A Mathematical and Numerical Study of Roll Waves

Serge D'Alessio ${ }^{1}$ and J.P. Pascal ${ }^{2}$

${ }^{1}$ Department of Applied Mathematics
University of Waterloo
${ }^{2}$ Department of Mathematics
Ryerson University
AFM 2008

Outline

(9) Introduction
(2) Mathematical Formulation
(3) Stability Analysis
4. Numerical Solution Procedure
(5) Simulations

6 Summary

Unstable flow down an incline

- Critical conditions for the onset of Instability.
- Structure of Roll Waves
- Investigate the effect of bottom topography

The spillway from the Llyn Brianne Dam in Wales

Experiment taken from Balmforth \& Mandre (JFM, 2004)

Coordinate system

Equations of motion

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0 \\
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+w \frac{\partial u}{\partial z}\right)=-\frac{\partial p}{\partial x}+g \rho \sin \theta+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) \\
\frac{1}{\rho} \frac{\partial p}{\partial z}+g \cos \theta-\frac{\mu}{\rho} \frac{\partial^{2} w}{\partial z^{2}}=0
\end{gathered}
$$

Assumed $\operatorname{Re} \sim O(1)$ and neglected terms $O\left(\delta^{2}\right)$ and higher where $\delta=H / L$ is the aspect ratio

Interface conditions

Free surface conditions:

$$
\left.\begin{array}{l}
p-2 \mu \frac{\partial w}{\partial z}=0 \\
\mu \frac{\partial u}{\partial z}=0 \\
w=\frac{\partial h}{\partial t}+u \frac{\partial h}{\partial x}+u \zeta^{\prime}(x)
\end{array}\right\} \text { at } z=\zeta(x)+h(x, t)
$$

Bottom boundary conditions:

$$
\begin{aligned}
u+\zeta^{\prime}(x) w & =0 \text { and } \zeta^{\prime}(x) u-w=0 \text { at } z=\zeta(x) \\
& \Rightarrow u=w=0 \text { at } z=\zeta(x)
\end{aligned}
$$

Integral boundary layer (IBL) method

Depth-integrate equations and introduce flow variables

$$
h(x, t) \text { and } q(x, t)=\int_{\zeta}^{\zeta+h} u d z
$$

To convert terms $\int_{\zeta}^{\zeta+h} u^{2} d z,\left.\quad \frac{\mu}{\rho} \frac{\partial u}{\partial z}\right|_{z=\zeta}$ assume the parabolic velocity profile:

$$
u(x, z, t)=\frac{3 q}{2 h^{3}}\left[2(h+\zeta) z-z^{2}-(\zeta+2 h) \zeta\right]
$$

Dimensionless equations

In terms of h, q the dimensionless equations become

$$
\begin{gathered}
\frac{\partial h}{\partial t}+\frac{\partial q}{\partial x}=0 \\
\frac{\partial q}{\partial t}+\frac{6}{5} \frac{\partial}{\partial x}\left(\frac{q^{2}}{h}\right)=\frac{1}{F r^{2}}\left(h-h \frac{\partial h}{\partial x}-\zeta^{\prime}(x) h-\frac{q}{h^{2}}\right) \\
+\frac{3 F r^{2}}{R e^{2}}\left[\frac{7}{2} \frac{\partial^{2} q}{\partial x^{2}}-\frac{9}{h} \frac{\partial q}{\partial x} \frac{\partial h}{\partial x}+\frac{9 q}{h^{2}}\left(\frac{\partial h}{\partial x}\right)^{2}-\frac{9 q}{2 h} \frac{\partial^{2} h}{\partial x^{2}}\right. \\
\left.-\frac{6 \zeta^{\prime}(x)}{h} \frac{\partial q}{\partial x}+\frac{6 \zeta^{\prime}(x) q}{h^{2}} \frac{\partial h}{\partial x}-\frac{3 \zeta^{\prime \prime}(x) q}{h}-\frac{6\left(\zeta^{\prime}(x)\right)^{2} q}{h^{2}}\right]
\end{gathered}
$$

where $F r^{2}=\frac{R e}{3 \cot \theta}, R e=\frac{\rho Q}{\mu}$ and $\zeta(x)=a_{b} \cos \left(k_{b} x\right)$

Linear stability: $a_{b}=0$ case

The steady-state flow is: $q_{s}=h_{s}=1$
Imposing disturbances on this steady flow and linearizing yields the dispersion equation

$$
\begin{gathered}
F r^{2} \sigma^{2}+\left(\frac{21 F r^{4}}{2 R e^{2}} k^{2}+1+i \frac{12}{5} F r^{2} k\right) \sigma+\left(1-\frac{6}{5} F r^{2}\right) k^{2} \\
+i\left(3 k+\frac{27 F r^{4}}{2 R e^{2}} k^{3}\right)=0
\end{gathered}
$$

where σ is the growth rate and k is the wavenumber of the disturbance

Linear stability results for $a_{b}=0$

The flow is stable if $F r<\frac{1}{\sqrt{3}}$ while for $F r>\frac{1}{\sqrt{3}}$ instability occurs for wavenumbers $k<k_{\max }$ where

$$
k_{\max }=\frac{10 R e}{\sqrt{30} F r^{2}} \sqrt{\frac{3 F r^{2}-1}{3 F r^{2}+35+12 F r \sqrt{6 F r^{2}+25}}}
$$

For large Fr the asymptotic behaviour is

$$
k_{\max } \sim \frac{10 R e}{F r^{2} \sqrt{30(1+4 \sqrt{6})}}
$$

Neutral stability curves for $a_{b}=0$

Neutral stability curves have a maximum at Fr ≈ 0.76286 (independent of Re)

Linear stability: $a_{b} \neq 0$ case

The steady state solution is $q_{s}=1$ and $h_{s}(x)$ satisfies

$$
\begin{aligned}
& 3 \beta\left[h_{s} h_{s}^{\prime \prime}-2\left(h_{s}^{\prime}\right)^{2}\right]+\left(2 \alpha h_{s}^{3}-4 \beta \zeta^{\prime}-\frac{12}{5}\right) h_{s}^{\prime} \\
& +2 \beta \zeta^{\prime \prime} h_{s}-2 \alpha\left(1-\zeta^{\prime}\right) h_{s}^{3}=-2 \alpha-4 \beta\left(\zeta^{\prime}\right)^{2}
\end{aligned}
$$

where $\alpha=\frac{1}{F r^{2}}$ and $\beta=9\left(\frac{F r}{R e}\right)^{2}$
An approximate solution can be constructed in the form

$$
h_{s}(x)=1+\left(a_{b} k_{b}\right) h_{s}^{(1)}(x)+\left(a_{b} k_{b}\right)^{2} h_{s}^{(2)}(x)+\cdots
$$

Numerical Solution Procedure

Simulations
Summary

Periodic steady state solution

Linear stability: $a_{b} \neq 0$ case

To study how small disturbances will evolve, introduce perturbations \hat{h}, \hat{q} superimposed on the steady-state solution and linearize equations using

$$
h=h_{s}(x)+\hat{h}, q=1+\hat{q}
$$

For an uneven bottom, the coefficients in the linearized equations are periodic functions; hence apply Floquet-Bloch theory to conduct the stability analysis and represent the perturbations as Bloch-type functions having the form

$$
\hat{h}=e^{\sigma t} e^{i K x} \sum_{n=-\infty}^{\infty} \hat{h}_{n} e^{i n k_{b} x}, \hat{q}=e^{\sigma t} e^{i K x} \sum_{n=-\infty}^{\infty} \hat{q}_{n} e^{i n k_{b} x}
$$

Numerical linear stability results for $a_{b} \neq 0$

Critical Froude number as a function of bottom amplitude with $R e=10$

Numerical linear stability results for $a_{b} \neq 0$

Critical Froude number
as a function of bottom
amplitude with $k_{b}=2 \pi$

Numerical linear stability results for $a_{b} \neq 0$

Neutral stability curves for the case with $R e=10$ and $k_{b}=2 \pi$

Numerical linear stability results for $a_{b} \neq 0$

Neutral stability curves for the case with $R e=10$ and $a_{b}=0.2$

Begin by expressing equations in the form

$$
\frac{\partial h}{\partial t}+\frac{\partial q}{\partial x}=0
$$

$\frac{\partial q}{\partial t}+\frac{\partial}{\partial x}\left(\frac{6}{5} \frac{q^{2}}{h}+\frac{\alpha}{2} h^{2}\right)=\Psi(h, q)+\chi\left(x, h, q, \frac{\partial h}{\partial x}, \frac{\partial q}{\partial x}, \frac{\partial^{2} h}{\partial x^{2}}, \frac{\partial^{2} q}{\partial x^{2}}\right)$
where $\psi=\alpha\left(h-\frac{q}{h^{2}}\right)$
and $\quad \chi=-\alpha \zeta^{\prime} h-2 \beta \zeta^{\prime}\left(\zeta^{\prime}-\frac{\partial h}{\partial x}\right) \frac{q}{h^{2}}-\beta \zeta^{\prime \prime} \frac{q}{h}-2 \beta \frac{\zeta^{\prime}}{h} \frac{\partial q}{\partial x}$

$$
+\beta\left(\frac{7}{6} \frac{\partial^{2} q}{\partial x^{2}}-\frac{3}{2} \frac{q}{h} \frac{\partial^{2} h}{\partial x^{2}}-\frac{3}{h} \frac{\partial q}{\partial x} \frac{\partial h}{\partial x}+3 \frac{q}{h^{2}}\left(\frac{\partial h}{\partial x}\right)^{2}\right)
$$

Fractional-step method (LeVeque, 2002)

Decouple the advective and diffusive components, first solve

$$
\begin{gathered}
\frac{\partial h}{\partial t}+\frac{\partial q}{\partial x}=0 \\
\frac{\partial q}{\partial t}+\frac{\partial}{\partial x}\left(\frac{6}{5} \frac{q^{2}}{h}+\frac{\alpha}{2} h^{2}\right)=\psi(h, q)
\end{gathered}
$$

over a time step Δt, and then solve

$$
\frac{\partial q}{\partial t}=\chi\left(x, h, q, \frac{\partial h}{\partial x}, \frac{\partial q}{\partial x}, \frac{\partial^{2} h}{\partial x^{2}}, \frac{\partial^{2} q}{\partial x^{2}}\right)
$$

using the solution obtained from the first step as an initial condition for the second step; the second step returns the solution for q at the new time $t+\Delta t$

First step

This involves solving a nonlinear system of hyperbolic conservation laws; express in vector form

$$
\frac{\partial \mathbf{U}}{\partial t}+\frac{\partial \mathbf{F}(\mathbf{U})}{\partial x}=\mathbf{b}(\mathbf{U})
$$

$$
\text { where } \mathbf{U}=\left[\begin{array}{l}
h \\
q
\end{array}\right], \mathbf{F}(\mathbf{U})=\left[\begin{array}{c}
q \\
\frac{6}{5} \frac{q^{2}}{h}+\frac{\alpha}{2} h^{2}
\end{array}\right], \mathbf{b}(\mathbf{U})=\left[\begin{array}{c}
0 \\
\psi
\end{array}\right]
$$

Utilize MacCormack's method to solve this system; this is a conservative second-order accurate finite difference scheme which correctly captures discontinuities and converges to the physical weak solution of the problem

First step

LeVeque \& Yee (JCP, 1990) extended MacCormack's method to include source terms; this explicit predictor-corrector scheme takes the form

$$
\begin{gathered}
\mathbf{U}_{j}^{*}=\mathbf{U}_{j}^{n}-\frac{\Delta t}{\Delta x}\left[\mathbf{F}\left(\mathbf{U}_{j+1}^{n}\right)-\mathbf{F}\left(\mathbf{U}_{j}^{n}\right)\right]+\Delta t \mathbf{b}\left(\mathbf{U}_{j}^{n}\right) \\
\mathbf{U}_{j}^{n+1}=\frac{1}{2}\left(\mathbf{U}_{j}^{n}+\mathbf{U}_{j}^{*}\right)-\frac{\Delta t}{2 \Delta x}\left[\mathbf{F}\left(\mathbf{U}_{j}^{*}\right)-\mathbf{F}\left(\mathbf{U}_{j-1}^{*}\right)\right]+\frac{\Delta t}{2} \mathbf{b}\left(\mathbf{U}_{j}^{*}\right)
\end{gathered}
$$

where the notation $\mathbf{U}_{j}^{n} \equiv \mathbf{U}\left(x_{j}, t_{n}\right)$ was adopted, Δx is the grid spacing and Δt is the time step; second-order accuracy is achieved by first forward differencing and then backward differencing

Second step

This reduces to solving the generalized one-dimensional linear diffusion equation given by:

$$
\begin{gathered}
\frac{\partial q}{\partial t}=\frac{7 \beta}{6} \frac{\partial^{2} q}{\partial x^{2}}+S_{1} \frac{\partial q}{\partial x}+S_{0} q+S \\
\text { where } S=-\alpha \zeta^{\prime} h \text { and } \\
S_{0}=-\beta \frac{\zeta^{\prime \prime}}{h}-2 \beta \frac{\zeta^{\prime}}{h^{2}}\left(\zeta^{\prime}-\frac{\partial h}{\partial x}\right)-\frac{3}{2} \frac{\beta}{h} \frac{\partial^{2} h}{\partial x^{2}}+3 \frac{\beta}{h^{2}}\left(\frac{\partial h}{\partial x}\right)^{2} \\
\text { and } S_{1}=-2 \beta \frac{\zeta^{\prime}}{h}-3 \frac{\beta}{h} \frac{\partial h}{\partial x}
\end{gathered}
$$

Computational parameters

The problem is completely specified by $F r, R e, a_{b}$ and k_{b}; typical computational parameters used were:
Computational Domain: $0 \leq x \leq L$
with $\lambda_{b} \leq L \leq 300 \lambda_{b}, \lambda_{b}=\frac{2 \pi}{k_{b}}$
Grid Spacing: $\Delta x=.01$
Time Step: $\Delta t=.002$

Evolution of flow rate

Parameters:
$a_{b}=0.1, k_{b}=2 \pi$,
$R e=10, F r=0.7$
A subharmonic
instability known as wave coarsening occurs for $L=45 \lambda_{b}$

Evolution of flow rate

Parameters:
$a_{b}=0.1, k_{b}=2 \pi$,
$R e=10, F r=0.7$
Interruption in wave coarsening occurs for $L=30 \lambda_{b}$

Wave spawning

Parameters:
$a_{b}=0.1, k_{b}=2 \pi$, $R e=10, F r=0.7$
A wave-spawning instability occurs for $L=300 \lambda_{b}$

Concluding remarks

- A mathematical model of roll waves along with a numerical method to solve the model were presented
- Investigated the effect of sinusoidal bottom topography on the formation of roll waves
- Bottom topography has a stabilizing effect on the flow for small to moderate waviness parameters
- Future work includes repeating the analysis for a porous wavy bottom and to include surface tension

