 19(6)
and 71(0) for the cylinder are given by

D
no(0) = YR where D = hgysin'/36y ,

D? A |

0) = —
m(0) 75605sin'/30 Jg, sin'/3q

(245 sin!/3a cos3a

—2205sinY/3a cosar + 70D cos3a + 1050D coscx
+72D3Resin*/3a cos2r + 504D° Re sin4/3a> da .
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Results and discussion

For the cylinder the dimensionless flow rate per unit width, Q, and
dimensionless average streamwise velocity, U, are given by

Q=D3 and U= (,A?/no — D?sin/39 .

Here, the average streamwise velocity increases as 6 increases from
6o to m/2 and since the flow rate remains constant the fluid
thickness must decrease accordingly.
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Results and discussion

The free surface o

n = no + ony for the 0

cylinder and sphere o

with Re =1, § = 0.1,
fo=02and hg =05
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Summary

» Discussed in this work was an analytical investigation of the
steady flow of a thin fluid layer over a sphere resulting from a
constant discharge from a small hole at the top of the sphere.
As an extension the cylindrical case was also solved.

> The variation in fluid layer thickness is more pronounced for
the sphere than it is for the cylinder. This is because the
average streamwise velocity increases as the fluid flows over
the cylinder and since the flow rate is constant the thickness
must therefore decrease. For the sphere both the flow rate
and the average streamwise velocity decrease as the fluid
flows over the surface which leads to a more rapid decrease in
fluid layer thickness.

» The technique and approach adopted here can be used to
model other thin flows that occur in similar settings. g
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