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Introduction

A gravity current is the flow of one fluid within another caused by
the density difference between the fluids. Gravity currents occur
in many natural phenomena as well as human-related activities.

An important parameter characterizing the problem is the
reduced gravity ¢’ defined by:
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Lictle Colo. silc 3 gms /litre
Stope .1 %
Temperature 86 °

Rate of flow - 750 cc/minuﬁ:

Photograph of a gravity current produced
in the laboratory.

The gravity current is produced by the intrusion of muddy water
into a sloping channel filled with clear water. Shown is the shape of
the surface separating the muddy water from the clear water.



Model Assumptions & Approximations

Fluid is inviscid, incompressible and immiscible
Small aspect ratio, § = % , 0< ik 1

Pressure is hydrostatic to O(62)

Boussinesq approximation

e Ignore effects of surface tension



Governing Equations

The planar shallow water equations in dimensionless form are:
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Boundary & Initial Conditions

Initial conditions:

ho If 0<ax<zx
uq(x,0) = n(x,0) =0, us(x,0) =wuygy, h(x,0) = { OO if >z, i

Impermeability, slope and far-field boundary conditions:

u1(0,t) =0, ux(0,t) =0
on Oh
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Weak Stratification Equations

For small density differences we can neglect terms of O(¢'/g).
The equations then simplify to:
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where u = us.
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Weakly Nonlinear Analysis

Expand about (u,h) = (uo, ho) by letting u = uo + 4, h = ho + h
and retain quadratically nonlinear terms, then a,B satisfy:
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which can be combined into the single equation:
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Linearizing the equations and assuming a wave-like solution
(dropping the hats):

w(x,t) = u(€), h(x,t) = h(£) where £ =z — ¢t

vields the linearized speeds:

=+ (11_—2;0 1o \/(1 —ho)® =

For O < uwo < 1, the speeds are real in the triangular region
ho <1 —wu,. Next introduce

E=x—c_t,n=x+c_t, T=¢ct, h=ch, u=-ci
and expand the variables in the following series

h=h0 4+ (D) 4+ 062 and 7= u® 4+ ) 4+ 0(2)
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The O(1) Problem

The leading order equations

ahly) — BrtY =0

o(1 — 3h,
e~ o)+ ST 4 ) =
(1= ho)3 — ul]

(1= ho)? (hy” + k)

have solutions of the form

h(0) = (&, T) 4 (n + %g, T)

u(®) = ¢16(¢,T) — cob(n + gs, T)
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The O(e) Problem

Carrying the analysis to the next order yields

ahly) — Bl = A(e,T) + B(&,0,T)

where
A(E,T) = c3¢7e + ca(d?)ee
Imposing the solvability condition A = 0 and integrating gives
¢ + bope =0

Letting ¢(&,0) = (&) represent the initial condition, the
solution to the above can be expressed implicitly in terms of the
parameter T as

¢(§,T) = f(r)along £ =bT'f(7) + 7
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Shock formation occurs when [¢¢| — co where

PR S
ST 14T f(r)
which becomes infinite when T = —1/bf'(7). Along the back

side of a smooth curve f(7), where f'(v) > 0, a shock will form
if b < 0. In terms of the initial configuration specified by u, and
ho this condition can be expressed as

2F\FyF3 + FfFy — F5F5 < 0O

where Fq, F5, F3, F4, F5 are complicated functions of ue, and hy.
As a check, if we set uo, = 0 then the above condition collapses
to ho > 1/2 which is in full agreement with our previous result

( ).
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Analytical Predictions
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Numerical Solution Procedure

T he weak stratification equations form a hyperbolic system of
conservation laws. To numerically solve this system MacCor-
mack’'s method was employed. This is a conservative second-
order accurate finite difference scheme which correctly captures
discontinuities and converges to the physical weak solution of
the problem.

A general system of conservation equations with a source term
can be written compactly in vector form as

oU | OF(U
4 oF(U)

= b(U
ot ox (U)
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In our case b(U) = 0 and the vectors U and F(U) are given by

1,2 2
U 5u” 4+ n(u, h) uh 1,5
U [h] (U) [ ) ],n(u,) )
LeVeque & Yee ( ) extended MacCor-

mack’'s method to include source terms. This explicit two step
predictor-corrector scheme takes the form

Up = Up — 0 [F(UZL) — F(UD)] + At b(U7)

Un—l—l (Un i Ug) _ QATt [F(U*) — F(U 1)} + %b(U;)

where the notation U"'; = U(a;j,tn) was adopted, Az is the grid
spacing and At is the time step.
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To dampen spurious oscillations associated with second-order
schemes artificial viscosity was introduced. Since adding artifi-
cial viscosity reduces the accuracy to first-order, Harten (

) proposed an efficient strategy to deal
with this. Harten's approach involves applying artificial viscosity
in a solution dependent manner which adds significant artificial
viscosity only around discontinuities. The resulting scheme then
remains second-order accurate where the solution is smooth and
is first-order accurate only near discontinuities.
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This is achieved by replacing the approximation U?"'l by

Un+1+8[3+1/2<uj+1 U — 071 5 (U} = U y)]

where the scalar 9”+1/2 IS solution dependent and is small if
the solution is smooth and close to unity near discontinuities.

Specifically,

0412 = max(0;,0;41) where

A1 /0h] = [Aj_1/5R]
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0 for |A]_|_1/2]'L‘ -+ |A]_1/2h‘ < €

\

with A; 44 oh = hjiy —hj and € > 0 is a specified tolerance.
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Results & Comparisons
Computational Parameters

For numerical stability the following values were used:
QOuter Boundary:

Grid Spacing Used:

Time Step Used:

Tolerance:
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Case l: 2o =1,ho=0.3,u0 =0
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Case 2: Lo — 1,h0 — 0.3,u0 — 05
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Conclusions

e Gravity currents flowing on a flat bottom of a rectangular
channel were studied.

e For weak stratification the full 4 x 4 system can be reduced
to a 2 x 2 system together with a set of 2 algebraic equations.

e A weakly nonlinear analysis applied to the weakly stratified
equations was successful in predicting when a rear shock forms
behind the head of the current. Full agreement with previous
work is obtained for the special case of a gravity current
initially at rest.

e Analytical predictions were further confirmed by extensive
numerical experiments.
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Thank Youl

For a copy of this presentation please visit:
http://www.math.uwaterloo.ca/ ~ sdalessi/
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