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The steady flow of a thin fluid
layer over a sphere occurs
naturally in a globe fountain as
shown. A globe fountain
consists of a sphere with a hole
at the top whereby water is
pumped out at a constant rate.
An analytical study of the flow
has been carried out in this
study.
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The kugel fountain shown here
involves a massive granite
sphere which floats and spins
on a thin film of flowing water
which is pumped out of a hole
at the base of the fountain.

Physics of the granite sphere fountain

Jacco H. Snoeijer1 and Ko van der Weele2
1 Physics of Fluids Group and J.M. Burgers Centre for Fluid Dynamics,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
2 Department of Mathematics, University of Patras, 26500 Patras, Greece

(Dated: April 3, 2014)

A striking example of levitation is encountered in the “kugel fountain” where a granite sphere,
sometimes weighing over a tonne, is kept aloft by a thin film of flowing water. In this paper we
explain the working principle behind this levitation. We show that the fountain can be viewed as
a giant roller bearing and thus forms a prime example of lubrication theory. It is demonstrated
how the viscosity and flow rate of the fluid determine (i) the remarkably small thickness of the film
supporting the sphere and (ii) the surprisingly long time it takes for rotations to damp out. The
theoretical results compare well with measurements on a fountain holding a granite sphere of one
meter in diameter. We close by discussing several related cases of levitation by lubrication.

I. INTRODUCTION

Granite sphere or “kugel” fountains (see Fig. 1) are
a familiar sight in town squares and science museums,
and smaller ones – often with a marble sphere – decorate
many private homes and gardens. These fountains con-
sist of a perfectly polished ball floating in a socket that
fits precisely around it. The fluid that wells up around
the rim of the socket is pumped into the fountain via a
hole at the base. In spite of its considerable weight, the
sphere is easily brought into a spinning motion, which
is an attractive sight especially when the surface of the
sphere is engraved with the Earth’s map, a soccer ball,
the night sky, or something of the kind. The fluid layer
between the socket and sphere is very thin (thinner than
a credit card1), which is important for any kugel on dis-
play in a public place, since it means there is no risk of
children’s fingers being caught under the spinning sphere.
Despite its popularity, the granite sphere fountain is

poorly understood by most people. When we asked vis-
itors of the House of Science in Patras, Greece, which
physical mechanism they thought was responsible for the
floating of the sphere in front of the main entrance (a
granite ball with a diameter of 1 m), the most com-
mon answer was “Archimedes’ law of buoyancy”, as if
the sphere were an iceberg or a ship. Perhaps the visi-
tors who gave this answer were under the impression that
the sphere was hollow. In reality, however, it is solid and
the buoyant force is by no means capable of keeping the
sphere afloat, since granite has a density 2.75 times as
large as that of water.
The second most common answer was “the incompress-

ibility of water”. This is not too convincing either, since
it fails to explain why the sphere does not squeeze the
water out of the space between itself and the socket, and
simply sit on top of the inlet nozzle like a giant granite
cork.
A third answer was “Pascal’s principle”, which states

that a pressure applied to an enclosed incompressible
fluid at rest is transmitted undiminished and isotropi-
cally to every part of the fluid, as well as to the walls
of the container. This comes much closer to the truth,

FIG. 1: One of the largest granite sphere fountains in the
world, the Grand Kugel at the Science Museum of Virginia,
Richmond. The sphere has a diameter of 2.65 m and a mass
of about 27 tonnes.

as we will see, even though the water in the fountain is
neither fully enclosed (it is open at the rim of the socket)
nor at rest.

A search on the internet did not yield much in the
way of a conclusive answer. On the site of one of the
leading manufacturers of these fountains it is stated that
“basic physical principles and very accurate working of
the stone allow granite objects weighing tonnes to float
on air or water”,2 without however giving any hint as
to which these basic principles are. Another site, de-
scribing the Millennium Globe in Kenilworth, UK, says
that “complex physics and precision engineering” are
involved.3 The lemma on the electronic encyclopedia
wikipedia about the kugel ball, as the fountain is widely
known (from the German “Kugel”, meaning bullet or
ball), states that the sphere is supported by a very thin
film of water and “because the thin film of water lubri-
cates it, the ball spins”.4 Finally, we came across several
physics forums where students asked about the working
of the kugel fountain, without however getting any an-
swer that went much deeper than the above statements.
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I Takagi & Huppert (JFM, 2010) studied a constant volume of
fluid released at the top of a sphere using lubrication theory.
Their analytical results agreed well with their experiments.
They also investigated the onset of instability of the
advancing front as it split into a series of rivulets.

I The dynamics of the kugel fountain was recently analysed by
Snoeijer & van der Weele (Am. J. Phys., 2014), again using
lubrication theory.
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Formulated in spherical coordinates (r , θ, φ) with the hole oriented
about the polar axis θ = 0 and assuming azimuthal symmetry, the
governing steady-state Navier-Stokes equations become:
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Here, u, v denote the velocity components in the θ and radial
directions, respectively, P refers to the pressure, ν = µ/ρ
represents the kinematic viscosity while µ is the dynamic viscosity
and ρ is the fluid density whereas g is the acceleration due to
gravity. The thickness of the fluid layer is scaled by the Nusselt
thickness, H, which for a vertical incline is given by

H3 =
3νQ

g
,

where Q is the constant flow rate exiting the small hole. For a fluid
layer having a width of unity Q = UH where U is the velocity scale.
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The coordinate y is introduced which is related to r through the
relation r = R + y with R referring to the radius of the sphere.
This can be scaled as

r

R
= 1 + δ

( y
H

)
,

where the dimensionless parameter δ = H/R � 1 denotes the
shallowness parameter. With this scaling the dimensionless flow
variables and coordinate y are given by

(u, v ,P, y)→ (Uũ, δUṽ , ρU2P̃,Hỹ) ,

where the tilde denotes a dimensionless quantity.
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In dimensionless form and suppressing the tildes the governing
equations become:
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where Re = Q/ν denotes the Reynolds number.
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Along the air-fluid interface dynamic conditions along the steady
free surface y = η(θ) are applied:

P − Pa = δWe
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Here, We = σH/(ρQ2) is the Weber number with σ denoting
surface tension, Pa the constant ambient air pressure, η = h/H
with h being the thickness of the fluid layer, and the prime denotes
differentiation with respect to θ. The kinematic condition along
the free surface y = η(θ) is given by

v =
u

(1 + δη)
η′ ,

and the no-slip and impermeability conditions on the surface of the
sphere are

u = v = 0 at y = 0 .
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For small δ an approximate analytical solution can be constructed
by expanding the flow variables in the following series

u(y , θ) = u0(y , θ) + δu1(y , θ) + · · · ,

v(y , θ) = v0(y , θ) + δv1(y , θ) + · · · ,

P(y , θ) = P0(y , θ) + δP1(y , θ) + · · · ,

η(θ) = η0(θ) + δη1(θ) + · · · .

Substituting these expansions into the equations of motion and
expanding the dynamic conditions in powers of δ leads to a
hierarchy of problems.
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The leading-order problem is governed by the system

∂P0

∂y
= −3 cosθ

Re
,

∂2u0
∂y2

= −3 sinθ ,

sinθ

(
∂v0
∂y

+
∂u0
∂θ

)
+ u0 cosθ = 0 ,

subject to

P0 = Pa ,
∂u0
∂y

= 0 at y = η0 ,

u0 = v0 = 0 at y = 0 .
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The solutions are easily found to be

P0(y , θ) = Pa +
3 cosθ

Re
(η0 − y) ,

u0(y , θ) =
3

2
y sinθ(2η0 − y) ,

v0(y , θ) = −y2

2
(6η0 cosθ + 3η′0 sinθ − 2y cosθ) .

Thus, to leading order the pressure is hydrostatic and the velocity
in the θ direction, u0, has a parabolic profile in y which is
consistent with flow down an inclined surface at an angle of θ with
the horizontal. Further, the velocity component u0 is symmetric
about the plane θ = π/2.
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The leading-order term for the unknown free surface can be
determined by applying the kinematic condition which when
transferred from y = η to y = η0 takes the form

v0 = u0η
′
0 at y = η0 .

This leads to the differential equation and solution given by

η′0 = −2η0 cosθ

3 sinθ
⇒ η0(θ) =

C

sin2/3θ
.

The constant C is found by applying η0 = h0 at θ = θ0 where h0
and θ0 are free dimensionless parameters. Thus, C = h0 sin2/3θ0
and the singularity at θ = 0 is removed. Since we expect the flow
to separate from the surface before reaching the bottom of the
sphere, the singularity at θ = π is also resolved.
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The O(δ) problem satisfies the system
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at y = η0 ,

u1 = v1 = 0 at y = 0 .
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The kinematic condition applied at y = η0 yields the differential
equation for the free surface correction, η1, given by

u0η
′
1 +

(
η′0
∂u0
∂y
− ∂v0
∂y

)
η1 = v1 + η0η

′
0u0 − η′0u1 ,

subject to
η1 = 0 at θ = θ0 .

The solution to the O(δ) problem is significantly more complicated
and was obtained using the Maple computer algebra system. For
example, the solution for u1 is:
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u1(y , θ) =
y

40

(
−Rey5 sinθ cosθ + 6CRey4 sin1/3θ cosθ

+15CReη′0y
3 sin4/3θ + 60y2 sinθ + 60y [η′0 cosθ − 3C sin1/3θ] + F (θ)

)
where

F (θ) = 120η1 sinθ+240C 2 sin−4/3θ[η′0 cosθ+sinθ]−60C 4Reη′0 sin−2/3θ

+240C (η′0)2 sin1/3θ−120Cη′0 sin−2/3θ cosθ−24C 5Re sin−7/3θ cosθ .

The solution for η1 can be expressed in the form

η1(θ) = − 512C 2

945 sin2/3θ

∫ θ

θ0

f (α)dα ,

and can be integrated numerically.
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The function f (α) is defined as:

f (α) = sin23/3α
(
−180C 3Re sin2/3α cos2α− 396C 3Re sin2/3α

+280C cos3α + 2520C cosα + 385 sin2/3α cos3α− 2625 sin2/3α cosα
)
/

(462+cos12α−12 cos10α+66 cos8α−220 cos6α+495 cos4α−792 cos2α) .
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The leading-order, η0,
and first-order
correction, η1, to the
free surface with
Re = 1, δ = 0.1,
θ0 = 0.2 and h0 = 0.5.
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The free surface
η = η0 + δη1 shown in
Cartesian coordinates
with Re = 1, δ = 0.1,
θ0 = 0.2 and h0 = 0.5.

0 0.5 1 1.5
0

0.5

1

1.5

x

y

free surface

sphere

Serge D’Alessio1, J.P. Pascal2 The dynamics of the globe fountain



Outline
Introduction

Mathematical formulation
Analytical solution

Results and discussion
Summary

The dimensionless flow rate per unit width, Q̂, and dimensionless
average streamwise velocity, Û, can be computed using the
leading-order solution as follows

Q̂ =

∫ η0

0
u0(y , θ)dy = η30 sinθ , Û =

Q̂

η0
= η20 sinθ .

Substituting η0 = C/ sin2/3θ yields Q̂ = C 3/ sinθ and
Û = C 2/ sin1/3θ. Both the flow rate and average speed decrease
as θ increases from θ0 to π/2 which leads to a decrease in fluid
thickness. Note that Q̂ sinθ is constant!
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The leading-order, u0,
and first-order
correction, u1, to the
velocity profile with
Re = 1, δ = 0.1,
θ0 = 0.2 and h0 = 1 at
θ = π/4.
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The velocity profile
u = u0 + δu1 using
Re = 1, δ = 0.1,
θ0 = 0.2 and h0 = 1 at
θ = π/4 and θ = π/2.
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The point of separation can be estimated by using the zero-stress
condition:

∂u

∂y
= 0 at y = 0 .

Using u = u0 leads to 3η0(θ) sinθ = 0 and yields the separation
angle θs = π. Including the first-order correction u = u0 + δu1
requires solving the equation

3η0(θ) sinθ +
δ

40
F (θ) = 0 ,

to determine θs . Here, F (θ) was previously defined. As expected,
θs occurs near the bottom of the sphere with little dependence on
Re and δ. When h0 = 1 and θ0 = 0.2 separation occurs at
θs ≈ 3.045 while when h0 = 0.5 and θ0 = 0.3 separation occurs at
θs ≈ 3.085.
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The calculation was repeated for the problem of thin flow over a
cylinder and very similar streamwise velocity profiles were obtained.
However, the free surface was found to vary more rapidly with θ
for the sphere than it does for the cylinder. Expressions for η0(θ)
and η1(θ) for the cylinder are given by

η0(θ) =
D

sin1/3θ
where D = h0 sin1/3θ0 ,

η1(θ) = − D2

7560 sin1/3θ

∫ θ

θ0

1

sin11/3α

(
245 sin1/3α cos3α

−2205 sin1/3α cosα + 70D cos3α + 1050D cosα

+72D3Re sin4/3α cos2α + 504D3Re sin4/3α
)
dα .
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For the cylinder the dimensionless flow rate per unit width, Q̂, and
dimensionless average streamwise velocity, Û, are given by

Q̂ = D3 and Û = Q̂/η0 = D2 sin1/3θ .

Here, the average streamwise velocity increases as θ increases from
θ0 to π/2 and since the flow rate remains constant the fluid
thickness must decrease accordingly.
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The free surface
η = η0 + δη1 for the
cylinder and sphere
with Re = 1, δ = 0.1,
θ0 = 0.2 and h0 = 0.5.
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I Discussed in this work was an analytical investigation of the
steady flow of a thin fluid layer over a sphere resulting from a
constant discharge from a small hole at the top of the sphere.
As an extension the cylindrical case was also solved.

I The variation in fluid layer thickness is more pronounced for
the sphere than it is for the cylinder. This is because the
average streamwise velocity increases as the fluid flows over
the cylinder and since the flow rate is constant the thickness
must therefore decrease. For the sphere both the flow rate
and the average streamwise velocity decrease as the fluid
flows over the surface which leads to a more rapid decrease in
fluid layer thickness.

I The technique and approach adopted here can be used to
model other thin flows that occur in similar settings.
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