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Introduction

Problem description
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Introduction

Previous work

Pascal and D’Alessio [1] studied the stability of a flow with rotation and a
quadratic density variation.

Schmitz and Zimmerman [2] studied the effects of a spatially varying
temperature boundary condition as well as wavy boundaries, without
rotation and assuming a very large Prandtl number.

Malashetty and Swamy [3] considered the effects of a temperature
boundary condition varying in time.

Basak et al. [4], studied the flow resulting from a spatially varying
temperature boundary condition in a square cavity without rotation.

The current work takes advantage of the thinness of the fluid layer, and
investigates flow in a rectangular domain with rotation and a varying bottom
temperature.
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Governing equations

Governing equations and boundary conditions

Governing equations:
~∇ · ~v = 0

∂~v
∂t

+
(
~v · ~∇

)
~v + f k̂ × ~v =

−1
ρ0

~∇p − ρ

ρ0
gk̂ + ν∇2~v

∂T
∂t

+
(
~v · ~∇

)
T = κ∇2T

Boundary conditions:

u = v = w = 0 at z = 0,H and y = 0, λ

T = T0 −∆T at z = H and y = 0, λ

T = T0 −∆T cos
(

2π
y
λ

)
at z = 0

By: Serge D’Alessio & Kelly Ogden (Waterloo) 2012 4 / 23



Governing equations

Other conditions

Initial conditions:

u = v = w = 0 , T = T0 −
∆T
H

z −∆T cos
(

2π
y
λ

)(
1− z

H

)
at t = 0

Density is assumed to vary according to:

ρ = (1− α [T − T0])

The flow is assumed to be uniform in the x-direction. This allows a stream function and
vorticity to be defined as:

v =
∂ψ

∂z
, w = −∂ψ

∂y
, ζ = −

(
∂2ψ

∂y2 +
∂2ψ

∂z2

)
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Governing equations

Other conditions

Integral constraints are imposed on the vorticity and can derived using Green’s
Second Identity: ∫

V

(
φ∇2χ− χ∇2φ

)
dV =

∫
S

(
φ
∂χ

∂n
− χ∂φ

∂n

)
dS

Here φ and χ denote arbitrary differentiable functions, ∂
∂n is the normal derivative, and

S is the surface enclosing the volume V . Choosing φ to satisfy ∇2φ = 0 and letting
χ ≡ ψ, then ∇2χ = ∇2ψ = −ζ. Applying the boundary conditions ∂ψ

∂n = ψ = 0 on S,
the above leads to ∫ H

0

∫ λ

0
φnζdydz = 0

where

φn(y , z) = e±2nπz

{
sin(2nπy)

cos(2nπy)

}
for n = 1, 2, 3, · · ·
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Governing equations

Scaling and dimensionless parameters

t → H2

κ
t , y → λy , z → Hz , ψ → κψ , ζ → κ

H2 ζ

T → (T0 −∆T ) + ∆TT , u → κ

H
u

Ra =
αgH3∆T

νκ
Rayleigh number

Ro =
κ

Hfλ
Rossby number

Pr =
ν

κ
Prandtl number

δ =
H
λ

Aspect ratio
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Governing equations

Dimensionless equations

∂ζ

∂t
− δ ∂

∂z

(
∂ψ

∂z
∂2ψ

∂y∂z
− ∂ψ

∂y
∂2ψ

∂z2

)
+ δ3 ∂

∂y

(
−∂ψ
∂z

∂2ψ

∂y2 +
∂ψ

∂y
∂2ψ

∂y∂z

)
− δ

Ro
∂u
∂z

= δPrRa
∂T
∂y

+ Pr
(
δ2 ∂

2ζ

∂y2 +
∂2ζ

∂z2

)

ζ = −
(
δ2 ∂

2ψ

∂y2 +
∂2ψ

∂z2

)

∂u
∂t

+ δ

(
∂ψ

∂z
∂u
∂y
− ∂ψ

∂y
∂u
∂z

)
− δ

Ro
∂ψ

∂z
= Pr

(
δ2 ∂

2u
∂y2 +

∂2u
∂z2

)

∂T
∂t

+ δ

(
∂ψ

∂z
∂T
∂y
− ∂ψ

∂y
∂T
∂z

)
= δ2 ∂

2T
∂y2 +

∂2T
∂z2
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Approximate analytical solution

Approximate analytical solution

For small δ, an approximate analytical solution can be constructed:

ψ = ψ0 + δψ1 + · · · , ζ = ζ0 + δζ1 + · · ·

u = u0 + δu1 + · · · , T = T0 + δT1 + · · ·

The leading-order problem becomes:

∂T0

∂t
=
∂2T0

∂z2 ,
∂ζ0

∂t
= Pr

∂2ζ0

∂z2 + PrδRa
∂T0

∂y

∂2ψ0

∂z2 = −ζ0 ,
∂u0

∂t
= Pr

∂2u0

∂z2
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Approximate analytical solution

Approximate analytical solution

Applying the boundary, initial and integral conditions yields:

ζ0(y , z, t) = −πδRa
(

z2 − z3

3
− 7z

10
+

1
10

)
sin (2πy)

+
∞∑

n=1

ane−n2π2Prt cos(nπz)

ψ0(y , z, t) = πδRa
(

z4

12
− z5

60
− 7z3

60
+

z2

20

)
sin (2πy)

−
∞∑

n=1

an

n2π2 e−n2π2Prt (1− cos(nπz))

where

an = 2πδRa sin (2πy)

∫ 1

0

(
z2 − z3

3
− 7z

10
+

1
10

)
cos(nπz)dz , n = 1,2, · · ·
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Approximate analytical solution

Steady-state solutions

As t →∞, the following steady-state solutions emerge:

Ts = (1− z) (1− cos (2πy))

ζs = −πδRa
(

z2 − z3

3
− 7z

10
+

1
10

)
sin(2πy)

ψs = πδRa
(

z4

12
− z5

60
− 7z3

60
+

z2

20

)
sin(2πy)

us = 0

Plotted on the next slide are the leading-order temperature and velocities
(Ro = 0.0548, Pr = 0.7046 and Ra = 388.7).
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Approximate analytical solution

Steady-state solutions
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Approximate analytical solution

Steady-state solutions

At leading order us = 0, the O(δ) solution for us is:

us =
1

720
πδRa
RoPr

sin (2πy)z(z − 1)
(
2z4 − 10z3 + 11z2 − z − 1

)
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Approximate analytical solution

Transient development

v - velocity development with time for Ra = 1, Pr = 1 at times t = 0.01,0.1,1
from top to bottom.
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Approximate analytical solution

Transient development

w- velocity development with time for Ra = 1, Pr = 1 at times t = 0.01,0.1,1
from top to bottom.
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Approximate analytical solution

Steady-state numerical solutions

The steady-state solution was also be determined numerically using the
commercial software package CFX. All results shown use air at 298K with a
domain having a length of 20 cm and height of 2 cm with periodicity imposed
at the ends. For cases with rotation, the angular velocity is 0.05s−1. The
non-dimensional values are Ro = 0.0548 and Pr = 0.7046. The Rayleigh
number will depend on ∆T .
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Approximate analytical solution

Steady-state numerical solutions

The temperature distribution for a case without rotation or modulated bottom
heating (top) is compared to a case with these effects (∆T = 0.5K ,
Ra = 388.7).
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Approximate analytical solution

Steady-state numerical solutions

The velocity for a case without rotation or modulated bottom heating (top) is
compared to a case with these effects (∆T = 0.5K , Ra = 388.7).

Note that the pattern and magnitude of the temperature and velocity agree
well with the approximate analytical solutions.
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Unstable solutions

Unstable numerical solutions

∆T = 0.5K , Ra = 388.7

∆T = 4K , Ra = 3109
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Unstable solutions

Unstable numerical solutions

By: Serge D’Alessio & Kelly Ogden (Waterloo) 2012 20 / 23



Unstable solutions

Unstable numerical solutions
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Summary

Summary

Conclusions

Contrary to the Bénard problem, a non-zero background flow was found.

The approximate analytical solution agrees well with the fully numerical
solution.

While rotation is known to stabilize the flow, a variable bottom
temperature also influences the stability of the flow.

Interesting features emerging from the unstable numerical simulations
were observed.
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