Visualizing high-dimensional data:

 Applying graph theory to data visualizationWayne Oldford
based on joint work with
Catherine Hurley (Maynooth, Ireland)
Adrian Waddell (Waterloo, Canada)

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

- can have non-obvious variables, complex, unanticipated structure, ...

Data Visualization

powerful human visual system

* use a variety of cues:
+ proximity, movement, shape, colour, texture, ...
* patterns, relations, like and unlike, ...
+ recognition and discovery
* structure need not be anticipated

Data Visualization

powerful human visual system

+ use a variety of cues:
+ proximity, movement, shape, colour, texture, ...
+ patterns, relations, like and unlike, ...
- recognition and discovery
+ structure need not be anticipated

Data Visualization

powerful human visual system

+ use a variety of cues:
+ proximity, movement, shape, colour, texture, ...
+ patterns, relations, like and unlike, ...
* recognition and discovery
* structure need not be anticipated

Data Visualization

powerful human visual system

+ use a variety of cues:
+ proximity, movement, shape, colour, texture, ...
+ patterns, relations, like and unlike, ...
+ recognition and discovery
+ structure need not be anticipated

Challenge

Large p

- visually, we're constrained to small p
+ locations: $p<4$
+ use colour, shape, texture, movement, ...
- comprehension depends on only a few dimensions
... at a time

Challenge

Large p

- visually, we're constrained to small p
+ locations: $p<4$
+ use colour, shape, texture, movement, ...
- comprehension depends on only a few dimensions
... at a time
- Approach: large number of low dimensional views

Challenge

Large p

- visually, we're constrained to small p
+ locations: $p<4$
+ use colour, shape, texture, movement, ...
- comprehension depends on only a few dimensions
... at a time
- Approach: large number of low dimensional views
+ $\binom{p}{d}$ d-dimensional views, preferably highly interactive

Challenge

Large p

- visually, we're constrained to small p
+ locations: $p<4$
+ use colour, shape, texture, movement, ...
- comprehension depends on only a few dimensions
... at a time
- Approach: large number of low dimensional views
+ $\binom{p}{d}$ d-dimensional views, preferably highly interactive
+ Which dimensions? How connected? How explored?

Axis systems

- Choice of coordinate axis layout
- Orthogonal (RnavGraph R package)
- Radial (PairViz R package)
- Parallel (PairViz R package)
- Punchline
- graph theory framework for exploratory data analysis looks very promising

Orthogonal axes

Orthogonal axes

Orthogonal axes

Orthogonal axes

Travel from one space to another

Orthogonal axes

Travel from one space to another

Orthogonal axes

Example: Italian olive oils

Different regions of Italy:

- NORTH (Umbria, EastLiguria, West-Liguria)
- SOUTH (Calabria, Sicily, North-Apulia, South-Apulia)
- SARDINIA (Inland, Coast)

Example: Italian olive oils

Different regions of Italy:

- NORTH (Umbria, EastLiguria, West-Liguria)
- SOUTH (Calabria, Sicily, North-Apulia, South-Apulia)
- SARDINIA (Inland, Coast)

Example: Italian olive oils

Measurements:

- $n=572$ different olive samples
- concentrations of $p=8$ fatty acids:
- arachidic, eicosenoic, linoleic (I1), linolenic (I2), oleic, palmitic (p1), palmitoleic (p2), and stearic.

Navigation Graphs

Connecting low-d spaces

+ node = variable pair
+ edges connect nodes that share a variable
+ could display scatterplot at each node
+ edges are 3D transitions

+ move from one 2D space to another through 3D (or 4D) transitions
+ track/map exploration
+ explore the sites!
+ suggest routes

Navigation Graphs

Connecting low-d spaces

+ node = variable pair
+ edges connect nodes that share a variable
+ could display scatterplot at each node
+ edges are 3D transitions

+ move from one 2D space to another through 3D (or 4D) transitions
+ track/map exploration
+ explore the sites!
+ suggest routes

Navigation Graphs

Connecting low-d spaces

+ node = variable pair
+ edges connect nodes that share a variable
+ could display scatterplot at each node
+ edges are 3D transitions
+ move from one 2D space to another through 3D (or 4D) transitions
+ track/map exploration
+ explore the sites!
+ suggest routes

Navigation Graphs

Connecting low-d spaces

+ node = variable pair
+ edges connect nodes that share a variable
+ could display scatterplot at each node
+ edges are 3D transitions
+ move from one 2D space to another through 3D (or 4D)
 transitions
+ track/map exploration
+ explore the sites!
+ suggest routes

Navigation Graphs

RNavgraph
... R implementation

Example: Italian olive oils

Interactive
3d transition graph

Interactive scatterplot

Example: Italian olive oils

Interactive
3d transition graph

000

X Session 1, data: ItalianOliveOils, graph: 3D transitions

Plot Type

- dots

glyphs

C text
Select
Brush:
color: \square
Selection: none all invert
Modify
color:
size: abs:
deactivate reactivate

Interactive scatterplot

Example: Italian olive oils

Interactive

3d transition graph

Interactive scatterplot
Move back and forth by hand

Example: Italian olive oils

000

X Session 1, data: ItalianOliveOils, graph: 3D transitions
$\left[\begin{array}{l}\text { World View } \\ \text { Zoom: } 1\end{array}\right.$

Interactive
3d transition graph

Interactive scatterplot
Move back and forth by hand

Exampl:an live oils

File Graph Tools

0

Interactive
3d transition graph
a: ItalianOliveOils, graph: 3D transitions
-Plot Type

- dots
glyphs
Select
Brush:
color:

-Modify color:
size: abs:

Example: Italian olive oils

Interactive
3d transition graph

Interactive scatterplot
Brushing

Example: Italian olive oils

Interactive
3d transition graph

000

Interactive scatterplot
Deactivate selected points

Example: Italian olive oils

Interactive
3d transition graph

Interactive scatterplot
Deactivate selected points
Return to starting position

Example: Italian olive oils

000

X Session 1, data: ItalianOliveOils, graph: 3D transitions

-World View Zoom: 1

Plot Type

- dots
glyphs
C text
Select
Brush:
color: \square
Selection: none all invert

Modify

color:
size: abs:
deactivate reactivate

Interactive
3d transition graph

Interactive scatterplot
Zoom and relocate
Note "World View" changes

Example: Italian olive oils

Interactive
3d transition graph

Interactive scatterplot
At least 3 groups;
Colour two of them.

Example: Italian olive oils

Interactive
3d transition graph

Interactive scatterplot
Could also select a whole path to traverse

Example: Italian olive oils

000

World View Zoom: 2.1436

Plot Type

- dots

C glyphs
C text
Select
Brush:

Modify

color:
size: abs:
deactivate reactivate

Interactive
3d transition graph

Interactive scatterplot
Could also select a whole path to traverse

Example: Italian olive oils

000

Interactive
3d transition graph

X Session 1, data: ItalianOliveOils, graph: 3D transitions

World View Zoom: 2.1436

Interactive scatterplot
Paths can be saved, annotated, viewed, and walked again.

Example: Italian olive oils

000

Interactive
3d transition graph

Interactive scatterplot
Paths can be saved, annotated, viewed, and walked again.

Example: Italian olive oils

Interactive
3d transition graph

X Session 1, data: ItalianOliveOils, graph: 3D transitions

Zoom: 2.1436

Interactive scatterplot
Appears to be a third horizontal group ... zoom etc.

Example: Italian olive oils

Interactive
3d transition graph

X Session 1, data: ItalianOliveOils, graph: 3D transitions

Zoom: 2.1436

Interactive scatterplot
Appears to be a third horizontal group ... zoom etc.
And that outlier

Example: Italian olive oils

Interactive
3d transition graph

Interactive scatterplot
Colour group orange, outlier red.

Example: Italian olive oils

Interactive
3d transition graph

Interactive scatterplot
Colour group orange, outlier red.

Can switch to glyphs

Example: Italian olive oils

Interactive
3d transition graph

Interactive scatterplot
Colour group orange, outlier red.

Focus on a region

Example: Italian olive oils

Interactive
3d transition graph

X Session 1, data: ItalianOliveOils, graph: 3D transitions

Interactive scatterplot
Colour group orange, outlier red.

Move to compare shapes

Example: Italian olive oils

Interactive
3d transition graph

X Session 1, data: ItalianOliveOils, graph: 3D transitions

Interactive scatterplot
Colour group orange, outlier red.

Enlarge to compare shapes

Example: Italian olive oils

Interactive
3d transition graph

Interactive scatterplot
Colour group orange, outlier red.

Identify possible orange?

Example: Italian olive oils

Interactive
3d transition graph

Interactive scatterplot
Colour group orange, outlier red.

Can actually check here

Example: Italian olive oils

Continue in this way:

- bring back deactivated points
- identify groups, reassign points
- note natural hierarchical clustering
- save grouping by colour in R

Challenge

Large p => large graphs

- P ... overall dimensionality (olive, $p=8$)
+ $\binom{p}{2}$... potential 2d nodes (28)
+ $\binom{p}{3}$... potential 3d edges (56)

p	5	10	20	50
$\binom{p}{2}$	10	45	190	1225
$\binom{p}{3}$	10	120	1140	19600

Challenge

Large p => large graphs

- P ... overall dimensionality (olive, $\mathrm{p}=8$)
$+\binom{p}{2}$... potential 2d nodes (28)
+ $\binom{p}{3}$... potential 3d edges (56)

p	5	10	20	50
$\binom{p}{2}$	10	45	190	1225
$\binom{p}{3}$	10	120	1140	19600

Need to start with small, but interesting, graphs

Interesting node pairs

Graph construction is actually general

- start with any graph G on the variables
- its line graph $L(G)$ will be a 3D-transition graph
- the complement of the line graph $\overline{L(G)}$ will be a 4D-transition graph

Interesting node pairs

Graph construction is actually general

- start with any graph G on the variables
- its line graph $L(G)$ will be a 3D-transition graph
- the complement of the line graph $\overline{L(G)}$ will be a 4D-transition graph

Variable graph:
Only place edges between interesting pairs

Graph construction

Construction: Line graph of the variable graph

Graph construction

construction: Line graph of the variable graph

<X1, X3>
○
<X1, X2>
<X2, X3>

$\langle X 2, X 3>$

- <X4, X2>
$\left.O^{\langle X 4}, X 3\right\rangle$

Graph construction

Construction: Line graph of the variable graph

Graph construction

construction: Line graph of the variable graph

variable graph <--> line graph
<--> 3D transition graph

Graph construction

Construction: Line graph of the variable graph

Complement(Line graph)

variable graph $<-$ line graph
<--> 3D transition graph

Graph construction

Construction: Line graph of the variable graph

variable graph <--> line graph
<--> 3D transition graph

Scagnostics

Cognostics (Computer aided diagnostics)
Scagnostics ... Scatterplot cognostics
Wilkinson et al (2006) (from idea proposed by Tukey \& Tukey (1985))

Scagnostics

Cognostics (Computer aided diagnostics)

Scagnostics ... Scatterplot cognostics
Wilkinson et al (2006) (from idea proposed by Tukey \& Tukey (1985))

Scagnostics

Interesting node pairs

For each scagnostic, calculate its value for every pair.

Use only those pairs with high scores in variable graph (e.g. top fraction of scores).

Scagnostics: Italian olive oils

3D Monotonic

Groups coloured by regions

Scagnostics: Italian olive oils

3D Monotonic

Groups coloured by regions

Scagnostics: Italian olive oils

Switch to 3D Striated

Groups coloured by regions

Scagnostics: Italian olive oils

3D Striated

Groups coloured by regions

Scagnostics: Italian olive oils

3D Non-Convex

Groups coloured by regions

Graph Products

- Another general construction: graph products

Graph Products

G H

E.g.
explanatory U (or $X s$), responses V (or Y s)

Graph Products

E.g.
explanatory U (or $X s$), responses V (or $Y s$)

Cartesian product
3D transition graph

Graph Products

Graph Products

Challenge

Large p => large graphs

+ scagnostics work well
* sometimes context suggests small graphs (e.g. via products)
* but when p is very large, so is $\binom{p}{2}$
+ dimensionality reduction methods could be employed.

Example: images

Frey: 1,965 movie frames

Example: images

Frey: 1,965 movie frames

28×20 array

Example: images

Frey: 1,965 movie frames

28×20 array

Example: images

Frey: 1,965 movie frames

28×20 array

Example: images

Frey: 1,965 movie frames

560 dimensions

Example: images

Frey: 1,965 movie frames
560 dimensions
Using LLE: local linear embedding
$k=12$ neighbours
$\left\lvert\, \begin{aligned} & 201 \\ & \vdots\end{aligned}\right.$

Example: images

Frey: 1,965 movie frames
560 dimensions
Using LLE: local linear embedding
$k=12$ neighbours
$[2]$ reduce to 5

Example: images

Frey: 1,965 movie frames

560 dimensions
reduce to 5
interactive low-d
view
$\left\lvert\, \begin{gathered}241 \\ 5\end{gathered}\right.$

Example: images

Frey: 1,965 movie frames

560 dimensions
lool reduce to 5
interactive low-d
view

connect low-d views

Example: images

Example: images

Example: images

Example: images

X Session 1, data: LLE_frey_sel, graph: 3d

World View-
Zoom: 3.1384

-Plot Type

- dots
images
glyphs
Select
Brush:
color:
Selection: none all invert
-Modify
color:
size: abs: deactivate
reactivate

Back to dots

Example: images

Lots of structure ... explored in 5d

Example: images

Lots of structure ... explored in 5d

Example: images

Lots of structure ... explored in 5d

Aside: 4d transitions 3d and 4d transition graphs

3d transition graph

Aside: 4d transitions 3d and 4d transition graphs

3d transition graph

Aside: 4d transitions

 3d and 4d transition graphs

3d transition graph
$\Theta \bigcirc \bigcirc$ X Session 1, RnavGraph Version 0.0.8
File Graph Tools

its complement
a 4d transition graph

Aside: 4d transitions 3d and 4d transition graphs

a 4d transition graph

Aside: 4d transitions 3d and 4d transition graphs

Aside: 4d transitions 3d and 4d transition graphs

4d navGraph
Observe the 4d transition
NOT a rigid rotation

Can link across NavGraph Sessions

Here LLE and ISOMAP embeddings

Can link across NavGraph Sessions

Can link across NavGraph Sessions

Multiple visualizations

Kernel density contours and 3D surface

Multiple visualizations

Multiple visualizations

Multiple visualizations

Axis systems

- Choice of coordinate axis layout
- Orthogonal (RnavGraph R package)
- Radial (PairViz R package)
- Parallel (PairViz R package)
- Find a good order of axes
- Complete graphs on variables only
- Hamiltonian paths, Eulerian tours, Hamiltonian decompositions
- greedy methods, TSPs

Summary

Graph theory structure

- graphs as maps to navigate high-dimensional space
- graph walks as low dimensional trajectories
- focus on interesting walks
- needs interactive data visualization
- capitalize on visual ability

Summary

Graph theory structure

- organizes order of axes (e.g. radial, parallel, orthog.)
- use interesting orders (correlations, scagnostics, etc.)
- organizes ANY display order (e.g. multiple comparisons)

Summary

Try it yourself

- R packages (available on CRAN):
- PairViz Hurley \& Oldford
- RnavGraph Waddell \& Oldford

Thank you

Thank you

Questions？

有問題嗎？
有问题吗？
質問はありますか？
질문이 있으십니까?

Papers

Hurley \& Oldford:

- Graphs as navigational infrastructure for high dimensional data spaces (Comp Stats 2011)
- Pairwise display of high dimensional information via Eulerian tours and Hamiltonian decompositions (JCGS, 2010)
- Eulerian tour algorithms for data visualization and the PairViz package (Comp Stats 2011)
- PairViz R package ... available on CRAN.

Oldford \& Waddell:

- Visual clustering of high-dimensional data by navigating low-dimensional spaces (ISI Dublin, 2011)
- RnavGraph: A visualization tool for navigating through high dimensional data (ISI Dublin, 2011)
- RnavGraph R package ... available on CRAN

Oldford \& Zhou:

- Tree Ensemble Reduced Clustering via a Graph Algebraic Framework. submitted

