
Introduction to loon

Rolling your own

. . . something old, something new, something borrowed, something blue . . .

Wayne Oldford
University of Waterloo

based on joint work with
Adrian Waddell

Roche

Pipes and loon - magrittr

One programming style that is sometimes convenient is that of pipes as
developed in the package magrittr. These can also be used to great effect with
loon.

For example,
Get some data
library("ElemStatLearn")
data("SAheart")

Pipes and data manipulation functions
library(magrittr)
library(tidyverse)

SAHealthy <- SAheart %>%
filter(famhist == "Absent", chd == 0) %>%
arrange(sbp)

SAHealthy %>%
select(age, ldl) %>%
l_plot(linkingGroup ="Healthy heart data") ->
p

Pipes and loon - magrittr

There is another pipe from magrittr, %T>% or “tee pipe”, that can be handy.

Like %>%, the tee pipe %T>% pipes a value forward into a function or call
expression but where %>% returns the result of the function (or call expression)
%T>% instead returns the original value.

This can be handy in many instances, such as when piping through layers in
loon.

SAHealthy %>%
select(age, ldl) %>%
l_plot(showGuides = TRUE, linkingGroup ="Healthy heart data") %T>%
l_layer_line(x=c(2,100), y=c(0,12),

color="red", dash=c(20,10),
linewidth = 2) %T>%

l_scaleto_world() ->
p

In the above, the data are passed along using %>% to l_plot() which produces
the loon plot and %T>% passes this plot along throughout until it is finally
assigned to p.

pipes and ggplot2

Many tidyverse users like to use ggplot2 to define their graphics. For
example,

SAheart %>%
mutate(ltob = log(tobacco), lsbp = log(sbp)) %>%
filter(age < 50) %>%
ggplot(aes(x = ltob, y = lsbp)) +
geom_point() +
facet_wrap(~chd) -> p

pipes and ggplot2 and loon - loon.ggplot package‘

Wouldn’t this be cool?

library(loon.ggplot)

SAheart %>%
mutate(ltob = log(tobacco), lsbp = log(sbp)) %>%
filter(age < 50) %>%
ggplot(aes(x = ltob, y = lsbp)) +
geom_point() +
facet_wrap(~chd) %>%
loon.ggplot()

Coming soon!

Author: Zehao Xu

Warning: THIS FAILED LAST NIGHT . . . still under development

pipes and ggplot2 and loon - loon.ggplot package‘

For example, this does work

library(loon.ggplot)
p <- ggplot(quakes,

aes(x = long, y = lat,
colour = factor(cut(quakes$depth, 100, label = FALSE)))) +

geom_point(size = 4) +
labs(x = "Longitude", y = "latitude") +
scale_colour_hue() +
theme(legend.position="none") +
facet_grid(~Depth)

loon.ggplot(p, linkingGroup = "quakes")
#

pipes and ggplot2 and loon - loon.ggplot package‘

And even this

library(loon.ggplot)
library(lattice)
data(Oats, package = "MEMSS")
tp1.oats <- xyplot(yield ~ nitro | Variety + Block, data = Oats, type = "o")
tp1.oats

The same in ggplot2
library(ggplot2)
pg.oats <- ggplot(Oats, aes(nitro, yield)) +

geom_line() +
geom_point() +
facet_wrap(~Block + Variety, ncol = 3)

pg.oats

from ggplot to loon
loon.ggplot(pg.oats)

We are getting close!

still under development . . . but looks good! Above bugs should be out in a week and the whole
package on CRAN by summer’s end.

. . . stay tuned (also a loon.micromaps package coming from Alex Wang)

Demos
The loon package demos show how loon works and how you might create new
functionality and displays with loon. Importantly, their source code is printed in
the console!
library(loon)
demo(package = "loon") # will produce

l_add_regressions interactively add regression lines of a particular order to selected points
l_glyph_sizes size mapping to various glyph types
l_glyphs demonstrate glyph types
l_knn interactively highlight k nearest points in some subspace
l_layers demonstrate layer types
l_layout custom layout widgets
l_linkPrimitiveGlyphs custom linking, link the primitive glyphs
l_linking linking examples
l_map layer a map from the map R package
l_map_sp layer a map with class sp as defined in the sp R package
l_ng_dimred compare results from various dimensionality reduction methods using navigation graphs
l_ng_images_faces navigation graph with olivetti faces data
l_ng_images_frey_LLE navigation graph for the frey image data using LLE for dimensionality reduction
l_ng_images_frey_isomap navigation graph for the frey image data using isomap for dimensionality reduction
l_power scatterplot and two scales that control the power transformation for each axis
l_regression layer fit, confidence, and prediction intervals
l_regression_influential move and recolor points to change the regression fit
l_scagnostics scatterplot maxtrix of scagnostic measures and a scatterplot that shows the scatterplot for

the selected point in the scatterplot matrix
l_selectToActive two scatterplots; in one a regression is fit to the points that are selected in the other
l_timeseries seasonal trend decomposition stl
l_us_and_them gapminder data made famous by Hans Rosling; fertility, life expectancy, and income
l_us_and_them_choropleth life expectancy on a world map and linked with a scatterplot
l_us_and_them_slider show the life expectancy vs. fertility data for the year selected on a slider
l_widgets custom layout
loon an introductory example

All demos ahow off loon functionality, italic demos show extensions or changes to
functionality, and bold demos illustrate how you might create new functionality and
displays.

Build new things with tcltk

Because loon is built on the base R tcltk package (which ships with R), you
can always build your own interactive displays using a mix of loon and tcltk
functionality.

For example, a simple slider is built as

slider_window <- tktoplevel()
tktitle(slider_window) <- "slider"
slider_val <- tclVar('1') # default value
slider <- tkscale(parent = slider_window,

orient = "horizontal",
variable = slider_val,
from = -5,
to = 5,
resolution = 0.1,
command = function(...) print(paste0("Slider value = ", ...)))

(tkgrid(slider, row = 0, column = 0, sticky="we", padx = 50))
tkgrid.columnconfigure(slider_window, 0, weight=1)

Try it.

Try demo(l_power).

Binding events in loon

In a loon plot, it is easy to bind a function to fire whenever named states are
changed.

The main function here is l_bind_state(target, event, callback)

For example

myPlot <- l_plot(iris, color = "Species")

makeItHappen <- function() {print ("It happened!")}

l_bind_state(myPlot, c("color", "xTemp", "yTemp"), makeItHappen)

WhoIsSpecial <- function() {
cat("Selected points were: \n\t",

myPlot["itemLabel"][myPlot["selected"]], "\n"
)
}

l_bind_state(myPlot, c("selected"), WhoIsSpecial)

Which opens up a whole range of possibilities.

Binding events in loon - a more realistic example

For example, we could fit a least-squares line to some data:
x <- 1:100
y <- 2 + 5 * x
data <- data.frame(x = x, y = y)
p <- l_plot(data$x, data$y)

lm_fit <- lm(y ~ x, data = data)
x_line <- extendrange(x)
y_line <- predict(lm_fit, newdata = data.frame(x = x_line))
fitted_line <- l_layer_line(p, x = x_line, y = y_line, color = "red")

And now have it change when points were moved.

Binding events in loon - a more realistic example
The updated least-squares line would be effected by a function like

updateLine <- function(myPlot, ls_line = NULL) {

if (!is.null(ls_line) & ls_line %in% l_layer_ids(myPlot)) {
we'll update it.
xnew <- myPlot["xTemp"]
if (length(xnew) == 0) {

xnew <- myPlot["x"]
}

For y
ynew <- myPlot["yTemp"]
if (length(ynew) == 0) {

ynew <- myPlot["y"]
}

New fit
new_fit <- lm(y ~ x, data = data.frame(x = xnew, y = ynew))
x_line <- extendrange(xnew)
y_line <- predict(new_fit, newdata = data.frame(x = x_line))

configure the least-squares line
l_configure(ls_line, x = x_line, y = y_line)

}

Update the tcl language's event handler
tcl("update", "idletasks")

}

Binding events in loon - a more realistic example

The final step is simply

l_bind_state(p,
c("xTemp", "yTemp"),
function() {updateLine(p, fitted_line)})

Try it!

A fuller teaching example might be as given in
demo(l_regression_influential).

Try it!

Try to move points around in the plot titled “swiss data (least-squares)”.

Finally, another complex example is given as a vignette file named
“teaching-example-smoothing”.

Thanks for your attention

loon - dive beneath the data surface to explore its depth

Loon is an open source project and we are always looking for collaborators and
users.

Come on in . . . the water’s fine!

