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Abstract Determining the biological details and mechanisms that are essential for the generation
of population rhythms in the mammalian brain is a challenging problem. This problem cannot be
addressed either by experimental or computational studies in isolation. Here we show that compu-
tational models that are carefully linked with experiment provides insight into this problem. Using
the experimental context of a whole hippocampus preparation in vitro that spontaneously expresses
theta frequency (3-12 Hz) population bursts in the CA1 region, we create excitatory network mod-
els to examine whether cellular adaptation bursting mechanisms could critically contribute to the
generation of this rhythm. We use biologically-based cellular models of CA1 pyramidal cells and
network sizes and connectivities that correspond to the experimental context. By expanding our
mean field analyses to networks with heterogeneity and non all-to-all coupling, we allow closer
correspondence with experiment, and use these analyses to greatly extend the range of parameter
values that are explored. We find that our model excitatory networks can produce theta frequency
population bursts in a robust fashion. Thus, even though our networks are limited by not including
inhibition at present, our results indicate that cellular adaptation in pyramidal cells could be an im-
portant aspect for the occurrence of theta frequency population bursting in the hippocampus. These
models serve as a starting framework for the inclusion of inhibitory cells and for the consideration
of additional experimental features not captured in our present network models.
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2 Ferguson, Njap, Nicola et al.

1 Introduction

The emergent behaviour in networks of neurons depends on the characteristics of the individual
neurons, their connectivity profile and properties, as well as the size of the network. Theoretical and
modeling studies have shown that population bursts can emerge from networks of neurons that are
coupled with excitatory synapses, when the isolated neurons themselves do not burst, but do express
spike frequency adaptation (Gutkin and Zeldenrust, 2014). In this situation it has been shown that
network bursting arises if there is an appropriate balance between excitatory drive and the amount
of spike frequency adaptation (Dur-E-Ahmad et al, 2011; Latham et al, 2000; van Vreeswijk and
Hansel, 2001). Emergent network bursting can also occur if other slow processes are present either
internal to the cell (Butera et al, 1999b) or in the synapses (Tabak et al, 2000; Vladimirski et al,
2008).

The hippocampus is a major communication hub for memory processing (Battaglia et al, 2011)
via its expression of population activities that include sharp wave and theta frequency bursting
(Buzsaki, 2011). Bursting activity is thought to be important for synaptic plasticity and brain coding
mechanisms (Lisman, 1997). However, it is not clearly known how population bursts in hippocampus
emerge in order to play their essential communication roles with other brain regions. That is, what
mechanisms underlie this emergence? Do cellular-based adaptation mechanisms contribute to this
emergence in the hippocampus?

There are many biological details that might be important in the generation of population
bursts in the hippocampus. However, what the essential balances and mechanisms may be are
challenging to determine and cannot be extracted from experimental studies on their own. To
determine whether cellular adaptation mechanisms are important in the production of population
bursts in the hippocampus, we link experimental, modeling and theoretical studies. It is clear that
one cannot ignore cellular details in understanding network dynamics (Skinner, 2012), and at the
same time, there are many synaptic details that may play important roles (e.g., see Tóth (2010)). As
such, the interpretation of model parameters and links to experiments require careful consideration.
In this work, we take a balanced approach in which network size, cellular and connectivity properties
are designed to have biological linkages in a context of hippocampal theta (3-12 Hz) population
bursts. Even though these linkages are (by necessity) limited, we clearly express the rationale and
limitations so that they can serve as a foundation for future studies. In the present work, we
limit our considerations to networks in the absence of inhibition. In this way, we can determine
whether cellular adaptation mechanisms in excitatory networks alone are able to contribute to
theta frequency population bursting.

Our work is based on a whole hippocampus preparation that spontaneously expresses population,
theta rhythms (Goutagny et al, 2009), and we use previously developed biologically-based cellular
models of excitatory cells (Ferguson et al, 2015). Several thousands of excitatory cells are involved
and thus fully exploring the model parameter space would be challenging, even with our simplified
cellular representations. We therefore develop theoretical mean-field analyses to efficiently explore
the parameter space. We focus on area CA1 of the hippocampus where these theta rhythms occur
and here, the excitatory cells are minimally coupled. Due to the close correspondence between the
mean-field analyses and the full simulations, it is possible to explore a very wide range of parameter
balances using the mean-field analyses, and the parameter regimes which then need to be explored
with full simulations are much reduced. In this way, we are able to significantly constrain the
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Cellular adaptation bursting mechanisms in the hippocampus 3

parameter regimes for which population bursts could occur in large, excitatory networks of the
hippocampus. We find that robust, theta frequency population bursts can occur in our biologically-
based cellular excitatory networks using physiologically reasonable synaptic conductance strengths,
time constants and connectivities. This suggests that cellular adaptation mechanisms in excitatory
networks could critically contribute to the generation of theta bursts in the hippocampus. Our
present models do not include inhibition and so it is not surprising that they are not able to capture
all features of the experimental data such as sparse firing. At this stage, we view our excitatory,
pyramidal cell networks as setting an experimentally-constrained starting framework on which we
can build. Our work can be considered as a way to examine and determine mechanisms that are
in play in biological systems. That is, an intertwining of theoretical, modeling and experimental
aspects carried out at initial stages.

2 Methods

2.1 Experimental context and network size

An intact, whole hippocampus in vitro rodent preparation that expresses theta rhythms (3-12 Hz)
has been developed (Goutagny et al, 2009). By blocking synaptic transmission in different regions,
the minimum circuitry required to independently generate theta rhythms in this preparation is
estimated to be about a 1 mm3 volume of tissue in the CA1 region of the hippocampus. For this
volume of tissue, there are approximately 30, 000 excitatory, pyramidal cells (Bezaire and Soltesz,
2013), as well as thousands of inhibitory cells of many different types. CA1 pyramidal cells are
connected to each other, but the connectivity is minimal (Deuchars and Thomson, 1996), estimated
to be on the order of 1% or less (Bezaire and Soltesz, 2013).

2.2 Cellular and network models

For the mathematical model of an excitatory, pyramidal cell of CA1 hippocampus, we use our pre-
viously developed model which is based on experimental data from the in vitro whole hippocampus
preparation. The details underlying the rationale and development of our pyramidal cell models
are given in Ferguson et al (2015). Briefly, the experimental data showed clear evidence of spike
frequency adaptation in recordings from CA1 pyramidal cells when synaptic activity was blocked,
and this adaptation could be strong or weak. Intrinsically bursting neurons were not observed in the
limited experimental datasets. It is interesting to note that different amounts of adaptation have
also been found in CA3 pyramidal cells (Hemond et al, 2008). We captured the spike frequency
adaptation in our models by doing ad-hoc fits to the experimental frequency-current (f-I) curves
which show both initial and steady state frequency. As such, we consider our cellular models to be
biologically-based, but not biophysically-based, as they do not include voltage-gated channels.

The cellular-based network model structure is given below. The cellular model is based on that
developed by Izhikevich (Izhikevich, 2003). It captures the subthreshold behaviour and the upstroke
of the action potential, and uses a reset mechanism to represent the spike’s fast downstroke. An
important advantage of this model is that it is relatively simple, but still allows us to choose pa-
rameters that have a well-defined (albeit limited) relationship to the electrophysiological recordings.
It has a fast variable representing the membrane potential, V (mV ), and a variable for the slow
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4 Ferguson, Njap, Nicola et al.

recovery current, u (pA). We used a slight modification to be able to reproduce the spike width.
The model is given by:

CmV̇ = k(V − vr)(V − vt) − u + Iapplied + Ishift − Isyn (1)

u̇ = a[b(V − vr) − u]

if V ≥ vpeak, then V ← c, u ← u + d

where k = klow if V ≤ vt, k = khigh if V > vt

The parameters are as follows:
Cm (pF ) is the membrane capacitance.
vr (mV ) is the resting membrane potential.
vt (mV ) is the instantaneous threshold potential.
vpeak (mV ) is the spike cut-off value.
Iapplied (pA) is the applied current, and represents all synaptic input to the cells that is not directly
modelled through Isyn.
Ishift (pA) is a current that shifts the f-I curve laterally to allow the model to easily capture the
rheobase current (for the strongly/weakly adapting models, rheobase current is 0/5 pA respectively).
Isyn (pA) represents the synaptic input from the presynaptic cell population (further details below).
a (ms−1) is the recovery time constant of the adaptation current.
b (nS) describes the sensitivity of the adaptation current to subthreshold fluctuations. Greater
values couple V and u more strongly resulting in possible subthreshold oscillations and low-threshold
spiking dynamics.
c (mV ) is the voltage reset value.
d (pA) is the total amount of outward minus inward currents activated during the spike and affecting
the after-spike behaviour.
k (nS/mV ) represents a scaling factor.

The parameters vr, vt, vpeak, and c were directly based on the intrinsic spike characteristics
derived from the recordings. khigh was determined such that the width of the action potential from
threshold in the model matched the average spike width at threshold in the biological cells. The
adaptation parameters a and d were determined such that the model produced the amount of adap-
tation observed experimentally. The parameters b and klow were varied systematically to determine
values in which the slope of the model f-I curve was within the range of slopes determined from the
experimental f-I curves. Further details can be found in Ferguson et al (2015). Parameter values for
the strongly and weakly adapting pyramidal cell models are given in Table 1. For these parameter
values the model can only exhibit two types of behaviour, quiescence and tonic spiking, depending
on whether Iapplied is above or below rheobase. Thus, any bursting observed is an emergent network
phenomenon.

Synaptic input is modelled through a chemical synapse represented by:

Isyn = gs(V − Erev) (2)

where g (nS) is the maximal synaptic conductance of the synapse from a presynaptic neuron to the
postsynaptic neuron, Erev is the reversal potential of the synapse, and V is the membrane potential
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Cellular adaptation bursting mechanisms in the hippocampus 5

of the postsynaptic cell. The gating variable, s, represents the fraction of open synaptic channels,
and is given by first order kinetics (Destexhe et al (1994), and see p.159 in Ermentrout and Terman
(2010)):

ṡ = α[T ](1 − s) − βs (3)

The parameters α (in mM−1ms−1) and β (in ms−1) in Equation 3 are related to the inverse of
the rise and decay time constants (τR, τD in ms). [T ] represents the concentration of transmitter
released by a presynaptic spike. Suppose that the time of a spike is t = t0 and [T ] is given by a
square pulse of height 1 mM lasting for 1 ms (until t1). Then, we can represent

s(t − t0) = s∞ + (s(t0) − s∞)e−
t−t0
τs , t0 < t < t1

where
s∞ = α

α+β
and τs = 1

α+β (4)

After the pulse of transmitter has gone, s(t) decays as

s(t) = s(t1)e
−β(t−t1) (5)

While we explicitly model the synaptic input through Equation 2, we represent the synaptic
input that is not explicitly modelled through an applied current (Iapplied). These applied currents
(in pA) are constant, tonic input to individual cells (usually heterogeneous across cells, such that
the input is normally distributed with a mean of Iapplied and a standard deviation of σI).

2.3 Paper focus and experimental constraints

While there are, of course, both excitatory and inhibitory cells in hippocampal neuronal networks,
we only consider excitatory networks. This allows us to focus on the extent to which it is possible to
obtain population bursting in such models when there are experimental constraints on network size,
connectivity and connection strengths. Furthermore, in the experiments on which our constraints
are based, the theta rhythm is much more dependent on excitatory AMPA/kainate, compared with
NMDA glutamatergic synapses, since theta power is essentially diminished when AMPA/kainate
receptor blockers are applied but unaffected when NMDA receptor blockers are used (Goutagny
et al, 2009). Thus, our focus is on excitatory, pyramidal cell networks connected with AMPA
synapses, and for our simulations, we use the following terminology for the synaptic currents:

Isyn = gpyrspyr(V − Epyr) (6)

where gpyr (nS) is the maximal synaptic conductance of the recurrent excitatory synapses, the
gating variable, spyr, represents the fraction of open synaptic channels, and Epyr (mV ) is the
excitatory, pyramidal reversal potential.

Experimentally, it was determined that excitatory postsynaptic currents reversed around −15 mV
(junction potential corrected) (Huh et al, 2015). The rise and decay time constants are taken to
be τR = 0.5 ms and τD = 3 ms respectively, based on Spruston et al (1995). Given that a single,
excitatory AMPA channel has a conductance of 8-10 pS and that there are 300-500 channels per
synaptic connection (Spruston et al, 1995; Tóth, 2010), the maximum, possible range for biological
synaptic conductance strengths (gpyr) is thus 0.008-5 nS.
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6 Ferguson, Njap, Nicola et al.

2.4 Model simulations and analyses

The network simulations were done using the Brian simulator (Goodman and Brette, 2009), and
custom python code was written for the analyses. The computing platform used is the GPC su-
percomputer at the SciNet High Performance Computing Consortium (Loken et al, 2010) (http:
//www.scinethpc.ca/). The initial conditions of our membrane potentials (V ) are chosen to be
uniform random values from −55 to −65 mV , and the other variables (u’s and s’s were set at 0).
We use the forward Euler method for integration with a time step of 0.02 ms.

Simulations with networks of different sizes (1,000 to 30,000 cells) are done. The networks are
heterogeneous in that each cell receives a different input, with mean Iapplied and variance σI , as
chosen from a normal distribution. Several of the network simulations are further analyzed by
determining a number of features about the network. We first determine our population burst by
plotting the (normalized) spike time distribution, using a bin width of 10 ms. We use a defined
threshold of 0.15 and the burst duration time would then be considered the time between the
upstroke and the downstroke considering this threshold of the distribution. We use a fixed threshold
to ensure a comparable criteria in our burst definition. In this way, we obtain (population) burst
durations (i.e., burst widths) and interburst durations, and burst periods (sum of burst duration
and interburst duration). From this, we further compute spiking frequencies, number of spiking cells
and number of spikes per cell during the bursts (intraburst) and between the bursts (interburst).

2.5 Theoretical mean-field analyses

We develop a mean-field model which consists of a three dimensional system of non-smooth ordinary
differential equations. This model is used to predict regions in parameter space where bursting with
specific frequencies occurs. Our model is based on a population density approach and a reduction
due to time scale separation.

We have used this approach in various contexts: we have derived mean-field models for both
homogeneous (Nicola and Campbell, 2013a) and heterogeneous networks (Nicola and Campbell,
2013b) and in the presence of noise (Nicola et al, 2014). In these papers, the neural models were of
the same type as the one we consider here: two dimensional integrate-and-fire models (Izhikevich,
2003; Brette and Gerstner, 2005; Touboul, 2008). Further, the synaptic connections were modelled
using pulse coupling, and the coupling was all-to-all.

In this paper, we extend our derivation to deal with several complications which appear in the
model described in the previous section: a slightly more complex neural model due to the switching
of the parameter k in Eq. (1), the kinetic-based synapse model given in Eq. (3), and minimal
connectivity as opposed to all-to-all coupling.

We briefly review the derivation of mean-field model in the case of all-to-all coupling, the linear
double exponential synapse model (Ermentrout and Terman, 2010) and heterogeneity in the applied
current and maximal synaptic conductance. Modifications to deal with the kinetic synapse model
and the minimal connectivity will be dealt with in the Results section.
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Cellular adaptation bursting mechanisms in the hippocampus 7

The network model in this case, with the cellular model from the previous subsection is

V ′
i =

1

Cm
[F (Vi) − ui + Ii − gisi(Vi − Epyr)] = G(Vi, ui, si; Ii, gi) (7)

u′
i = a[b(Vi − vr) − ui] (8)

s′i = − si

τR
+ hi (9)

h′
i = − hi

τD
+

A

NτDτR

N
�

j=1

�

k:tj,k<t

δ(t − tj,k) (10)

where there are jumps as defined in Eq. (1), N is the network size, and A determines the magnitude
of the synaptic response. Further, gi is the maximal synaptic conductance into neuron i. The double
exponential synapse model, eqs. (9)-(10), is two dimensional to allow for different time constants
for the rise time (τR) and decay time (τD) of the synaptic response. The variable si is the average
synaptic input to neuron i:

si(t) =
1

N

N
�

j=1

sij(t),

and hi is the corresponding auxiliary synaptic variable. The equations for si and hi follow from
those for the individual synapses, sij , hij , since the synapse model is linear. Note that, to simplify
the notation in the following, we have dropped the subscript applied on the input current and pyr
on the synaptic conductance. We further note that the Ishift term has been absorbed into the
Iapplied term for simplicity.

One aspect of the model developed in the previous section that has not been dealt with in our
prior work, is the voltage dependent switching of the parameter k (see Eq. (1)). This is easily taken
care of by assuming that k is a function of Vi, i.e.,

F (Vi) = k(Vi)(Vi − vr)(Vi − vt).

This will not change any of our equations, but needs to be taken into account when the expressions
are evaluated numerically.

In the population density approach, the behaviour of individual neurons in a network is not
tracked. Instead we study the time evolution of a probability density function (pdf) which represents
the probability that any individual neuron in the network is in a particular state, or, equivalently,
the proportion of neurons in the nework that have a particular state (Abbott and van Vreeswijk,
1993; Apfaltrer et al, 2006; Hansel and Mato, 2001, 2003; Knight, 2000; Ly and Tranchina, 2007).

Let ρ(V, u, t; I, g) be the probability density function for the network (7)-(9). Since the number
of neurons in the network is fixed, the pdf must satisfy a continuity partial differential equation
(PDE). Supplementing this PDE with differential equations describing the time evolution of the
network mean values of si and hi gives a full system of equations for the network.
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8 Ferguson, Njap, Nicola et al.

As shown in Nicola and Campbell (2013b), rewriting the density using conditional probabilities
and applying a first order moment closure assumption leads to the following model

∂ρV (V, t; I, g)

∂t
= −∂J(V, �u�, �s�, t; I, g)

∂V

�u�′ = a[b(�V � − vr) − �u�] + d

�

I

�

g

J(vpeak, �u�, �s�, t; I, g) dg dI

�s�′ = −�s�
τR

+ �h�

�h�′ = −�h�
τD

+
A

τRτD

�

I

�

g

J(vpeak, �u�, �s�, t; I, g) dg dI

where ρV is the marginal density of V and J is a flux defined by

J(V, �u�, �s�, t; I, g) = G(V, �u�, �s�; I, g)ρV (V, t; I, g).

Assuming that the time scales of the adapation and the synapse are longer than that of the voltage
( 1

a , τR, τD ≫ 1), one can apply a quasi-steady state approximation to the PDE to obtain an expres-
sion for the density ρV and hence the flux, J . Using this in the equations for �u�, �s�, �h� gives the
mean-field model

�u�′ = a[b(�V � − vr) − �u�] + d�Ri(t)� (11)

�s�′ = −�s�
τR

+ �h� (12)

�h�′ = −�h�
τD

+
A

τRτD
�Ri(t)� (13)

where

�Ri(t)� =

�

I

�

g

�Ri(t)|I, g�ρg(g)ρI(I) dg dI (14)

�Ri(t)|I, g� =















�

� vpeak

vreset

Cm

k(V )(V −vr)(V −vt)−�u�−g�s�(V −Epyr)+I dV
�−1

I > I∗(�u�, �s�, g)

0 I ≤ I∗(�u�, �s�, g)

(15)

and

I∗(�u�, �s�, g) = max
V

[−k(V )(V − vr)(V − vt) + �u� + g�s�(V − Epyr)] . (16)

In later sections we will use the mean firing rate in the more compact form

�Ri(t)� =

�

g

ρg(g)

� ∞

I∗(�u�,�s�,g)

ρI(I)

�
� vpeak

vreset

Cm

k(V )(V − vr)(V − vt) − �u� − g�s�(V − Epyr) + I
dV

�−1

dI dg

Our application of the mean-field models in this paper is similar to our previous work (Nicola
and Campbell, 2013a,b). As shown in that work, the transition from tonic firing to bursting in
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Cellular adaptation bursting mechanisms in the hippocampus 9

these networks is associated with the emergence of a limit cycle in the mean-field model. That
is, bursting solutions in the full network model correspond to periodic solutions in the mean-field
model. We thus predict the frequency of bursting in the network by determining the period of the
limit cycle in the mean-field model. This is done numerically in Matlab by computing the reciprocal
of the mean peak to peak time after transients are eliminated. The peak to peak time is computed
using the PeakFinder algorithm (Yoder, 2014) from the Matlab file exchange. Our method can
only determine the frequency if there are four or more peaks (bursts) during the simulation, thus
any simulation with fewer than four peaks is classified as nonbursting. As our standard simulation
time was 3 seconds, any simulations with a burst frequency less than about 1.3 Hz is classified as
nonbursting.

Code for the mean-field analyses and network simulations will be available online. Pyramidal cell
models are available online via http://modeldb.yale.edu/182515or http://www.opensourcebrain.
org/projects/ca1-pyr-cell-ferguson-et-al-2014.

3 Results

From modeling and theoretical studies, it has been shown that one can obtain population bursting
in recurrently connected, excitatory networks in which cellular adaptation is present (Dur-E-Ahmad
et al, 2011; Latham et al, 2000; van Vreeswijk and Hansel, 2001). The underlying mechanism relies
on a balance between the amount of cellular adaptation and excitatory coupling. However, whether
cellular adaptation features are sufficient to generate population bursts in biological systems is un-
clear. Previously, we built excitatory, pyramidal models that had spike adaptation characteristics as
observed experimentally in the CA3 region of the hippocampus (Dur-E-Ahmad et al, 2011). How-
ever, that work estimated adaptation features from the literature and used smaller networks with
all-to-all coupling to explore population bursting possibilities. Here, our pyramidal models are based
on the CA1 region of the hippocampus and even though they also use a simple, one-compartment,
Izhikevich-type mathematical structure, they are developed directly from the experimental data
(Ferguson et al, 2015). Furthermore, network size and connectivity are directly considered in our
models since we have an experimental, network context (see Methods) on which to base our esti-
mates.

The network size and connectivity characteristics are important considerations as they will affect
the amount of excitatory interactions, which need to be balanced with the amount of adaptation
for the given underlying bursting mechanism. The amount of connectivity between excitatory cells
in CA1 and CA3 regions of the hippocampus is quite different with CA3 networks having a higher
degree of connectivity (Hasselmo, 2011). Excitatory cells in the CA1 region of hippocampus are
minimally connected - less than 1 percent (Bezaire and Soltesz, 2013) - and it might seem unlikely
that population bursting could arise in networks with such minimal coupling. In addition to the
requirement of a very large network size to consider a physiologically-relevant context (Goutagny
et al, 2009), it quickly becomes a huge, computational effort to fully explore parameter ranges in
which population bursts (of theta frequency) might occur. To circumvent this, we build on previous
mean field theory (MFT) analyses and show that they can reasonably capture simulation results,
thus enabling an extensive parameter exploration via MFT to be done, serving as guidance to the
full simulations. We also exploit a scaling aspect from the theory to reduce the network size of our
simulations and do detailed analyses of network simulations of bursting and spiking characteristics.
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10 Ferguson, Njap, Nicola et al.

In this way we are able to predict the required characteristics for (theta frequency) network bursting
to occur in excitatory networks in the CA1 region of hippocampus, identify limitations, and set a
balanced framework on which to expand with the addition of inhibitory networks. Our work here
can be viewed as an approach for exploration and constraints (and mechanistic understandings)
when examining large-scale networks with biologically-based cellular representations.

3.1 MFT and predicting bursting regimes

The primary differences between the network under consideration and previous networks for which
mean-field systems have been derived are the Destexhe synapse model and the minimal connectivity.
In the following we will show how the mean-field systems shown in the methods section can be
modified to take these differences into account.

First we consider the synapse model. Previously derived mean-field systems assumed that the s
variable was modelled as a linear synapse. These synapses include the single-exponential, double-
exponential, and alpha-synapse (Ermentrout and Terman, 2010). See Methods section for the mean-
field model corresponding to a network with double-exponential synapse model. Linear synapses
are simpler to average to obtain macroscopic mean-field equations, thus, we will approximate the
non-linear Destexhe synapse model given by Eq. (3) with the linear double-exponential synapse
model used in Eq. (9). To do this, consider the effect of a single spike at t = t0 on a single synapse:

ṡ = − s

τR
+ h (17)

ḣ = − s

τD
+

A

τDτR
δ(t − t0) (18)

We will approximate the Destexhe synapse by this model by choosing values of the parameters
τR, τD and A to satisfy the following constraints:

1. The Destexhe synapse and the double exponential synapse have the same synaptic rise and
decay times.

2. The Destexhe synapse and the double exponential synapse have the same area underneath a
pulse

Both these synaptic models have analytical solutions. If a spike occurs at time t = 0, then the
pulses are given by:

EDestexhe(t) =







s∞

�

1 − exp
�

− t
τs

��

0 < t < t1

s∞

�

1 − exp
�

− t1
τs

��

exp(−β(t − t1))
(19)

EExponential(t) =
A

τD − τR

�

exp

�

− t

τD

�

− exp

�

− t

τR

��

(20)

where

s∞ =
αTmax

αTmax + β
and τs =

1

αTmax + β
.

Now, it should be clear that the first constraint can be satisfied, when τR ≪ τD, if we set

τR = τs, τD =
1

β
. (21)
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Cellular adaptation bursting mechanisms in the hippocampus 11

To force the second constraint, as the area underneath EExponential(t) is A, then we can merely set
A to be the area underneath the Destexhe pulse, which is given by:

A =

� ∞

0

EDestexhe(t
′) dt′ = s∞

�

t1 +

�

1

β
− τs

��

1 − exp

�

− t1
τs

���

. (22)

Given that we know how to choose A, τR and τD to force the two constraints, we can see how the
Destexhe and double-exponential pulses compare for the parameters values of our model: Tmax = 1,
t1 = 1 ms, τR = 0.5 ms, τD = 3 ms. This is shown in Fig. 1A. The single pulses in Fig. 1A are fairly
accurate, however, to be useful, the synapses must perform similarly for more than a single spike.
When 5, 50, and 100 Hz background spiking is provided to each synapse, the steady state oscillation
for the two synaptic types is similar. See Fig. 1B. However, the similarity breaks down for spiking
faster than around 150-200 Hz (not shown). This does not cause a problem for our present study
as for the parameter set we are using, spike rates greater than 100 Hz do not occur.

Now we consider how to address the minimal synaptic connectivity. Assuming the probability of
two neurons being connected is a Bernoulli random variable, the number of incoming connections
to any one neuron is a Binomial distribution with N trials and probability parameter p. In our
model the probability of connection between two neurons is small (p = 0.01), and the number of
neurons is fairly large (N ∼ 104). Given the values of these two parameters, we are well justified in
using the normal approximation for Ni, the number of connections coming to neuron i:

Ni ∼ N (Np, Np(1 − p)) (23)

as both Np and N(1− p) are large. This is shown for example in Fig. 1C for a 10,000 neuron model
with minimal connectivity of 1%.

As the mean-field systems previously derived assumed all-to-all connectivity, we will need to
relate our minimally coupled network to an all-to-all coupled network. Let C be the coupling
matrix, i.e., Cij = 1 if there is a synapse from neuron j to neuron i otherwise it is 0, and let ḡ
be the maximal conductance on a single synapse. (So ḡ corresponds to gpyr). Then we make the
following assumption:

ḡ
N
�

j=1

Cijsij ≈ ḡNi
1

N

N
�

j=1

sij = gisi ≈ gi�s� (24)

where sij , si, gi are as described in the Methods. Here �s� is the mean s variable derived from all-to-
all coupling, as in the previous mean-field models. One may ask whether or not this assumption is
justified, as it effectively turns minimal coupling into heterogeneity; gi = ḡNi is now a heterogeneous
quantity that is approximately distributed as:

gi ∼ N (ḡNp, ḡ2Np(1 − p)). (25)

Taking values of N and p such that the approximation (23) is valid, we studied the assumption (24)
numerically. We found that it is fairly accurate for parameter values where most of the neurons
in the network are spiking/bursting. This shown in Fig. 1D where we compare ḡ

�N
j=1 Cijsij with

ḡNi�s� for a two second simulation of a 10,000 neuron network with minimal connectivity of 1%.
The assumption is less accurate when there are many neurons which do not spike, i.e., where �I�
is near rheobase and/or σI ≥ �I� (not shown). These parameter regimes are not important for our
study as the network either does not burst or the burst frequency is too low.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 Ferguson, Njap, Nicola et al.

We now show how this may be further simplified in the appropriate large N limit. We consider
p as fixed and such that Np and N(1 − p) are both large as N → ∞. We further assume that the
maximal synaptic conductance, ḡ, scales as 1

N , so that in the limit N → ∞, ḡNp is fixed:

ḡ ∝ 1

N
, ḡNp ∼ g∗, N → ∞, (26)

which prevents saturation of the network. This in turn implies that in the limit N → ∞ the normal
distribution (25) for gi tends to:

N (ḡNp, ḡ2Np(1 − p)) ∼ δ(gi − g∗), N → ∞

Using the fact that as N → ∞, the heterogeneity we introduced in g becomes narrowly distributed
like 1/

√
N , we can assume that ρg(g) ∼ δ(g − g∗), its asymptotic limit as N → ∞. In this case, the

mean-field system (11)-(15) becomes:

�u�′ = a[b(�V � − vr) − �u�] + d�Ri(t)� (27)

�s�′ = −�s�
τR

+ �h� (28)

�h�′ = −�h�
τD

+
A

τRτD
�Ri(t)� (29)

where

�Ri(t)� =

� ∞

I∗(�u�,�s�)

ρI(I)

�
� vpeak

vreset

Cm

k(V )(V − vr)(V − vt) − �u� − g∗�s�(V − Epyr) + I
dV

�−1

dI

with
I∗(�u�, �s�) = max

V
[−k(V )(V − vr)(V − vt) + �u� + g∗�s�(V − Epyr)] .

Finally, we note that as b/(kvr) is small enough, we can remove the term b�V � from the mean-field
system without drastically altering the behavior (Nicola and Campbell, 2013b). However it can be
computed with the mean-field system if necessary.

We have run this mean-field system with various choices of parameters, and compared it with
the network mean adaptation �u� and network mean synaptic activity �s� computed from simulation
of the full network with the same parameters. As shown in Fig. 2, the behaviour of the mean-field
system is a good predictor of the behavior of the large network, however, there is error in both the
frequency and amplitude of bursting in the mean-field system simulation relative to the full network
simulations. The inaccuracy in the frequency is worse at low frequencies in the two dimensional
parameter map. Recall that our method of burst frequency calculation is not accurate below 1.4 Hz
for 3 second simulations. This inaccuracy can be seen for the simulation associated with Point A.
On the parameter map this point is classified as non-bursting, while in the simulation it appears to
be bursting with frequency around 1 Hz. It is clear from Fig. 2 that the lower (small �I�) boundary
of the bursting region is associated with low frequency bursting. Thus to determine this boundary
with high accuracy would require longer simulations.

While there is noticeable error in both the frequency and amplitude of the mean-field system
simulation relative to the full network simulations, this is not critical for the purposes of parameter
exploration. The mean-field system is an accurate enough representation of the behaviour of the
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Cellular adaptation bursting mechanisms in the hippocampus 13

network to allow us to use it to predict regions in parameter space that the network will burst. Ad-
ditionally, the mean-field system gives a reasonably accurate prediction of the bursting frequencies,
and is hence useful for studying how the burst frequency changes with respect to the parameters.

The real advantage of this small system of DE’s, however, is the simulation time. Using the stan-
dard Runge-Kutta integrator in matlab ode45, one can simulate the mean-field system significantly
faster (near real time) than an actual network.

3.2 Parameter exploration

With the speed gains we have made with regards to the mean-field system, we do a parameter explo-
ration. As the cellular models were developed directly from experiments in the given experimental
context (see Methods), we consider these parameters as fixed (see Table 1). In addition, the synaptic
reversal potential is determined in the same experimental context and so is also not varied. From
the literature, a range of synaptic conductance values is estimated, as well as values for the synaptic
rise and decay, and the amount of connectivity. We therefore focus our parameter exploration on
the parameters ḡ, β = 1

τD
, in addition to the parameters that govern the distribution of applied

input current (and hence heterogeneity of the intrinsic neuron firing rates), �I� and σI . Note that
ḡ, N and p only appear as the product g∗ = ḡNp in the mean-field model. This invariance allows
us to study the behaviour as one of ḡ, N or p, is varied and then deduce corresponding behaviour
for variations in all three parameters. In our study, we vary the parameter ḡ, and fix N = 30, 000
and p = 0.01.

We performed our exploration of the four dimensional parameter space as follows. Values of
ḡ ∈ [0, 0.14] nS and �I� ∈ [0, 600] pA were chosen from a fine mesh and σI ∈ [0, 80] pA and
τD ∈ [2, 5] ms were chosen on a coarser mesh. We note that even though ḡ could be much larger
and still be within physiological estimates, a much lower upper bound was sufficient to capture
the population bursting parameter regimes. We ran three second mean-field simulations with each
parameter set and computed the predicted burst frequency as described in the Methods. Contour
plots of this frequency as a function of ḡ and �I� where made for each set of σI , τD values. This is
shown in Fig. 3. At a glance, one can see that the maximal population bursts would be predicted
to be in the 6-8 Hz frequency range. We can also easily see how the population burst frequency
varies with the parameters. With all the other parameters fixed, as ḡ increases the frequency of
bursting gradually decreases. However, for increasing �I� with the other parameters fixed, the burst
frequency gradually increases. The agrees with previous work that shows that bursting requires the
right balance of synaptic drive (ḡ) and external drive (�I�) (Dur-E-Ahmad et al, 2011). Increasing
the synaptic decay time constant has the general effect of moving the bursting region to lower ḡ
values, while decreasing the burst frequency. This makes sense as increasing τD means the cells feel
the effect of the synapses longer, so a lower synaptic conductance is needed to achieve bursting.
Said another way, increasing τD has a similar effect as increasing ḡ. Finally, as the amount of
heterogeneity increases (i.e., σI increases) the bursting region moves to higher ḡ and �I� values.
The interpretation here is that with increasing heterogeneity there are more neurons with external
drive too high for their cellular adaptation to be able to contribute to the bursting mechanism
and more neurons with external drive too low to be able to spike and be able to contribute to
the bursting mechanism. In other words, there may not be a critical mass of neurons which can
contribute to the bursting mechanism, and so the network rhythm is lost.
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14 Ferguson, Njap, Nicola et al.

3.3 Scale invariance: Direct comparisons between full simulations and theory

The scaling invariance of the mean-field model carries over to the full networks, but in an approx-
imate way. Recall that g∗ is the mean of the distribution of gi across the network. Thus networks
with the same g∗ will not be perfectly identical. However, when Np is large we showed above that
the distribution becomes more narrowly centered around its mean, hence the scaling invariance
should become more accurate. Thus networks that have different values of ḡ, N and p should be-
have similarly if they have the same g∗ and Np is suitably large. Given this and the wide parameter
exploration done as described in the previous section (see Fig. 3), we can give limits on the parame-
ters for which population bursting can occur. For example, from the σI = 15 pA, τD = 3 ms plot in
Fig. 3, the lowest ḡ is about 0.04 nS. Given a 30,000 network size, and considering the physiological
range estimate (see Methods), this means that ḡ can be as small as 0.008 nS if the connectivity is
5% and population bursting will still occur. Equivalently, the connectivity can be as small as 0.04%
if the synaptic strength is 1 nS.

Let us directly examine this theoretical scaling relationship with full simulations. That is, net-
works with the same g∗ where g∗ = ḡNp, should produce the same output. We perform full simu-
lations in which either the network size or the connectivity is changed, and adjust ḡ in the scaling
relationship accordingly. Note that in describing the full simulations, we refer to the maximal,
excitatory conductances as gpyr and the mean excitatory drive as mean Iapplied (as given in the
Methods) to distinguish from the MFT analyses (which uses ḡ and �I�) In Fig. 4, we show raster
plots from simulations using six different network sizes. For comparison and visualization purposes,
1,000 cells are shown in each raster plot regardless of the network size. From these simulations,
it is clear that the scaling relationship holds very well, although a network size of 1,000 may be
a bit too small for the assumptions in the theoretical analysis to be in effect. In Fig. 5, we show
raster plots in which the network size is held constant at 10,000 and the connectivity is changed.
Again, it is clear that the scaling relationship is very robust for these large networks. With this
robust scaling, we now focus on 10,000 cell networks (rather than 30,000 as used in the MFT runs
of Fig. 3) to consider how our population bursts are affected by changing parameters. We note that
with network sizes beyond 10,000, it becomes a bit more challenging to easily simulate the network
activity for long periods of time and for many different sets of parameters. Furthermore, to be able
to do more detailed analyses of the network simulations (as in the next section), it is important to
be able to run simulations for long enough to remove transients and still have enough bursts to do
the analyses. Thus, this scaling relationship allows us to be able to have a principled approach in
doing parameter explorations in these very large networks.

As described in the previous section, there should be a reasonable match between numerical
and MFT results, although the frequencies are not expected to be exactly the same (see Fig. 2).
Let us consider an example of a direct comparison between a full 30,000 cell network simulation
with parameter values as in Fig. 4 and the MFT using exactly the same parameters. For the full
simulation, the burst frequency is close to 2.5 Hz (as estimated from Fig. 4), whereas for the MFT
scenario, it is found to be approximately 4.7 Hz (see Fig. 3 - burst frequency value extracted from
high resolution MFT plots). Thus, as already noted, there is some error in the predicted frequency.
However, the trends when changing parameters are the same as we show below.

A wide range of parameter sets were easily explored using the MFT analysis (Fig. 3). As de-
scribed above, in the MFT runs we observed a gradual decrease in burst frequencies with increasing
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Cellular adaptation bursting mechanisms in the hippocampus 15

excitatory conductance strengths, and a gradual increase in burst frequencies with increasing ex-
citatory drive. Raster plots from the full simulations are shown in Fig. 6 and Fig. 7 for changing
gpyr and changing mean Iapplied parameter values, respectively. Similar to the MFT runs, we see a
decrease in burst frequency with increasing gpyr, and an increase in burst frequency with increasing
mean Iapplied. Because of the scaling relationship, we can simply deduce whether the burst frequency
would increase or decrease with changing network size and connectivity, given the simulation runs
of Fig. 6 without needing to do additional sets of full simulations. That is, if only the connectivity
is reduced, the burst frequency would increase, and if only the network size is reduced, the burst
frequency would increase. Although the burst frequencies obtained from the theory and from the
full simulations differ, the trends are clearly the same so that the parameter balances for which
population bursting occurs are well captured by the MFT analyses. As such, the parameter ranges
for which full simulations would need to be explored can be significantly reduced. However, the
exact boundaries for which population bursts occur would have to be carefully explored with full
simulations. We note that in the raster plots of Figs. 4-7, the presence of population bursts is easy to
see and they are stable as judged by the extent of the simulation. However, outside of the boundary
predicted by the MFT analyses, population bursts that are initially seen are not maintained (i.e.,
are unstable), so that by the end of the simulation, no population bursts are apparent (not shown).

We previously examined this cellular adaptation bursting mechanism, but with smaller networks
and with all-to-all coupling (Dur-E-Ahmad et al, 2011). Here, with much larger networks that are
not all-to-all coupled, we find that population bursts can still occur if parameter balances are ap-
propriate. That is, the essential mechanism is still in play. However, now the required balance (to
get population bursts) does not only encompass the amount of cellular adaptation and the excita-
tory drive and synaptic strengths, but also the network size and connectivity (and heterogeneity).
Without the theoretical analyses, it would be more difficult and much more time-consuming to
determine what parameter balances allow population bursting to emerge. These full simulations
already indicate that population bursting can occur using physiologically relevant synaptic conduc-
tance values and connectivities found in the CA1 region of hippocampus, but at frequencies on the
lower end of theta rhythm. In the next section, we examine a full range of simulations and analyze
the cellular spiking and bursting characteristics of the network simulations.

3.4 Network simulation analyses

Given the robust scaling aspect, we do simulations with 10,000 cells rather than with 30,000 cells
which would be much more computationally intensive. We carry out simulations for a range of
parameters, and perform a detailed analysis of the full simulations to parse out bursting and cellular
spiking characteristics. Because of the averaging assumptions in MFT, these additional analyses
cannot be obtained from the MFT runs. However, because of the MFT work, we know which
parameter sets should be focused on. In this way, we greatly reduce the amount of simulations that
need to be done for our analysis.

We focus on gpyr and mean Iapplied ranges for which a population burst can be easily defined
(criteria described in Methods). With this, we can define a burst width and interburst duration,
and explore the spiking characteristics during bursting (i.e., within the burst as defined by the burst
width) and between bursts. However, because of this, the mean Iapplied ranges for which bursts are
easily defined, are different when using different amounts of heterogeneities (i.e., with different σI ’s).
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16 Ferguson, Njap, Nicola et al.

This is to be expected as it can be clearly seen from the MFT analyses that the lower boundary for
which population bursts occur shifts to larger mean Iapplied values as the heterogeneity (i.e., σI)
increases (see Fig. 3).

In Fig. 8 we plot the burst frequency along with the burst duration and interburst durations
for four different σI values. In comparison with burst frequency changes seen with the MFT (Fig.
3), the trend is the same as expected, and as shown in Fig. 6 and Fig. 7. However, in addition, it
is clear from Fig. 8 that the population burst frequency changes that occur when the excitatory
conductance strengths or the excitatory drives change are mainly due to changes in the interburst
duration (middle column of Fig. 8 - between burst width) and not to changes in the burst duration
(right column of Fig. 8 - burst width). Thus, for the cellular adaptation bursting mechanism as
described in Dur-E-Ahmad et al (2011), we can say that in these larger networks (that are not
all-to-all coupled), the (population) burst frequency is largely controlled by (non-spiking) neuronal
processing (between bursts). In other words, since the slowdown in burst frequency occurs due to
increasing interburst duration, a key controlling factor for population bursts to emerge is due to
spike initiation. That is, the cells’ ability to spike again (after the burst ends).

Although we identify spike initiation as a controlling factor in the emergence of population
bursts, the underlying mechanism clearly relies on a balance between the amount of cellular adap-
tation and excitatory coupling. Specifically, the bursting depends on a slow cyclical increase and
decrease of adaptation in neurons coupled with the variation in synaptic input. During the ac-
tive part of the burst, the cells are spiking and the adaptation (represented by the current ui

in our models) increases until it is high enough that the effective input current to the neurons
(Iapplied − ui − Isyn) is below rheobase and the neurons cease to spike. This is complicated as
−Isyn is also increasing as the cell spikes. During the quiescent phase, the cells become uncoupled
(Isyn → 0) and the adaptation slowly decays until the effective input current (Iapplied − ui) goes
above rheobase and they begin to spike. In our models 1/a ≫ τD ≫ τR thus the decay rate in the
quiescent phase is determined by 1/a. The width of the quiescent phase is determined by 1/a and
the difference in the amount of adaptation at the beginning and end ≈ Isyn = ḡs(V −Epyr). There
are two key aspects of this mechanism in the homogeneous case. First, the applied current, Iapplied,
must be greater than rheobase (in the absence of coupling the cells are tonically firing) so that the
network can leave the quiescent phase. Second there must be the right balance of synaptic input
and adaptation so that burst termination can occur. However, with heterogeneity and not all-to-all
coupling, leaving the quiescent phase and the burst termination depends on the variation of the
effective input into all the different cells. As some cells start to spike, they provide other cells (that
they are coupled to) with additional input and they in turn can start spiking and have adaptation
and so on. The balance is thus dependent on the number of cells and the connectivity also. With
the MFT analysis, this overall balance is captured in coming up with the bursting regimes (as in
Fig. 3). Thus, spike initiation (of enough cells) is essential, and it is clear that there must be a
non-zero number of cells with effective input above rheobase for population bursts to occur.

In Fig. 9 we show how the average spike frequency and the number of cells spiking changes,
during bursts and between bursts for a particular level of heterogeneity. It is clear that the average
spike frequency increases during the burst more due to increasing gpyr and not due to increasing
mean Iapplied. This is consistent across different heterogeneties (not shown). The average spiking
frequencies during the burst range from 10-60 Hz for the four different heterogeneities examined
(σI = 5, 10, 15, 20 pA), and each cell spikes 1 to 6 times (not shown). It is also very clear that
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Cellular adaptation bursting mechanisms in the hippocampus 17

during bursts, all of the 10,000 cells are spiking for almost the entire range of parameters. Only
in small regions of low mean Iapplied and low gpyr do we find that not all 10,000 cells are spiking.
Between bursts, the average spiking frequency is much lower (as expected given the raster plots
shown in the earlier figures), with the average number of spikes per cell mostly being less than one
(not shown). Also, as can be seen in Fig. 9, this interburst spiking frequency is not sensitive to gpyr

at lower mean Iapplied values, and only a fraction of the cells are spiking between the bursts. Not
surprisingly, the number of cells spiking between bursts increases as the heterogeneity increases,
but during the burst, it is still the case that all of the cells are spiking (not shown).

3.5 Reduced bursting regimes with weakly adapting excitatory cells

So far, all of the MFT runs and full simulations were done using cellular models that had strongly
adapting characteristics. However, as described in the Methods, CA1 pyramidal cells also exhibit
weakly adapting characteristics (Ferguson et al, 2015). Using these weakly adapting cellular models,
we take advantage of our MFT analysis to easily and quickly examine a full range of parameter
sets to see how population bursting regimes change. This is shown in Fig. 10. Given the model
mechanism being dependent on adaptation, we expect that with weakly adapting cells, population
bursting would be less prevalent relative to networks with strongly adapting cells, as it is. It is also
apparent that the burst frequencies are lower. Compare Fig. 3 and Fig. 10, but note that the color
ranges encompass different frequency ranges. In Supplementary Materials, we show the occurrence
of population bursts in networks of weakly adapting cells.

It is clear that while population bursts could still occur in these minimally coupled networks,
this behaviour is far less robust than in the networks of strongly adapting neurons. In particular,
for fixed values of τD and σI the region of bursting in the ḡ, �I� plane is considerably reduced and
generally lies at higher ḡ and �I� values. (Note the change in scale on the ḡ axis.) Further, while the
effect of varying the parameters is similar to what we observed in the strongly adapting networks,
the burst region and burst frequency are more sensitive to variation of these parameters. All this
points to the fact that the balance of external and synaptic drive needed to obtain bursting is
considerably harder to achieve with weakly adapting neurons. Finally, we note that the achievable
range of population burst frequencies is reduced. (Note the change in scale on the bursting frequency
colour bar). This is consistent with our other observations as the range of values of ḡ and �I� where
bursting can occur in the weakly adapting network is where the lower bursting frequencies occur
in the strongly adapting network.

4 Discussion

Using biologically-based cellular models of CA1 pyramidal cells in hippocampus, we have built large,
excitatory networks in an effort to determine whether and how population bursting can emerge.
Our models were designed to represent the experimental context of a whole hippocampus prepa-
ration that spontaneously exhibits theta frequency (3-12 Hz) population bursts (Goutagny et al,
2009). This population activity was shown to be generated in the CA1 region of the hippocampus,
a region where the coupling between excitatory cells is minimal. Taking advantage of mean-field
analyses, we were able to examine a very large parameter space. We specifically examined whether
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18 Ferguson, Njap, Nicola et al.

spike frequency adaptation that is present in the individual cells could generate network popula-
tion bursts, via cellular adaptation mechanisms. The balance between cellular (adaptation) and
synaptic (excitatory coupling) characteristics forms the essence of the population bursting mecha-
nism but due to heterogeneity and non all-to-all coupling, the complexity of the balance is greatly
increased, but with the mean-field analyses, appropriate parameter regimes are easily found. We
found that theta frequency population bursts could emerge but at low theta frequencies (< 4 Hz) in
our experimentally-constrained context. Thus, the required balance between the amount of cellular
adaptation with excitatory interactions does exist in these excitatory networks, and a controlling
aspect of these population bursts lies in spikes being initiated in a non-zero number of cells that
have an effective input above their rheobase. As such, we suggest that cellular adaptation mecha-
nisms could be a critical component in the generation of theta frequency population bursts in the
hippocampus. It would not be straightforward to directly test our present results as adaptation
currents cannot be blocked in isolated and specific ways (e.g., many types of potassium currents
could contribute). Furthermore, inhibition is not yet included in the models and some inhibitory
cell types are important contributors to the theta rhythm (Amilhon et al, 2015). However, it is
interesting to note that population bursts in which inhibitory cells minimally contribute do occur,
but these are at frequencies that are lower than theta (Wu et al, 2005). We view the present work as
a starting framework on which to build to understand the generation of theta frequency population
bursts in the hippocampus. We expect to be able to suggest particular experimental tests when, for
example, excitatory-inhibitory networks are considered in this experimental context.

4.1 Relation to our previous modeling work and other considerations

Previously, we developed Izhikevich-based models of pyramidal cells in the CA3 region of the hip-
pocampus (Dur-E-Ahmad et al, 2011). These models were based on data derived from the literature
(Hemond et al, 2008) and were designed to capture experimentally recorded spike frequency adap-
tation characteristics. As in the work here, we were interested to know whether the amount of spike
frequency adaptation that is present in biological cells would be appropriate to support population
bursting in hippocampal networks. That work was focused on CA3 cells because of related experi-
mental studies that showed a population bursting pattern (in vitro sharp wave) initiating in the CA3
region of the hippocampus (Wu et al, 2005). That work showed that it was possible that adaptation
characteristics as estimated from experimental records could support network bursting. However, in
that work, the cellular characteristics were not derived directly from experiment, and the network
constraints in terms of size and connectivity were not directly considered – smaller networks and
only all-to-all coupling was used. In the work here, our network models are well-defined in terms
of experimental context: the cellular models were developed in the same experimental context with
direct experimental data (Ferguson et al, 2015), and the network size was based on estimates from
the experimental preparation exhibiting spontaneous theta rhythms (Goutagny et al, 2009). We
note that although our cellular models still use an Izhikevich model structure as in Dur-E-Ahmad
et al (2011), we consider them as biologically-based as the parameters were chosen to match char-
acteristics such as frequency-current profiles and rheobases, but not biophysically-based as they
do not have conductance representations like Hodgkin-Huxley types. Even though there are other
choices one could make for these simple models (Gerstner and Brette, 2009), the Izhikevich type
works well enough and is amenable for robust simulations of very large networks.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Cellular adaptation bursting mechanisms in the hippocampus 19

The network models considered here only include excitatory networks, and although we found
that robust, theta frequency population bursts could occur, they were at lower theta frequencies
for networks composed of strongly adapting cells (Fig.3 and Fig.8). When only weakly adapting
cells were used in the excitatory networks, the regions in which population bursts could occur were
reduced and population burst frequencies were much lower, and no longer in the theta frequency
range (Fig.10). We focused our detailed network simulation analyses on the strongly adapting
excitatory cell networks. Relative to what is known about the experimental data, the most obvious
discrepancy between model and experiment is the lack of sparse firing in the models that is present
in the experimental data (Huh et al, 2015). The full simulations showed that except for a small
regime at low values of gpyr and mean Iapplied, all of the cells are spiking during the population
burst (see Fig. 9). In preliminary work, we have found that with the addition of inhibitory cells,
sparse firing of excitatory cells can occur at the same time as robust population bursts (Ferguson
et al, 2014).

An important aspect to consider is the amount of input (i.e., excitatory drive) that is needed for
population bursts to emerge. For our strongly adapting cell models, the rheobase is 0 pA, so that
with a mean Iapplied greater than zero in our network simulations, more than 50% of the cells in
the network are above rheobase and would spike intrinsically. Interestingly, earlier work by Latham
et al (2000) showed that an essential aspect needed for rhythmic bursting is a non-zero fraction
of endogenously active cells (as demonstrated in model and experiment in their scenario). Future
studies of excitatory and inhibitory cell networks building on the starting network framework here
may be able to estimate the required amount of endogenously firing cells for the emergence of theta
frequency population bursts.

In a previous modeling study we built networks to capture population activities from normal and
Rett mouse models (as given by MeCP2-null mice) (Ho et al, 2014). To do this, we took advantage
of cellular adaptation mechanisms in the excitatory network models. In earlier modeling work we
had found that model inhibitory networks underlying the normal population activities were mainly
controlled by excitatory fluctuations, rather than (tonic) excitatory drive (Ho et al, 2012). We
translated this interpretation to excitatory networks with different amounts of heterogeneity (via
the σI parameter) in Ho et al (2014) – Rett model output occurring when the excitatory fluctuations
were smaller (interpreted as smaller heterogeneity). The model Rett (excitatory) networks (with
smaller heterogeneity) exhibited population bursting at lower excitatory conductance strengths
relative to the normal networks. From our work here, it is clear that this is to be expected now
that we are able to see the wide range of parameter sets easily obtained from the MFT runs (see
Fig. 3). With all parameters fixed except for the amount of heterogeneity, the boundary of where
population bursts first appear occurs at higher excitatory conductance values as σI increases.

Ideally, one should use noisy (and not heterogeneous) input with linkage to experimental mea-
surements. While we have done a linkage with experiment in previous work (Ho et al, 2009), it
can become quite challenging due to technical extraction issues from the experimental data. From
a modeling viewpoint, we do not expect that our essential network results would change if noisy
rather than heterogeneous input were used, based on our previous simulation studies of inhibitory
networks using heterogeneous (Ferguson et al, 2013) or noisy input (Skinner and Ferguson, 2013)
and our mean-field studies of all-to-all, excitatory networks with noise (Nicola et al, 2014). How-
ever, the essential issue is being able to have interpretations for the model parameters relative to
experiment so that insight into the biological system can be gained.
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4.2 Theoretical aspects and relation to our other studies

In the work here, we extended our mean-field derivation to deal with two new aspects: Destexhe
(kinetic) synapse model and minimal connectivity. To our knowledge this is the first time that
mean-field models have been derived for networks with these properties. The Destexhe kinetic
model was dealt with by approximating it using the double exponential model for which the mean
field derivation has been done. This approximation is valid so long as the activation time constant
of the synapse is sufficiently faster than that of the inactivation time constant - they differ by an
order of magnitude in the work here so this approximation is very good. To deal with minimal
connectivity we considered an asymptotic limit as the number of neurons in the network gets large
N → ∞. Assuming that the probability, p, of two neurons being connected is such that both Np
and N(1−p) are large we showed that the number of connections coming into a given neuron obeys
a normal distribution. We then made an assumption (valid if most of the neurons in the network
are spiking/bursting) so that we could treat minimal connectivity as heterogeneity in the maximal
synaptic conductance. Making the final assumption that the maximal synaptic conductance scales
as 1/N , we showed that for N sufficiently large the mean-field for the minimally coupled network
with maximal synaptic conductance ḡ is well approximated by that for an all-to-all coupled network
with maximal synaptic conductance g∗ = ḡNp. This also showed that there is a scaling relation for
the mean-field systems. Any two systems with the same g∗ will have similar behaviour.

Our previous theoretical studies of all-to-all coupled networks showed that heterogeneity in
applied current can lead to sparse firing (Nicola and Campbell, 2013b). In particular, sparse firing
occurred in a small region where ḡ and �I� are both low and the size of the region of sparse firing
increased with σI . In this work, all the neurons receive the same excitatory drive due to the all-to-all
coupling. Thus the sparse firing must arise due to the heterogeneity in Iapplied. With small enough
�I� the total drive of many neurons falls below rheobase and the neuron does not fire. With a
large �I� many neurons have Iapplied high enough that the spike frequency adaptation is not strong
enough for bursting to emerge (i.e., the neurons are tonically firing). A �I� low enough such that
some neurons have strong enough spike frequency adaptation is needed for the population burst
to emerge. If ḡ is too small, many neurons may have total input below rheobase and do not fire
so do not participate in the burst. As ḡ increases, the number of neurons participating in bursts
increases. Interestingly, the sparse firing region seemed to be associated with the parameter values
where the Hopf bifurcation associated with the emergence of bursting is supercritical. Where the
Hopf is subcritical the whole network seems to transition to bursting at the same parameter values.

Here we showed that bursting is much harder to acheive in networks of weakly adapting neurons
than strongly adapting neurons. This is consistent with our previous work on all-to-all coupled
networks (Nicola and Campbell, 2013b). In that work we considered a case study of a population
containing both strongly adapting and weakly adapting neurons. We showed that the higher the
proportion of weakly adapting neurons in the network the smaller the set of �I� and ḡ values for
which the network would burst.

One factor we have left out of our network models is noise. It is possible to derive mean-field
systems for network with noise (Nicola et al, 2014; Nesse et al, 2008). The overall results are similar,
with a region of bursting existing in the ḡ, �I� parameter space. Notably, this region can extend
below rheobase and as the strength of the noise increases the bursting regions moves to lower values
of �I� and large values of ḡ. We did not study sparse firing explicitly, but the noise can cause the
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appearance of a supercritical Hopf bifurcation, thus it seems likely that small regions will occur as
in the case of heterogeneity in Iapplied.

4.3 Related Studies

Work by Augustin et al (2013) is similar to ours in that adaptation-based bursting is consid-
ered with simple two-variable neuron models and mean-field analyses. However, the examination is
generic with excitatory/inhibitory networks, synaptic delays and spike frequency adaptation, and
not focused on a particular brain region with experimentally constrained cellular models. We have
focussed on adaptation induced bursting in the CA1 region of hippocampus. Similar studies have
been done focussing on other regions and other mechanisms for population bursting. For exam-
ple, Tabak et al (2000); Vladimirski et al (2008) studied bursting in chick spinal chord induced
by slow synaptic depression. Further, Butera et al (1999a,b) studied in network bursting in the
Pre-Botzinger complex. They primarily focus on the role of intrinsically bursting cells in produc-
ing population rhythms, showing that only a small fraction of pace-maker cells is needed even in
minimally coupled networks. For us, one of the main goals of the theoretical MFT work was to
guide the simulations, as we could easily do a much more expansive parameter exploration in the
MFT model, in particular where the experimental constraints were limited. However, several exper-
imental constraints were clear as our model networks were designed and developed using the whole
hippocampus experimental preparation spontaneously expressing theta rhythms. The MFT analy-
ses here achieved a close correspondence with the full simulations. We have focussed on bursting as
a mechanism for producing network theta rhythms. Other authors have focussed on clustering as
a means of producing population rhythms. Kilpatrick and Ermentrout (2011) looked at how spike
frequency adaptation was related to clustering in excitatory/inhibitory networks the emergence of
higher gamma (30-100 Hz) frequencies, while a focussed role of inhibition in a similar vein was done
by Krupa et al (2014).

4.4 Concluding remarks

By taking an approach in which theoretical, modeling and experimental aspects are considered
together at early stages we have been able to take advantage of MFT analyses to quickly do expan-
sive parameter explorations to guide full network simulations. Importantly, these simulations are
of cellular-based network models that were developed using a well-defined experimental context. In
this way, it should be possible to go back and forth between model and experiment to identify crit-
ical aspects contributing to biologically-based mechanisms in the generation of population rhythms
in the hippocampus. At this stage, our network models are focused on excitatory networks, but
this work constitutes a framework on which we will build by the addition of inhibitory networks,
including inhibitory cells of different types.
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Figure Captions

Fig. 1
Numerical verification of the main approximations used to derive the mean-field model.
(a) Comparision of simulations of the synaptic response to a single spike using the Destexhe model
(red) and the double exponential model (black). The parameters of the double exponential synapse
are set to reproduce both the rise and decay times and the area under the curve generated by
the Destexhe synapse. (b) Same as (a) except the stimulus is a 100 Hz train of spikes. (c) A
network model of 10,000 neurons with minimal connectivity was set up as follows. The nonzero
elements of the connection matrix were set randomly, with the probability of a connection between
any two neurons being 1%. The number of connections to each neuron was then computed and
a probability density function for the number of connections was estimated by applying a kernel
density estimator to the data. This estimated pdf is shown in blue, while the normal approximation,
N (Np, Np(1− p)), is shown in red. (d) The network described in (b) was simulated for 2 seconds.

The value of gi(t) = ḡ
�N

j=1 Cijsij , is compared to the approximation ḡNi�s� for five randomly
chosen neurons.

Fig. 2
Mean-field accuracy.
Top. The mean-field system described in the text was simulated for 3 seconds using values for the
parameters ḡ and �I� taken from a 40 × 40 mesh on [0, 0.3] × [0, 600] with σI = 5 pA and τD = 3
ms. The burst frequency is computed at each mesh point as described in the Methods.
Middle and Bottom. Simulations of the mean-field system (red) are compared with those of a
network of 10,000 neurons with 1% connectivity (blue) for four representative parameter sets.

Fig. 3
MFT Parameter Exploration with strongly adapting cell networks.
The mean-field system, with strongly adapting single cell parameter values from Table 1, was
simulated for a 3 second time interval using values for the parameters g and �I� taken from a 30×30
mesh over the ranges shown on the plot with σI = 0, 5, 10, 15, 20, 40, 80 pA and τD = 2, 3, 4, 5 ms.
The burst frequency at each mesh point is computed as described in the Methods.

Fig. 4
Scaling Relationship - changing network size.

Raster plots of six different network sizes are shown for 2 seconds of simulation. Note that each
plot shows 1,000 cells regardless of the network size.
Parameter values are (left to right, top to bottom): 1,000 neurons, gpyr=1.425 nS; 5,000 neurons,
gpyr=0.2850 nS; 10,000 neurons, gpyr=0.1425 nS; 20,000 neurons, gpyr=0.0713 nS; 25,000 neurons,
gpyr=0.0570 nS; 30,000 neurons, gpyr=0.0475 nS. In all cases there is 1% connectivity and σI = 15
pA, mean Iapplied = 80 pA, τD = 3 ms.

Fig. 5
Scaling Relationship - changing connectivity.

Raster plots of three different network connectivities are shown for 4 seconds of simulation with
transients removed. Each raster plot shows 1,000 of the 10,000 cells in the network. Parameter
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values are: (top) 0.5% connectivity, gpyr=0.2850 nS; (middle) 1% connectivity, gpyr=0.1425 nS;
(bottom) 2% connectivity, gpyr=0.0713 nS. In all cases there are 10,000 cells in the network with
σI = 15 pA, mean Iapplied = 80 pA, τD = 3 ms.

Fig. 6
Increasing burst frequency with decreasing excitatory strength.

Raster plots of three network with different excitatory strengths are shown for 5 seconds of sim-
ulation with transients removed. Parameter values are: (top) gpyr=0.1425 nS; (middle) gpyr=0.1155
nS; (bottom) gpyr=0.1020 nS. In all cases there are 10,000 cells in the network with 1% connectivity
and σI = 5 pA, mean Iapplied = 20 pA, τD = 3 ms.

Fig. 7
Increasing burst frequency with increasing excitatory drive.

Raster plots of three network with different excitatory drives are shown for 5 seconds of simu-
lation with transients removed. Parameter values are: (top) mean Iapplied=20 pA; (middle) mean
Iapplied=40 pA; (bottom) mean Iapplied=60 pA. In all cases there are 10,000 cells in the network
with 1% connectivity and σI = 5 pA, gpyr = 0.1290 nS, τD = 3 ms.

Fig. 8
Burst frequency changes due to interburst interval changes.

First column shows the burst frequencies (Hz), second column shows the interburst durations
or the width between bursts (ms), and third column shown the burst widths or durations (ms). σI

= 5,10, 15, 20 pA (top to bottom). Note that mean Iapplied ranges from 40-100 pA to allow for
consistency for all σI values. Color ranges adjusted to be the same for all σI values, but note that
the time duration range for the interburst intervals are not the same as for the burst width ranges.
It is much narrower for the burst widths.

Fig. 9
Cellular spiking characteristics.

Average spike frequencies and the number of spiking cells are shown for the time between bursts
(first column) and during bursts (second column). Note that the mean Iapplied ranges are from 10-
100 pA, which is wider than the mean Iapplied range shown in Fig. 8, as only σI = 5 pA is shown.
Note that the color ranges for between and during bursts are different as the spike frequency and
number of spiking cells is much higher during the bursts.

Fig. 10
MFT Parameter Exploration with weakly adapting cell networks.

The mean-field system, with weaky adapting single cell parameter values from Table 1, was
simulated for a 3 second time interval using values for the parameters g and �I� taken from a
30 × 30 mesh over [0, 0.15] × [0, 600] with σI = 0, 5, 10, 15, 20, 40 pA and τD = 2, 3, 4, 5 ms. The
burst frequency at each mesh point is computed as described in the Methods. Note that color ranges
are not the same as for strongly adapting networks shown in Fig. 3.
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Supplementary Materials

Figure S1
Weakly Adapting Networks

Raster plots showing population bursting in networks of weakly adapting cells. An example of
an individual cell firings is also shown. Parameter values: (top left) mean Iapplied=150 pA, gpyr =
0.22 nS; (bottom left) example of an individual cell firing from the above raster plot; (top right)
mean Iapplied=175 pA, gpyr = 0.22 nS; (bottom right) mean Iapplied=300 pA, gpyr = 0.36 nS; In
all cases there are 10,000 cells in the network with 1% connectivity and σI = 5 pA, τD = 3 ms.
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Table 1 Pyramidal Cell Model Parameters

Parameter PYR
weakly adapting strongly adapting

vr (mV ) -61.8 -61.8
vt (mV ) -57.0 -57.0

vpeak (mV ) 22.6 22.6
a (ms−1) 0.00008 0.0012

b (nS) 3 3
c (mV ) -65.8 -65.8
d (pA) 5 10

klow (nS/mV ) 0.5 0.1
khigh (nS/mV ) 3.3 3.3

Cm (pF ) 300 115
Ishift (pA) -45 0
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