

Graph theoretic methods for Data Visualization.

I. Pairwise Display and the PairViz R package

Wayne Oldford based on joint work with Catherine Hurley

WATERLOO | MATHEMATICS STATISTICS AND ACTUARIAL SCIENCE

> 2011 年度の統計数理研究所共同研究集会 「データ解析環境Rの整備と利用」

> > Tutorial B1

The problem

- Can we automatically, yet meaningfully, layout complex statistical displays?
- Can we navigate high dimensional structure in a useful yet controlled way?
- Answer: Yes

graph theory provides framework, Statistics adds meaning.

7 variates:

A, B, C, D, E, F, G

7 variates: A, B, C, D, E, F, G

Arrange axes as equiangular radii:

Length of each radius is proportional to (scaled) variate value for that case.

Have a "star-shaped" glyph for each case.

- Compare cases by shape of glyph,

- Compare cases by shape of glyph, here 9 cases in 7 dimensions
- Visually cluster high dimensional data by shape: {7,8,9,1} {2,3} {4} {5,6} ?

- Compare cases by shape of glyph, here 9 cases in 7 dimensions
- Visually cluster high dimensional data by shape:

{7,8,9,1} {2,3} {4} {5,6} ?

- What if the variables were assigned in a different order?

Radial axes: order effect

Radial axes: order effect

{1,4} {2,3} {5,6} {7,8,9} ?

Radial axes: order effect ... different orders = different visual effect

A variate ordering = Hamiltonian path

A variate ordering = Hamiltonian cycle or tour

A variate ordering = Hamiltonian cycle or tour

A variate ordering = Hamiltonian cycle or tour

An Eulerian Tour visits every edge once (nodes possibly many times)

A variate ordering = Hamiltonian cycle or tour

An Eulerian Tour visits every edge once (nodes possibly many times)

Non-(edge)-intersecting Hamiltonian tours whose union is

the entire graph, is called a Hamiltonian Decomposition.

A variate ordering = Hamiltonian cycle or tour

An Eulerian Tour visits every edge once (nodes possibly many times) Non-(edge)-intersecting Hamiltonian tours whose union is the entire graph, is called a Hamiltonian Decomposition.

Friday, November 25, 2011

A variate ordering = Hamiltonian cycle or tour

An Eulerian Tour visits every edge once (nodes possibly many times)

Non-(edge)-intersecting Hamiltonian tours whose union is

the entire graph, is called a Hamiltonian Decomposition.

A variate ordering = Hamiltonian cycle or tour

An Eulerian Tour visits every edge once (nodes possibly many times)

Non-(edge)-intersecting Hamiltonian tours whose union is

the entire graph, is called a Hamiltonian Decomposition.

An Eulerian

A Hamiltonian

Radial axes: reduced order effect

A Hamiltonian decomposition

Radial axes: reduced order effect

- Which when assembled form an Eulerian cycle composed of Hamiltonians

Radial axes: reduced order effect

- Which when assembled form an Eulerian cycle composed of Hamiltonians
- Could build a glyph from these cycles (21 radii instead of 7)

Radial axes: reduced order effect

A Hamiltonian decomposition

- Could build a glyph from these cycles (21 radii instead of 7)

Radial axes glyphs

A Hamiltonian decomposition

Radial axes glyphs

A Hamiltonian decomposition

Hamiltonian decomp, H1:H2:H3 2 3 4 Height \sim 5 6 0

{1,4} {2,3} {5,6} {7,8,9}

Radial axes glyphs

A Greedy Eulerian (maximizing pairwise correlation)

Radial axes glyphs

A Greedy Eulerian (maximizing pairwise correlation)

All pairs (Greedy Eulerian or Hamiltonian decomposition) reduce the effect of variable pair patterns, making star glyphs more reliable.

Radial axes glyphs

A Greedy Eulerian (maximizing pairwise correlation)

All pairs (Greedy Eulerian or Hamiltonian decomposition) reduce the effect of variable pair patterns, making star glyphs more reliable.

- Hamiltonian decomposition
 - all pairs of variates appear so no one pair dominates
 - divides glyph into sectors with all variates appearing once in each sector
 - ameliorates well known order effect
 - there are many Hamiltonian decompositions for a complete graph
 - For K₇, two generator decomps.
 - could choose Hamiltonian to maximize some measure on sum of edges (TSP)

• Eulerian

- all pairs of variates appear
- can order pairs (greedy Eulerian)
- could choose fewer radial axes (early pairs are emphasized).
- lots of Eulerians
 (e.g. for K₇: 129,976,320;
 K_{21:} > 3.5 x 10¹⁸⁴)

More abstractly ...

- Visiting all edges via a Hamiltonian Decomposition gives all pairs of objects and distributes the objects so that all appear in a block
- There is still considerable choice on the order of the nodes in a walk within these constraints; possibly accommodate with weights on edges.

More abstractly ...

Order of objects = a walk or tour on the complete graph

- Visiting all edges via a Hamiltonian Decomposition gives all pairs of objects and distributes the objects so that all appear in a block
- There is still considerable choice on the order of the nodes in a walk within these constraints; possibly accommodate with weights on edges.

PairViz demo

Summary

- Graph theory has much to offer
 - map "objects" to nodes
 - map "transitions" or "comparison" to edges
 - add statistically meaningful weights to edges
 - use weights to guide the visual search
 - use Hamiltonians, Eulerians to reduce unintended effects.
- Lots more to explore ... constructions, decompositions, weights, applications, ...

Thank you

Thank you

御清聴ありがとうございました

Questions? 質問はありますか?

Papers

Hurley & Oldford:

Pairwise display of high dimensional information via Eulerian tours and Hamiltonian decompositions (JCGS, 2010)

Eulerian tour algorithms for data visualization and the PairViz package (Comp Stats 2011)

PairViz R package ... available on CRAN.