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Critical conditions for the onset of Instability.
Structure of Roll Waves
Investigate the effect of bottom topography
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Chapter 1. Introduction 5

Figure 1.1: Spillway from Llyn Brianne Dam, Wales [115]. For an idea of the scale, the

width of the spillway is about 75 feet.

The spillway from the Llyn
Brianne Dam in Wales
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Figure 2.1: The picture on the left shows a laboratory experiment in which roll waves

appear on water flowing down an inclined channel. The fluid is about 7 mm deep and the

channel is 10 cm wide and 18 m long; the flow speed is roughly 65 cm/sec. Time series

of the free-surface displacements at four locations are plotted in the pictures on the

right. In the upper, right-hand panel, small random perturbations at the inlet seed the

growth of roll waves whose profiles develop downstream (the observing stations are 3 m,

6 m, 9 m and 12 m from the inlet and the signals are not contemporaneous). The lower

right-hand picture shows a similar plot for an experiment in which a periodic train was

generated by moving a paddle at the inlet; as that wavetrain develops downstream, the

wave profiles become less periodic and there is a suggestion of subharmonic instability.

Experiment taken from Balmforth & Mandre (JFM, 2004)
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Equations of motion

∂u
∂x

+
∂w
∂z

= 0

ρ

(
∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= −∂p

∂x
+ gρ sin θ + µ

(
∂2u
∂x2 +

∂2u
∂z2

)
1
ρ

∂p
∂z

+ g cos θ − µ

ρ

∂2w
∂z2 = 0

Assumed Re ∼ O(1) and neglected terms O(δ2) and higher
where δ = H/L is the aspect ratio

Serge D’Alessio and J.P. Pascal Study of Roll Waves
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Interface conditions

Free surface conditions:

p − 2µ
∂w
∂z

= 0

µ
∂u
∂z

= 0

w =
∂h
∂t

+ u
∂h
∂x

+ uζ ′(x)

 at z = ζ(x) + h(x , t)

Bottom boundary conditions:

u + ζ ′(x)w = 0 and ζ ′(x)u − w = 0 at z = ζ(x)

⇒ u = w = 0 at z = ζ(x)

Serge D’Alessio and J.P. Pascal Study of Roll Waves
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Integral boundary layer (IBL) method

Depth-integrate equations and introduce flow variables

h(x , t) and q(x , t) =

∫ ζ+h

ζ
udz

To convert terms
∫ ζ+h

ζ
u2dz ,

µ

ρ

∂u
∂z

∣∣∣∣
z=ζ

assume the parabolic velocity profile:

u(x , z, t) =
3q
2h3

[
2(h + ζ)z − z2 − (ζ + 2h)ζ

]

Serge D’Alessio and J.P. Pascal Study of Roll Waves



Introduction
Mathematical Formulation

Stability Analysis
Numerical Solution Procedure

Simulations
Summary

Dimensionless equations

In terms of h, q the dimensionless equations become
∂h
∂t

+
∂q
∂x

= 0

∂q
∂t

+
6
5

∂

∂x

(
q2

h

)
=

1
Fr2

(
h − h

∂h
∂x

− ζ ′(x)h − q
h2

)
+

3Fr2

Re2

[
7
2

∂2q
∂x2 −

9
h

∂q
∂x

∂h
∂x

+
9q
h2

(
∂h
∂x

)2

− 9q
2h

∂2h
∂x2

−6ζ ′(x)

h
∂q
∂x

+
6ζ ′(x)q

h2
∂h
∂x

− 3ζ ′′(x)q
h

− 6 (ζ ′(x))2 q
h2

]

where Fr2 =
Re

3 cot θ
, Re =

ρQ
µ

and ζ(x) = ab cos(kbx)
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Linear stability: ab = 0 case

The steady-state flow is: qs = hs = 1
Imposing disturbances on this steady flow and linearizing yields
the dispersion equation

Fr2σ2 +

(
21Fr4

2Re2 k2 + 1 + i
12
5

Fr2k
)

σ +

(
1− 6

5
Fr2
)

k2

+i
(

3k +
27Fr4

2Re2 k3
)

= 0

where σ is the growth rate and k is the wavenumber of the
disturbance

Serge D’Alessio and J.P. Pascal Study of Roll Waves
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Linear stability results for ab = 0

The flow is stable if Fr <
1√
3

while for Fr >
1√
3

instability

occurs for wavenumbers k < kmax where

kmax =
10Re√
30Fr2

√
3Fr2 − 1

3Fr2 + 35 + 12Fr
√

6Fr2 + 25

For large Fr the asymptotic behaviour is

kmax ∼
10Re

Fr2
√

30(1 + 4
√

6)

Serge D’Alessio and J.P. Pascal Study of Roll Waves



Introduction
Mathematical Formulation

Stability Analysis
Numerical Solution Procedure

Simulations
Summary

Neutral stability curves for ab = 0
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have a maximum at
Fr ≈ 0.76286
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Linear stability: ab 6= 0 case

The steady state solution is qs = 1 and hs(x) satisfies

3β[hsh′′s − 2(h′s)
2] + (2αh3

s − 4βζ ′ − 12
5

)h′s

+2βζ ′′hs − 2α(1− ζ ′)h3
s = −2α− 4β(ζ ′)2

where α =
1

Fr2 and β = 9
(

Fr
Re

)2

An approximate solution can be constructed in the form

hs(x) = 1 + (abkb)h(1)
s (x) + (abkb)2h(2)

s (x) + · · ·

Serge D’Alessio and J.P. Pascal Study of Roll Waves
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Periodic steady state solution
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Fr = 1, Re = 10,
ab = 0.1, kb = 2π
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Linear stability: ab 6= 0 case

To study how small disturbances will evolve, introduce
perturbations ĥ, q̂ superimposed on the steady-state solution
and linearize equations using

h = hs(x) + ĥ , q = 1 + q̂

For an uneven bottom, the coefficients in the linearized
equations are periodic functions; hence apply Floquet-Bloch
theory to conduct the stability analysis and represent the
perturbations as Bloch-type functions having the form

ĥ = eσteiKx
∞∑

n=−∞
ĥneinkbx , q̂ = eσteiKx

∞∑
n=−∞

q̂neinkbx

Serge D’Alessio and J.P. Pascal Study of Roll Waves
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Numerical linear stability results for ab 6= 0
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Numerical linear stability results for ab 6= 0
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Numerical linear stability results for ab 6= 0
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Numerical linear stability results for ab 6= 0
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Begin by expressing equations in the form

∂h
∂t

+
∂q
∂x

= 0

∂q
∂t

+
∂

∂x

(
6
5

q2

h
+

α

2
h2
)

= Ψ(h, q)+χ

(
x , h, q,

∂h
∂x

,
∂q
∂x

,
∂2h
∂x2 ,

∂2q
∂x2

)
where Ψ = α

(
h − q

h2

)
and χ = −αζ ′h − 2βζ ′

(
ζ ′ − ∂h

∂x

)
q
h2 − βζ ′′

q
h
− 2β

ζ ′

h
∂q
∂x

+β

(
7
6

∂2q
∂x2 −

3
2

q
h

∂2h
∂x2 −

3
h

∂q
∂x

∂h
∂x

+ 3
q
h2

(
∂h
∂x

)2
)
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Fractional-step method (LeVeque, 2002)

Decouple the advective and diffusive components, first solve

∂h
∂t

+
∂q
∂x

= 0

∂q
∂t

+
∂

∂x

(
6
5

q2

h
+

α

2
h2
)

= Ψ(h, q)

over a time step ∆t , and then solve

∂q
∂t

= χ

(
x , h, q,

∂h
∂x

,
∂q
∂x

,
∂2h
∂x2 ,

∂2q
∂x2

)
using the solution obtained from the first step as an initial
condition for the second step; the second step returns the
solution for q at the new time t + ∆t

Serge D’Alessio and J.P. Pascal Study of Roll Waves



Introduction
Mathematical Formulation

Stability Analysis
Numerical Solution Procedure

Simulations
Summary

First step

This involves solving a nonlinear system of hyperbolic
conservation laws; express in vector form

∂U
∂t

+
∂F(U)

∂x
= b(U)

where U =

[
h
q

]
, F(U) =

[
q

6
5

q2

h + α
2 h2

]
, b(U) =

[
0
Ψ

]
Utilize MacCormack’s method to solve this system; this is a
conservative second-order accurate finite difference scheme
which correctly captures discontinuities and converges to the
physical weak solution of the problem

Serge D’Alessio and J.P. Pascal Study of Roll Waves
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First step

LeVeque & Yee (JCP, 1990) extended MacCormack’s method to
include source terms; this explicit predictor-corrector scheme
takes the form

U∗
j = Un

j −
∆t
∆x

[
F(Un

j+1)− F(Un
j )
]

+ ∆t b(Un
j )

Un+1
j =

1
2

(
Un

j + U∗
j

)
− ∆t

2∆x

[
F(U∗

j )− F(U∗
j−1)

]
+

∆t
2

b(U∗
j )

where the notation Un
j ≡ U(xj , tn) was adopted, ∆x is the grid

spacing and ∆t is the time step; second-order accuracy is
achieved by first forward differencing and then backward
differencing

Serge D’Alessio and J.P. Pascal Study of Roll Waves
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Second step

This reduces to solving the generalized one-dimensional linear
diffusion equation given by:

∂q
∂t

=
7β

6
∂2q
∂x2 + S1

∂q
∂x

+ S0q + S

where S = −αζ ′h and

S0 = −β
ζ ′′

h
− 2β

ζ ′

h2

(
ζ ′ − ∂h

∂x

)
− 3

2
β

h
∂2h
∂x2 + 3

β

h2

(
∂h
∂x

)2

and S1 = −2β
ζ ′

h
− 3

β

h
∂h
∂x

Serge D’Alessio and J.P. Pascal Study of Roll Waves
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Computational parameters

The problem is completely specified by Fr , Re, ab and kb;
typical computational parameters used were:
Computational Domain: 0 ≤ x ≤ L

with λb ≤ L ≤ 300λb , λb =
2π

kb
Grid Spacing: ∆x = .01
Time Step: ∆t = .002

Serge D’Alessio and J.P. Pascal Study of Roll Waves
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Evolution of flow rate
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A subharmonic
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wave coarsening
occurs for L = 45λb

Serge D’Alessio and J.P. Pascal Study of Roll Waves



Introduction
Mathematical Formulation

Stability Analysis
Numerical Solution Procedure

Simulations
Summary

Evolution of flow rate
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Wave spawning
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Concluding remarks

A mathematical model of roll waves along with a numerical
method to solve the model were presented
Investigated the effect of sinusoidal bottom topography on
the formation of roll waves
Bottom topography has a stabilizing effect on the flow for
small to moderate waviness parameters
Future work includes repeating the analysis for a porous
wavy bottom and to include surface tension
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