RnavGraph Interactive visual clustering

Adrian Waddell and Wayne Oldford

UNIVERSITY OF WATERLOO

uwaterloo.ca

Challenge

- p values on each of n individuals

Challenge

- p values on each of n individuals
- data can have a complex structure

Challenge

- p values on each of n individuals
- data can have a complex structure

- n, or p, or both can be very large

Why Visualization?

- powerful human visual system
- patterns, relations, textures,...
- recognize structure
- discover structure
- data analysis objectives

- relations, clusters, classes, outliers, diagnostics, unusual structure, ...

Dealing with high dimensionality \rightarrow large p

- visually, we are constrained to small p
- locations: $p<4$
- use color, shape, texture, movement,...
- large number of low dimensional views
- ($\binom{p}{d} d$-dimensional views
- How? Which ones? And, in what order?

Proposed Approach

- reduce numbers
- p overall dimensionality
- ($\binom{p}{d}$ subset of all low-d views
- interactive/tailored low-d views
- connect low-d views via interactive navigation graphs

Example: Frey faces from 1965 movie frames

Reduce dimensionality

Reduce dimensionality

Reduce dimensionality

- $28 \cdot 20=560$ dimensions
- explore via low dimensional spaces

Reduce dimensionality

1
20

- $28 \cdot 20=560$ dimensions
- explore via low dimensional spaces
- Using LLE: local linear embedding
- $k=12$ neighbors
- reduce to 5 dimensions

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)
$$

Interactive 2d view

- $\left(x_{1}, x_{2}\right)-2 d$ dot plot

Interactive 2d view

- $\left(x_{1}, x_{2}\right)-2 d$ image plot

Interactive 2d view

- Point selection, brushing

Interactive 2d view

- Deactivate complementary points

Interactive 2d view

- Images, zoom, relocate

Interactive 2d view

- Resize, zoom

Interactive 2d view

- Zoom out, reactivate, resize, pan

Interactive 2d view

- Zoom out, back to dots

Connecting the views

$\left(x_{1}, x_{2}\right)$
$\left(x_{2}, x_{3}\right)$

Connecting the views

$\left(x_{1}, x_{2}\right)$

$\left(x_{2}, x_{3}\right)$

- $3 d$ rigid rotation

Connecting the views

$\left(x_{1}, x_{2}\right)$
$\left(x_{2}, x_{3}\right)$

- $3 d$ rigid rotation

Connecting the views

$\left(x_{1}, x_{2}\right)$
$\left(x_{2}, x_{3}\right)$

- $3 d$ rigid rotation

Connecting the views

$\left(x_{1}, x_{2}\right)$
$\left(x_{2}, x_{3}\right)$

- $3 d$ rigid rotation

Connecting the views

$\left(x_{1}, x_{2}\right)$
$\left(x_{2}, x_{3}\right)$

- $3 d$ rigid rotation

Connecting the views

$\left(x_{1}, x_{2}\right)$
$\left(x_{2}, x_{3}\right)$
$3 d$ - transition

- $3 d$ rigid rotation

A 3d transition graph

- Each node is a $2 d$ view

$$
\binom{5}{2}=10
$$

$$
x_{2}: x_{4} \bigcirc
$$

$$
x_{1}: x_{2}
$$

$$
x_{1}: x_{3}
$$

$x_{1}: x_{5}$
$x_{1}: x_{4}$

A 3d transition graph

- Each node is a $2 d$ view

$$
\binom{5}{2}=10
$$

- Each edge is a $3 d$ transition

A 3d transition graph

- Each node is a $2 d$ view

$$
\binom{5}{2}=10
$$

- Each edge is a $3 d$ transition

A 3d transition graph

- Each node is a $2 d$ view

$$
\binom{5}{2}=10
$$

- Each edge is a $3 d$ transition
- You are here bullet

A 3d transition graph

- Each node is a $2 d$ view

$$
\binom{5}{2}=10
$$

- Each edge is a $3 d$ transition
- You are here bullet
- This is a navigation graph (NavGraph)

A 3d transition graph

〇

File Graph Tools

Interactive navigation graph

Move the bullet
$2 d$ view changes in response

- Can stop anywhere and interact with the low-d view

$3 d$ and $4 d$ transition graphs

- complement of $3 d$ transition graph yields $4 d$ transition graph

$3 d$ and $4 d$ transition graphs

- complement of $3 d$ transition graph yields $4 d$ transition graph

$3 d$ and $4 d$ transition graphs

- complement of $3 d$ transition graph yields $4 d$ transition graph

4d transition $\left(x_{1}: x_{5}\right) \rightarrow\left(x_{2}: x_{3}\right)$

$\left(x_{2}, x_{3}\right)$

4d transition $\left(x_{1}: x_{5}\right) \rightarrow\left(x_{2}: x_{3}\right)$

$\left(x_{1}, x_{5}\right)$

$$
\left(x_{2}, x_{3}\right)
$$

$4 d$ transition $\left(x_{1}: x_{5}\right) \rightarrow\left(x_{2}: x_{3}\right)$

$\left(x_{1}, x_{5}\right)$

$\left(x_{2}, x_{3}\right)$

$4 d$ transition $\left(x_{1}: x_{5}\right) \rightarrow\left(x_{2}: x_{3}\right)$

$\left(x_{1}, x_{5}\right)$

$\left(x_{2}, x_{3}\right)$

4d transition $\left(x_{1}: x_{5}\right) \rightarrow\left(x_{2}: x_{3}\right)$

$\left(x_{1}, x_{5}\right)$

$\left(x_{2}, x_{3}\right)$

4d transition $\left(x_{1}: x_{5}\right) \rightarrow\left(x_{2}: x_{3}\right)$

- 4d transition is NOT a rigit rotation

Try the package yourself

- This is only a part of our R package
- Try it yourself
- Package is on CRAN: install. packages('RnavGraph')
- Install dependencies and suggested packages
- Read the vignette
- Try the demos
- Oldford and Waddell
- Visual clustering of high-dimensional data by navigating low-dimensional spaces (ISI Dublin, 2011)
- RnavGraph: A visualization tool for navigating through high dimensionaldata (ISI Dublin, 2011)
- RnavGraph R package, available on CRAN
- Hurley and Oldford
- Graphs as a navigational infrastructure for high dimensional data spaces (Comp Stats 2011)
- Pairwise display of high dimensional information via Eulerian tours and Hamiltonian decompositions (JCGS, 2010)
- Eulerian tour algorithms for data visualization and the PairViz R package (Comp Stats 2011)
- PairViz R package, available on CRAN

