Qualitative Method of Analysis for First Order Equations

- 1. Start with equation standard form: $\frac{dy}{dx} = f(y)$.
- 2. Identify equilibrium solutions by looking values of y such that f(y) = 0. Determine where $\frac{dy}{dx}$ is positive and negative.
- 3. Calculate $\frac{d^2y}{dx^2} = f(y)f'(y)$. Determine where $\frac{d^2y}{dx^2}$ is positive, negative and zero.
- 4. Make the correspondence table as below and find the qualitative description of y(x).

Interval	Description	Sign of	Sign of	Description
in y	f(y)	$\frac{dy}{dx} = f(y)$	$\frac{d^2y}{dx^2} = f(y)f'(y)$	of $y(x)$
	positive	+	+	increasing
	increasing			concave up
	positive	+	_	increasing
	decreasing			concave down
	negative	_	_	decreasing
	increasing			concave down
	negative	_	+	decreasing
	decreasing			concave up

- 5. Sketch the solutions y(x) vs x for various initial conditions $y(0) = y_0$.
- 6. Classify equilibrium solutions as stable or unstable.