Comparison sequences for visualization: applications and algorithms

Catherine Hurley NUI Maynooth joint work with Wayne Oldford (Waterloo)

catherine.hurley@nuim.ie

December 3nd 2008

Introduction

- Statistical graphics
- are about comparisons
- comparisons between variables, cases, groups, models or models.
- Formalize this:
- build a graph whose nodes are statistical objects.
- Edges connect objects to be compared.
- Weight edges to reflect importance of comparison
- Graph traversal informs the construction, and the layout (in space and time) of statistical graphics

Talk is about graphs and graphics, more applications than algorithms

Topics

> Parallel coordinate plots
> Table plots
> Interaction plots
> Model comparison
> Dynamic Scatterplots
> Cable plots

Graphs
 Complete Graphs
 Hamiltonians and Eulerians
 Bipartite Graphs
 Hypercube graphs
 Product Graphs
 Line graphs
 3d and 4d transition graphs

PairViz

Comparing Raters

Rating psychiatric patients

- Diagnoses data (Fleiss) contains psychiatric diagnoses of 30 patients provided by 6 raters.
- Depression (1), Personality disorder (2), Schizophrenia (3), Neurosis (4), O=Other (5).
- Barchart: proportion agreement

Comparing Raters

Improved display:

Rating psychiatric patients

- Spread out values
- fatten axes,
- and add boxes
- Can compare marginal distributions and
- Can follow patients

Comparing All Raters

Rating psychiatric patients

- All pairs of raters appear adjacently at least once, and
- the pairs are ordered in such a way that the raters whose agreement is higher tend to appear first.
- Good agreement between raters 3, 4 and 5.
- Rater 6 has low agreement with all other raters, but especially with rater 1 .

Comparing barcharts

Comparing barcharts

- The second version shows a different ordering of countries.
- Dissimilar countries are adjacent, facilitates different comparisons
- Need 4 orderings to see all countries adjacently.

Graphs: nodes, edges and weights

- n variables, cases, factor levels, boxplots: identify with nodes of graph
- visualisation: requires graph traversal
- All possible pairings are of interest: place an undirected edge between each pair of nodes
- Graph is complete, K_{n}

- Dissimilarity measure: edge weight

Hamiltonian and Eulerian paths

Hamiltonian path gives a permutation of vertices

Eulerian path visits all edges

Hamiltonian decomposition: an eulerian tour composed of edge-distinct hamiltonian cycles

Revisit: Comparing All Raters

Rating psychiatric patients

- Graph K_{6} is not eulerian, because all nodes are odd.
- K_{6}^{e}, augmented version of K_{6} which is eulerian.
- Duplicate edges 1-3, 2-4 and 5-6 (omitted).
- Modification of classical algorithm for weight-decreasing eulerians (etour in PairViz).

Revisit: Comparing barcharts

Bipartite graphs

Suppose two are expert raters and we wish to compare others to them:

Rating psychiatric patients

- Graph is eulerian: Use 132415261.
- Graph $K_{m, n}$ is eulerian if m and n are both even.
- Other applications: m responses, n predictors, where only response-predictor relationships are of interest.

Model comparison and hypercube graph

Model selection with n predictors

- Hypercube graph represents possible moves in a stepwise regression algorithm
- Example with $n=4$
- Graph Q_{n} is hamiltonian, and eulerian for even n

Sleep data

- $Y=\log$ brain wt. Predictors $A=$ non dreaming sleep, $B=$ dreaming sleep, $\mathrm{C}=\log$ body wt, $\mathrm{D}=$ life span
- Eulerian starting at full model. Bars show change in SSE.
- All models with C give good results

Sleep data: Model residuals.

Reduce model space

- Drop intercept
- Or, show only models with C
- Graph Q_{3} is not eulerian: all nodes are odd

Sleep data: Model residuals.

Add edges:
ACD-AC,
$A B C-B C D$,
BC-CD
(grey)

Open eulerian path from $A B C D$ to C

Interaction plots

Data: survival time of 48 rats, each given one of four treatments A, B, C, or D and one of three poisons P1, P2, or P3 (Box and Cox)

Check for parallelism of profiles

Graphs

Main effects:

Poisons: K_{3}

Treatments: K_{4}

Interactions:

Cartesian product graph $K_{3} \times K_{4}$

Revised interaction plots

Hamiltonian decomposition of K4

Eulerian on K3

Double crossing in first set of profiles gives stronger impression of interaction.
Second set of profiles: long line segments connecting treatments B and A gives impression of parallelism

Survival times for P3 are low, regardless of treatment

Alternatively: reduce tilt by subtracting average profile, for easier vertical comparisons.

Scatterplot transitions

Example $p=4$, Iris data

K_{4} Complete graph

$L\left(K_{4}\right)$ 3d transitions graph Eulerian graph, Hamiltonian decomposition

$\overline{L\left(K_{4}\right)} 4 d$ transitions graph

Visualizing scatterplot transitions

Example $p=4$, Iris data

$L\left(K_{4}\right)$ 3d transitions graph
Eulerian graph, Hamiltonian decomposition

The yellow route

Choice of edge weights.... scagnostics?

Visualizing scatterplot transitions

Example $p=4$, Iris data

$L\left(K_{4}\right)$ 3d transitions graph
Eulerian graph, Hamiltonian decomposition

The yellow route

Choice of edge weights.... scagnostics?

Another example

Five variables of sleep data

4d transition graph for $p=5$

- Static display is hamiltonian cycle on variables
- Movie visits outer cycle of the transition graph and
- transitions to another hamiltonian cycle on the variables

Graphs provide a map for navigating through high dimensional space

Another example

Five variables of sleep data

4d transition graph for $p=5$

- Static display is hamiltonian cycle on variables
- Movie visits outer cycle of the transition graph and
- transitions to another hamiltonian cycle on the variables

Graphs provide a map for navigating through high dimensional space

PairViz

What's available

Parallel coordinate plots Table plots Interaction plots Model comparison

Dynamic Scatterplots Cable plots

Graphs
 Complete Graphs Hamiltonians and Eulerians
 Bipartite Graphs
 Hypercube graphs
 Product Graphs
 Line graphs
 3d and 4d transition graphs

Graph traversals:

- eseq - eulerians on complete graphs
- hpaths- hamiltonian decompositions on complete graphs also with weights
- eulerian- eulerians on connected graph, using weights Graphics:
- guided_pcp, table_plot, mc_plot (for multiple comparisons)

Conclusions: Graphs and Graphics

- A graph structure underlies many statistical graphics
- Leads to improved understanding, improved graphics
- A roadmap for exploring high-dimensional spaces
- and perhaps even a GUI.

