Graph theoretic methods for Data Visualization：

2．Navigating high－dimensional spaces and the RnavGraph R package

```
Wayne Oldford based on joint work with Adrian Waddell and Catherine Hurley
WATERLOO|MATHEMATICS
    || STATISTICS AND ACTUARIAL SCIENCE
```

2011 年度の統言十数理研究所共司研究集会「データ解析環境Rの整備と利用」

Tutorial B2

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

Challenge

- p values on each of n individuals
- modern data: n, or p, or both, can be very large

- can have non-obvious variables, complex, unanticipated structure, ...

Visualization

powerful human visual system

* use a variety of cues:
+ proximity, movement, shape, colour, texture, ...
* patterns, relations, like and unlike, ...
+ recognition and discovery
* structure need not be anticipated

Visualization

powerful human visual system

+ use a variety of cues:
+ proximity, movement, shape, colour, texture, ...
* patterns, relations, like and unlike, ...
+ recognition and discovery
* structure need not be anticipated

Visualization

powerful human visual system

+ use a variety of cues:
+ proximity, movement, shape, colour, texture, ...
* patterns, relations, like and unlike, ...
+ recognition and discovery
* structure need not be anticipated

Visualization

powerful human visual system

+ use a variety of cues:
+ proximity, movement,
 shape, colour, texture, ...
+ patterns, relations, like and unlike, ...
* recognition and discovery
+ structure need not be anticipated

Challenge

Large p

- visually, we're constrained to small p
+ locations: $p<4$
+ use colour, shape, texture, movement, ...
- comprehension depends on only a few dimensions
... at a time

Challenge

Large p

- visually, we're constrained to small p
+ locations: $p<4$
+ use colour, shape, texture, movement, ...
- comprehension depends on only a few dimensions
... at a time
- Approach: large number of low dimensional views
+ $\binom{p}{d}$ d-dimensional views, each highly interactive
+ Which dimensions? How connected? How explored?

Navigation Graphs

Connecting low-d spaces

+ node = variable pair
+ edges connect nodes that share a variable
+ could display scatterplot at each node
+ edges are 3D transitions

+ high dimensional space is
explored by moving from one
2D space to another through
3D (or 4D) transitions
+ track/map exploration
+ suggest routes

Navigation Graphs

Connecting low-d spaces

+ node = variable pair
+ edges connect nodes that share a variable
+ could display scatterplot at each node
+ edges are 3D transitions

+ high dimensional space is
explored by moving from one
2D space to another through
3D (or 4D) transitions
+ track/map exploration
+ suggest routes

Navigation Graphs

Connecting low-d spaces

+ node = variable pair
+ edges connect nodes that share a variable
+ could display scatterplot at each node
+ edges are 3D transitions
+ high dimensional space is
explored by moving from one
2D space to another through
3D (or 4D) transitions
+ track/map exploration
+ suggest routes

Navigation Graphs

Connecting low-d spaces

+ node = variable pair
+ edges connect nodes that share a variable
+ could display scatterplot at each node
+ edges are 3D transitions
+ high dimensional space is
explored by moving from one
2D space to another through
3D (or 4D) transitions
+ track/map exploration
+ suggest routes

Navigation Graphs

Connecting low-d spaces

+ node = variable pair
+ edges connect nodes that share a variable
+ could display scatterplot at each node
+ edges are 3D transitions
+ high dimensional space is
explored by moving from one 2D space to another through 3D (or 4D) transitions
+ track/map exploration
+ suggest routes

RnavGraph demo

Graph construction

Construction: Line graph of the variable graph

Graph construction

 construction: Line graph of the variable graph

```
Graph construction
Construction: Line graph of the variable graph
```


<PetalWidth, PetalLength>
<SepalLength, PetalWidth> <SepalLength, PetalLength>
<SepalWidth, PetalWidth> <SepalWidth,
PetalLength>
<SepalWidth, SepalLength>

```
```

Graph construction
Construction: Line graph of the variable graph

```

```

PetalLength
<PetalWidth, PetalLength>
SepalLength
<SepalLength, PetalWidth> <SepalLength, PetalLength>

```
\(\qquad\)
```

<SepalWidth, PetalWidth> <SepalWidth,
PetalLength>
<SepalWidth, SepalLength>

```
```

Graph construction
Construction: Line graph of the variable graph

```

```

<PetalWidth, PetalLength>
<SepalLength, PetalWidth> <SepalLength, PetalLength>
<SepalWidth, PetalWidth> <SepalWidth, PetalLength>
<SepalWidth, SepalLength>

```



\section*{Graph construction}

Construction: Line graph of the variable graph

variables complete graph <--> line graph <--> 3D transition graph


\section*{Graph construction}

Construction: Line graph of the variable graph
 variables complete graph <--> line graph <--> 3D transition graph


Complement(Line graph) \(=4 \mathrm{D}\) transition graph
<PetalWidth, PetalLength, SepalLength>
<PetalWidth, PetalLength, SepalWidth>
<SepalLength, SepalWidth, PetalWidth>
<SepalLength, SepalWidth, PetalLength>

\section*{Graph construction}
- From any variable graph \(G=(V, E)\)


Variable graph
G

\section*{Graph construction}
- From any variable graph \(G=(V, E)\)


Variable graph G


3d transition graph \(L(G)\)

\section*{Graph construction}
- From any variable graph \(G=(V, E)\)


Variable graph G


3d transition graph \(L(G)\)
4d transition graph \(\overline{L(G)}\)

\section*{Graph construction}
- From any variable graph \(G=(V, E)\)


3d transition graph \(L(G)\)
4d transition graph \(\overline{L(G)}\)

\section*{Graph construction}
- From any variable graph \(G=(V, E)\)


3d transition graph \(L(G)\) 4d transition graph \(\overline{L(G)}\) <- Put edges ONLY on interesting pairs

\section*{Graph structures}
- Graph construction is actually general
- start with any graph \(G\) on the variables
- its line graph \(L(G)\) will be a 3D-transition graph
- the complement of the line graph \(\overline{L(G)}\) will be a 4D-transition graph
- Might start with a variable graph that connects variables only if they have and interesting relation.

\section*{Graph Products}
- Another general construction: graph products

\section*{Graph Products}

\section*{G H}

E.g.
explanatory \(U\) (or Xs ), responses \(V\) (or \(Y\) s)

\section*{Graph Products}

E.g.
explanatory \(U\) (or \(X s\) ), responses \(V\) (or \(Y s\) )

Cartesian product
3D transition graph

\section*{Graph Products}


\section*{Graph Products}


\section*{Conclusion}
- Graphs provide some navigational infrastructure
- Formal structure of graphs \(\rightarrow\) new viz tools, maps, routes
- Special structures exist and can be exploited (3D transitions, 4D transitions, Hamiltonians, Eulerians, graph products, ...)
- graph algorithms, ...
- Need new measures of interest ...evaluate routes
- New applications: images, documents, etc
- Low d spaces are natural and informative.

\section*{Thank you}

\section*{Thank you}

御清聴ありがとうございました

\section*{Questions？}

質問はありますか？

\section*{Papers}

\section*{Hurley \& Oldford:}
- Graphs as navigational infrastructure for high dimensional data spaces (Comp Stats 2011).
Oldford \& Waddell:
- Visual clustering of high-dimensional data by navigating lowdimensional spaces (ISI Dublin, 2011)
- RnavGraph: A visualization tool for navigating through high dimensional data (ISI Dublin, 2011)
- RnavGraph \(R\) package ... available on CRAN```

