
Introduction to loon

High dimensional data

. . . Toto, I’ve a feeling we’re not in Kansas anymore . . .

Wayne Oldford
University of Waterloo

based on joint work with
Adrian Waddell

Roche

Visible minorities in Canadian cities 2006
This is Statistics Canada 2006 Census data on the counts of 14 Statistics
Canada categories of “visible minorities” in 33 Canadian cities. The data are
available in loon as minority.

library(loon)
data(minority)
names(minority)[1:14]

[1] "Arab"
[2] "Black"
[3] "Chinese"
[4] "Filipino"
[5] "Japanese"
[6] "Korean"
[7] "Latin.American"
[8] "Multiple.visible.minority"
[9] "South.Asian"
[10] "Southeast.Asian"
[11] "Total.population"
[12] "Visible.minority.not.included.elsewhere"
[13] "Visible.minority.population"
[14] "West.Asian"

minority has two sets of latitude and longitude measurements as well.
(the set from Google has errors).

Visible minorities in Canadian cities 2006

For example, here are the counts for three Canadian cities (3 rows of minority)
from across Canada:

Victoria Ottawa-Gatineau St. John’s
Arab 500 28195 190
Black 2360 45060 620
Chinese 12330 32445 990
Filipino 2760 7330 155
Japanese 2280 1800 65
Korean 1235 2280 45
Latin.American 1845 10630 320
Multiple.visible.minority 930 4540 25
South.Asian 7210 27130 890
Southeast.Asian 1585 11670 55
Total.population 325060 1117120 179270
Visible.minority.not.included.elsewhere 260 1720 40
Visible.minority.population 33870 179295 3460
West.Asian 575 6490 65

Visible minorities in Canadian cities 2006
Because the populations vary so much between cities we look at the percentage
of the total population represented by each minority (and shorten the names).
minorityPercent <- data.frame(100*minority[, -c(11, 15:18)]

/ minority[, "Total.population"])
Take the opportunity to shorten the Statistics Canada
names of the minorities as well:
names(minorityPercent) <- c("% Arabic", "% Black", "% Chinese",

"% Filipino", "% Japanese",
"% Korean", "% Latino", "% Multiple",
"% S. Asian", "% SE Asian", "% Other",
"% Minority", "% W Asian")

Could look at a histogram of the percent of visible minorities in each city:
The proportion of the city population that is a "visible minority"
l_hist(minorityPercent$"% Minority",

title = "% Minority in 33 Canadian cities",
xlabel = "percent of population",
linkingGroup = "minority",
yshows = "frequency",
showBinHandle = FALSE,
showGuides = TRUE,
showScales = TRUE

)

[1] ".l0.hist"
attr(,"class")
[1] "l_hist" "loon"

Top 3 cities with greatest proportion of visible minorities

Order minorities by decreasing maximum percent
groups <- names(minorityPercent)[-c(12, 14, 15)]
bySize <- names(sort(apply(minorityPercent[,groups], 2, max),

decreasing = TRUE))
And now look at the three largest
for (x in bySize[1:3]) {

l_hist(minorityPercent[,x],
title = x,
xlabel = "percent of population",
linkingGroup = "minority",
showScales = TRUE,
showGuides = TRUE,
showStackedColors = TRUE,
color = "grey"
)

}

Explore the relatioships between these top three and the total population?

Link the data to a map of the cities
get a map:
library(maps)
canada_map <- map("world", "Canada", plot=FALSE, fill=TRUE)
plot the cities
cities_map <- with(minority,

l_plot(long, lat,
xlabel = "longitude", ylabel="latitude", showLabels = TRUE,
linkingGroup = "minority",
itemLabel = rownames(minority), showItemLabels = TRUE)

)

Layer in the map of Canada
landcol <- "cornsilk"
canada_layer <- l_layer(widget = cities_map,

x = canada_map,
label = "Canada",
color = landcol,
index = "end")

Rescale the plot to the size of the map
l_scaleto_layer(cities_map, canada_layer)

Could also add the text of the city names to the map as glyphs
textGlyphs <- l_glyph_add_text(cities_map, text = row.names(minority),

label = "city names")

Explore the relations between histograms and map.

Interact with the inspector on the map to show text.

A pairs plot - l_pairs()
Could look for pairwise and conditional relationships via an interactive
scatterplot matrix.
(this may take a few seconds)

minPercentPairs <- l_pairs(data = minorityPercent,
size = 2, glyph = "ocircle",
linkingGroup = "minority",
itemLabel = rownames(minority),
showItemLabels = TRUE)

a compound loon object consisting of many plots
names(minPercentPairs) [1:5]

[1] "x2y1" "x3y1" "x4y1" "x5y1" "x6y1"

minPercentPairs$x2y1

[1] ".l6.pairs.plot"
attr(,"class")
[1] "l_plot" "loon"

minPercentPairs$x2y1["glyph"] <- "otriangle"

Explore the relations between variates and map.

What happens when you pan and zoom on one of the plots?

Comparing cities by minority counts alone
Consider again the counts in each city, but only of each minority:
Back to the raw counts
minority_only <- minority[, c(

"Southeast.Asian", "Chinese", "Japanese", "South.Asian",
"Visible.minority.not.included.elsewhere",
"Black", "Multiple.visible.minority", "Filipino",
"Arab", "Korean", "Latin.American")]

Again, shorten the variable names
names(minority_only) <- c(

"SE.Asian", "Chinese", "Japanese", "S.Asian", "Other",
"Black", "Multiple", "Filipino", "Arab", "Korean", "Latino"

)

This data preserves the relative sizes of each minority between cities (comparison
over rows).

I we might expect this to be largely determined by the total population of the
cities

It also allows us to compare the relative sizes of minorities within cities

I not sure what to expect here, perhaps that some cities have different
relative minority populations than others?

Serial axes - l_serialaxes()

Instead of cartesian coordinates, we might use parallel axes. Instead of a point,
each city appears as a “curve” in the parallel axis system. This is a special case
of serial axes where instead of axes being orthogonal, they appear in some serial
order next to one another.

s <- l_serialaxes(data = minority_only,
axesLayout = "parallel", # Note choice of parallel
linkingGroup = "minority",
sequence = names(minority_only),
showGuides = FALSE,
linewidth = 2,
scaling = "data",
showArea = FALSE,
itemLabel = rownames(minority),
showItemLabels = TRUE)

Hover over the lines to determine which cities have the largest minority
populations.

What does scaling = "data" mean?

How are lines “brushed” in the serial axes plot?

How has the inspector changed?

Serial axes - l_serialaxes()

Instead of cartesian coordinates, we might use parallel axes. Instead of a point,
each city appears as a “curve” in the parallel axis system. This is a special case
of serial axes where instead of axes being orthogonal, they appear in some serial
order next to one another.

s <- l_serialaxes(data = minority_only,
axesLayout = "parallel", # Note choice of parallel
linkingGroup = "minority",
sequence = names(minority_only),
showGuides = FALSE,
linewidth = 2,
scaling = "data",
showArea = FALSE,
itemLabel = rownames(minority),
showItemLabels = TRUE)

Hover over the lines to determine which cities have the largest minority
populations.

What does scaling = "data" mean?

How are lines “brushed” in the serial axes plot?

How has the inspector changed?

Serial axes - l_serialaxes()

Instead of cartesian coordinates, we might use parallel axes. Instead of a point,
each city appears as a “curve” in the parallel axis system. This is a special case
of serial axes where instead of axes being orthogonal, they appear in some serial
order next to one another.

s <- l_serialaxes(data = minority_only,
axesLayout = "parallel", # Note choice of parallel
linkingGroup = "minority",
sequence = names(minority_only),
showGuides = FALSE,
linewidth = 2,
scaling = "data",
showArea = FALSE,
itemLabel = rownames(minority),
showItemLabels = TRUE)

Hover over the lines to determine which cities have the largest minority
populations.

What does scaling = "data" mean?

How are lines “brushed” in the serial axes plot?

How has the inspector changed?

Serial axes - l_serialaxes()

Instead of cartesian coordinates, we might use parallel axes. Instead of a point,
each city appears as a “curve” in the parallel axis system. This is a special case
of serial axes where instead of axes being orthogonal, they appear in some serial
order next to one another.

s <- l_serialaxes(data = minority_only,
axesLayout = "parallel", # Note choice of parallel
linkingGroup = "minority",
sequence = names(minority_only),
showGuides = FALSE,
linewidth = 2,
scaling = "data",
showArea = FALSE,
itemLabel = rownames(minority),
showItemLabels = TRUE)

Hover over the lines to determine which cities have the largest minority
populations.

What does scaling = "data" mean?

How are lines “brushed” in the serial axes plot?

How has the inspector changed?

Serial axes - effect of scaling

Each serial axis only has values between 0 and 1. This means that, to appear on
an axis in the plot, an observation’s corresponding variable value must be in that
range.

This is OK if the actual values are meaningfully between 0 and 1 (scaling =
"none"), otherwise they need to be scaled.

The inspector presents the three other possibilities for scaling:

I scaling = "data" . . . the min and the max over all the data map to 0
and 1 for all axes (i.e. range over all rows and columns of data)

I scaling = "variable" . . . the min and the max for each variable map to
0 and 1 for the corresponding axis (i.e. range over each column of data)

I scaling = "observation" . . . the min and the max over all variables for
each observation map that observation’s values to 0 and 1 on all axes
(i.e. range over each row of the data)

From the serial axes inspector, explore how each of these scalings (data, variable,
observation) affect the serial axes plot and its interpretation.

Do the same but, instead of parallel axes, change to a radial axes system.

Serial axes - effect of scaling

Each serial axis only has values between 0 and 1. This means that, to appear on
an axis in the plot, an observation’s corresponding variable value must be in that
range.

This is OK if the actual values are meaningfully between 0 and 1 (scaling =
"none"), otherwise they need to be scaled.

The inspector presents the three other possibilities for scaling:

I scaling = "data" . . . the min and the max over all the data map to 0
and 1 for all axes (i.e. range over all rows and columns of data)

I scaling = "variable" . . . the min and the max for each variable map to
0 and 1 for the corresponding axis (i.e. range over each column of data)

I scaling = "observation" . . . the min and the max over all variables for
each observation map that observation’s values to 0 and 1 on all axes
(i.e. range over each row of the data)

From the serial axes inspector, explore how each of these scalings (data, variable,
observation) affect the serial axes plot and its interpretation.

Do the same but, instead of parallel axes, change to a radial axes system.

Serial axes - effect of scaling

Each serial axis only has values between 0 and 1. This means that, to appear on
an axis in the plot, an observation’s corresponding variable value must be in that
range.

This is OK if the actual values are meaningfully between 0 and 1 (scaling =
"none"), otherwise they need to be scaled.

The inspector presents the three other possibilities for scaling:

I scaling = "data" . . . the min and the max over all the data map to 0
and 1 for all axes (i.e. range over all rows and columns of data)

I scaling = "variable" . . . the min and the max for each variable map to
0 and 1 for the corresponding axis (i.e. range over each column of data)

I scaling = "observation" . . . the min and the max over all variables for
each observation map that observation’s values to 0 and 1 on all axes
(i.e. range over each row of the data)

From the serial axes inspector, explore how each of these scalings (data, variable,
observation) affect the serial axes plot and its interpretation.

Do the same but, instead of parallel axes, change to a radial axes system.

Serial axes - as glyphs

To see whether the distribution of visible minorities among cities might have
some spatial explanation, we can add them as glyphs to our map.

s_glyphs <- l_glyph_add_serialaxes(cities_map,
data = minority_only,
sequence = names(minority_only),
scaling = "variable",
showArea = TRUE,
label = "serial_axes")

cities_map['glyph'] <- s_glyphs

Zoom and pan the map to explore spatial patterns.

Go to the inspector for the map.

I select the “Glyphs” tab
I select the glyph labelled “serial_axes”
I change the scaling to “observation” with layout “radial”

Have the map and the original serial axes both displayed on your screen with the
same scaling and axes layout. Now pan and zoom over the map and brush the
points.

Ad hoc glyphs - l_make_glyphs()

Sometimes, it is handy to construct your own glyphs. In loon any plot that can
be drawn in R can appear as an image glyph in loon.

barplot_imgs <- l_make_glyphs(data = lapply(1:nrow(minority_only),
FUN = function(i) minority_only[i,]),

draw a coloured bar plot
draw_fun = function(m) {

par(mar=c(1,1,1,1)*.5)
mat <- as.numeric(m/max(m))
barplot(height = mat,

beside = FALSE,
ylim = c(0,1),
col = rainbow(length(mat)),
axes= FALSE,
axisnames=FALSE)},

width=120,
height=120)

Can view the images using loon's viewer
img_vwr <- l_imageviewer(barplot_imgs)
add the glyphs
barplot_glyphs <- l_glyph_add_image(cities_map, barplot_imgs, "barplot")
cities_map['glyph'] <- barplot_glyphs

These images contain the same information as the radial images with
“observation” scaling.

A higher dimensional example - frey faces
In the frey dataset to be found in the RnavGraphImageData package, we have
1,965 images of a young Brendan Frey’s face. For example:

I Each pixel has a
grey value in [0,1].

I Each image is a
28 × 20 pixel
image.

So each image is a point
in 560 dimensions.

A higher dimensional example - frey faces
The entire data set is had and viewed as follows:
library(RnavGraphImageData)
data(frey)
Here are the images
frey.imgs <- l_image_import_array(frey, 28,20,

img_in_row = FALSE, rotate = 90)
frey_imgs_vwr <- l_imageviewer(frey.imgs)

The question is whether we can position these in a smaller dimensional space ($
<< 560$) which might then be explored.

A standard approach is to use principal component analysis:
data <- t(frey) # images were in columns
get the principal components
frey_pc <- prcomp(data)

0 100 200 300 400 500

0
50

10
0

15
0

20
0

25
0

30
0

Principal component scree

Index

si
ng

ul
ar

 v
al

ue
s

Principal components - frey faces
Let’s just look at the first 6 principal components. In ‘loon’ a ‘navgraph’ can be
used to explore the 6-dimensional space:
frey_pc_coords <- frey_pc$x[, 1:6]
create a navigation graph
frey_pc_nav <- l_navgraph(frey_pc_coords, linkingGroup="frey")
frey_glyphs <- l_glyph_add_image(frey_pc_nav$plot,

images=frey.imgs,
label="frey faces")

PC1:PC2

PC1:PC3

PC1:PC4

PC1:PC5
PC1:PC6

PC2:PC3

PC2:PC4

PC2:PC5

PC2:PC6

PC3:PC4

PC3:PC5

PC3:PC6
PC4:PC5

PC4:PC6

PC5:PC6

A ‘navgraph‘ is an interactive
graph whose nodes are pairs of
variates (e.g. scatterplots) and
whose edges represent a 3
dimensional space (if the nodes
share a variate) and a 4
dimensional space (if the nodes
do not). A "navigator" is moved
along the graph to effect a
change in the scatterplot.

Select the “navigator” and move it about. Holding the <Shift> key down shows
the next available nodes.

Local linear embedding - frey faces

Local linear embedding (or LLE) is just one dimension reduction method which
tries to preserve local structure at the cost of global structure.

It also has the strange side effect of producing lines which makes it useful when
looking at projections (since lines are preserved).

library(dimRed) # dimension reduction package
Number of neighbours
k_nbhrs <- 12
Target dimension
n_dims <- 20
Dimension reduction via LLE ... this may take a while
lle20 <- embed(data, "LLE", knn = k_nbhrs, ndim = n_dims)
lle20data <- lle20@data@data
l_serialaxes(lle20data, linkingGroup = "frey")

Reducing to 20 dimensions means
(20

2

)
or 190 possible scatterplots to examine.

In ‘loon’ we can take advantage of measures of interestingness of each plot
(e.g. via scagnostics) to narrow down the set of plots we might examine.

Finding interesting scatterplots - l_ng_plots() and scagnostics2d()

Scagnostics are “scatterplot diagnostics” first proposed by John and Paul Tukey
in 1985. A graph-theoretic implementation is available from the scagnostics
package.
Get a set of "closures" which will calculate scagnostics.
lle_scags2d <- scagnostics2d(lle20data)
Now a scatterplot matrix of THE PLOTS
lle_nav <- l_ng_plots(measures=lle_scags2d, linkingGroup="frey", size = 1)

lle_gl <- l_glyph_add_image(lle_nav$plot,
images=frey.imgs,
label="frey faces")

lle_nav$plot["linkingGroup"] <- "frey"
lle_nav$plots$x2y1["size"] <- 1

Explore the data using these tools.

Note that

I measures can be recalculated on subsets of the data
I you can produce your own measures (see l_help() section on graphs)

