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Introduction

A gravity current is the flow of one fluid within another caused by

the density difference between the fluids. Gravity currents occur

in many natural phenomena as well as human-related activities.

An important parameter characterizing the problem is the

reduced gravity g′ defined by:

g′ =
(ρ2 − ρ1)

ρ2
g
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The flow configuration.
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Model Assumptions & Approximations

• Fluid is inviscid, incompressible and immiscible

• Small aspect ratio, δ = H
L , 0 < δ � 1

• Pressure is hydrostatic to O(δ2)

• Boussinesq approximation

• Ignore effects of surface tension
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Governing Equations

The planar shallow water equations in dimensionless form are:

∂u1

∂t
+ u1

∂u1

∂x
+
∂η

∂x
= 0

∂

∂t
(h−

g′

g
η) +

∂

∂x
[(1 +

g′

g
η − h)u1] = 0

∂u2

∂t
+ u2

∂u2

∂x
+

(
1−

g′

g

)
∂η

∂x
+
∂h

∂x
= 0

∂h

∂t
+

∂

∂x
(hu2) = 0
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Boundary & Initial Conditions

Initial conditions:

u1(x,0) = η(x,0) = 0 , u2(x,0) = u20 , h(x,0) =

{
ho if 0 ≤ x ≤ xo
0 if x > xo

Impermeability, slope and far-field boundary conditions:

u1(0, t) = 0 , u2(0, t) = 0

∂η

∂x
(0, t) =

∂h

∂x
(0, t) = 0

u1(x, t), u2(x, t), η(x, t), h(x, t) → 0 as x→∞
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Weak Stratification Equations

For small density differences we can neglect terms of O(g′/g).
The equations then simplify to:

∂u

∂t
+

(1− 3h)

(1− h)
u
∂u

∂x
+

(
1− h−

u2

(1− h)2

)
∂h

∂x
= 0

∂h

∂t
+

∂

∂x
(hu) = 0

η = −
u2h

1− h
−

1

2
h2

u1 = −
hu

1− h

where u ≡ u2.

9



Comparison between model & full equations
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Weakly Nonlinear Analysis

Expand about (u, h) = (uo, ho) by letting u = uo + û, h = ho + ĥ

and retain quadratically nonlinear terms, then û, ĥ satisfy:

∂û

∂t
+

(
uo(1− 3ho)

(1− ho)
+

(1− 3ho)

(1− ho)
û−

2uo
(1− ho)2

ĥ

)
∂û

∂x

+

(
(1− ho)3 − u2

o

(1− ho)2
−

2uo
(1− ho)2

û−
[(1− ho)3 + 2u2

o ]

(1− ho)3
ĥ

)
∂ĥ

∂x
= 0

∂ĥ

∂t
+ (ho + ĥ)

∂û

∂x
+ (uo + û)

∂ĥ

∂x
= 0

which can be combined into the single equation:

ĥtt + a1ĥxt + a2ĥxx = −(ûĥ)xt + a3(ûûx)x − a4(ĥĥx)x − a5(ûĥ)xx
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Linearizing the equations and assuming a wave-like solution

(dropping the hats):

u(x, t) = u(ξ) , h(x, t) = h(ξ) where ξ = x− ct

yields the linearized speeds:

c± =
(
1− 2ho
1− ho

)
uo ±

√
ho

1− ho

√
(1− ho)

2 − u2
o

For 0 ≤ uo ≤ 1, the speeds are real in the triangular region

ho ≤ 1− uo. Next introduce

ξ = x− c−t , η = x+ c−t , T = εt , h = εh̃ , u = εũ

and expand the variables in the following series

h̃ = h(0) + εh(1) +O(ε2) and ũ = u(0) + εu(1) +O(ε2)
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The O(1) Problem

The leading order equations

αh
(0)
ηη − βh

(0)
ηξ = 0

c−(u(0)
η − u

(0)
ξ ) +

uo(1− 3ho)

(1− ho)
(u(0)
η + u

(0)
ξ ) =

−
[(1− ho)3 − u2

o ]

(1− ho)2
(h(0)
η + h

(0)
ξ )

have solutions of the form

h(0) = φ(ξ, T ) + ψ(η+
α

β
ξ, T )

u(0) = c1φ(ξ, T )− c2ψ(η+
α

β
ξ, T )
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The O(ε) Problem

Carrying the analysis to the next order yields

αh
(1)
ηη − βh

(1)
ηξ = A(ξ, T ) +B(ξ, η, T )

where

A(ξ, T ) = c3φTξ + c4(φ
2)ξξ

Imposing the solvability condition A = 0 and integrating gives

φT + bφφξ = 0

Letting φ(ξ,0) = f(ξ) represent the initial condition, the
solution to the above can be expressed implicitly in terms of the
parameter τ as

φ(ξ, T ) = f(τ) along ξ = bTf(τ) + τ
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Shock formation occurs when |φξ| → ∞ where

φξ =
f ′(τ)

1 + bTf ′(τ)

which becomes infinite when T = −1/bf ′(τ). Along the back

side of a smooth curve f(τ), where f ′(τ) > 0, a shock will form

if b < 0. In terms of the initial configuration specified by uo and

ho this condition can be expressed as

2F1F2F3 + F2
1F4 − F2

2F5 < 0

where F1, F2, F3, F4, F5 are complicated functions of uo and ho.

As a check, if we set uo = 0 then the above condition collapses

to ho > 1/2 which is in full agreement with our previous result

(Stud. Appl. Math. 96, 359-385, 1996).

15



Analytical Predictions
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Numerical Solution Procedure

The weak stratification equations form a hyperbolic system of

conservation laws. To numerically solve this system MacCor-

mack’s method was employed. This is a conservative second-

order accurate finite difference scheme which correctly captures

discontinuities and converges to the physical weak solution of

the problem.

A general system of conservation equations with a source term

can be written compactly in vector form as

∂U

∂t
+
∂F(U)

∂x
= b(U)
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In our case b(U) = 0 and the vectors U and F(U) are given by

U =

[
u
h

]
, F(U) =

[
1
2u

2 + η(u, h)
uh

]
, η(u, h) = −

u2h

1− h
−

1

2
h2

LeVeque & Yee (JCP, 86, 187-210, 1990) extended MacCor-

mack’s method to include source terms. This explicit two step

predictor-corrector scheme takes the form

U∗
j = Un

j −
∆t

∆x

[
F(Un

j+1)− F(Un
j )
]
+ ∆t b(Un

j )

Un+1
j =

1

2

(
Un
j + U∗

j

)
−

∆t

2∆x

[
F(U∗

j)− F(U∗
j−1)

]
+

∆t

2
b(U∗

j)

where the notation Un
j ≡ U(xj, tn) was adopted, ∆x is the grid

spacing and ∆t is the time step.
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To dampen spurious oscillations associated with second-order

schemes artificial viscosity was introduced. Since adding artifi-

cial viscosity reduces the accuracy to first-order, Harten (Math.

Comp., 32, 363-389, 1978) proposed an efficient strategy to deal

with this. Harten’s approach involves applying artificial viscosity

in a solution dependent manner which adds significant artificial

viscosity only around discontinuities. The resulting scheme then

remains second-order accurate where the solution is smooth and

is first-order accurate only near discontinuities.
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This is achieved by replacing the approximation Un+1
j by

Un+1
j +

1

8

[
θnj+1/2(U

n
j+1 −Un

j )− θnj−1/2(U
n
j −Un

j−1)
]

where the scalar θnj+1/2 is solution dependent and is small if

the solution is smooth and close to unity near discontinuities.

Specifically,

θj+1/2 = max(θ̂j, θ̂j+1) where

θ̂j =



∣∣∣∣∣∣
|∆j+1/2h| − |∆j−1/2h|
|∆j+1/2h|+ |∆j−1/2h|

∣∣∣∣∣∣ for |∆j+1/2h|+ |∆j−1/2h| > ε

0 for |∆j+1/2h|+ |∆j−1/2h| ≤ ε

with ∆j+1/2h = hj+1 − hj and ε > 0 is a specified tolerance.
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Results & Comparisons

Computational Parameters

For numerical stability the following values were used:

Outer Boundary: x∞ = 6

Grid Spacing Used: ∆x = .01

Time Step Used: ∆t = .002

Tolerance: ε = 10−5
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Case 1: xo = 1, ho = 0.3, uo = 0
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Case 2: xo = 1, ho = 0.3, uo = 0.5
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Case 3: xo = 1, ho = 0.3, t = 3

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
u

0
=0.2

u
0
=0.4

u
0
=0.6

h 

x 

24



Conclusions

• Gravity currents flowing on a flat bottom of a rectangular
channel were studied.

• For weak stratification the full 4× 4 system can be reduced
to a 2× 2 system together with a set of 2 algebraic equations.

• A weakly nonlinear analysis applied to the weakly stratified
equations was successful in predicting when a rear shock forms
behind the head of the current. Full agreement with previous
work is obtained for the special case of a gravity current
initially at rest.

• Analytical predictions were further confirmed by extensive
numerical experiments.
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