
Loon

Interactive graphics in R

R.W. Oldford



The loon package

Loon is an interactive visualization system built using tcltk.

The loon package is available on CRAN. To install the package start your R and run

install.packages('loon')

You can also install the latest development release (make sure it looks like it is passing
the “builds”) directly from GitHub with the following R code (you might need to install
devtools)

devtools::install_github("rwoldford/loon", subdir = "R")

Once installed, the loon package is loaded in the usual way:

library(loon)

And instructions on loon are available in two different ways:

l_help() # loon's web overview
help(package = "loon") # loon's R help pages



l_plot()
The basic plot function in loon is similar to that of plot() from the base graphics
package.

# Tonga Trench Earthquakes
p <- l_plot(quakes$long, quakes$lat, title = "Tonga trench earthquakes",

xlabel = "longitude", ylabel ="latitude")
# produces the scatterplot

Interact with the plot using the mouse and keyboard.



l_plot()
The basic plot function in loon is similar to that of plot() from the base graphics
package.

# Tonga Trench Earthquakes
p <- l_plot(quakes$long, quakes$lat, title = "Tonga trench earthquakes",

xlabel = "longitude", ylabel ="latitude")
# produces the scatterplot

Interact with the plot using the mouse and keyboard.



Mouse gestures - selection

Points can be selected

One at a time or by "sweeping" out a rectangle



Mouse gestures - moving points
Selected points can be moved



Mouse gestures - zooming

Zooming (on plot OR on “World View”)

Zooming (globally)



Mouse gestures - panning
Panning (on plot OR on “World View”)

Panning (horizontally)



Mouse gestures - brushing
Brushing (selection via a fixed size rectangle)

The rectangular "brush"
I maintains its shape as it is

moved
I can be reshaped by selecting

the small grey square
I tall thin is equivalent to

selecting x values
I wide flat to selecting ys



The loon inspector
Whenever a loon plot is active, the loon inspector is focussed on that plot:

The loon inspector is created when the first loon plot is and it can never be closed while there are any loon plots.



The loon inspector - interacting with the plot
The inspector is used to change the loon plot. For example, checking the “guides” box
places a background grid of guide lines on the loon plot.



The loon inspector - components
The loon inspector separates into different panels on the analysis tab:



The loon inspector - the World View

The world view always shows the whole of the current plot, what is displayed and what
is active.



The loon inspector - the Analysis tab

Plot features:



The loon inspector - the Analysis tab

Point selection:



The loon inspector - the Analysis tab

Modifying selected points:



Printing the plot

At any time the current view of the loon plot p can be transferred to a static grid
graphics plot simply as plot(p) and from there saved as usual. (More on this later.)

For example,

plot(p)

longitude

la
tit

ud
e

Tonga trench earthquakes



Adding layers

The plot is a data structure (in tcltk)and we can add other plot objects, such as
polygons (and other geometric structures), to it.

For example, we can add a map to the current loon plot p.

First get the relevant map:

library(maps)
NZFijiMap <- map("world2", regions=c("New Zealand", "Fiji"), plot=FALSE)

It is added as a “layer” to the loon plot

l_layer(p, NZFijiMap,
label = "New Zealand and Fiji",
color = "forestgreen",
index="end")

## loon layer "New Zealand and Fiji" of type polygons of plot .l0.plot
## [1] "layer0"



Adding layers - maps

As can be seen in the world view, much of the map
is outside of the plot display (shown as the
black-bordered rectangle in the world view).



Analysis tab - scaling choices

Adding the map allows us to see the effect of the three plot scaling choices which are
available from the inspector.

The effect is best seen on the world view:

Note that the plot in the world view matches that of the actual plot. Also the aspect
ratio changes with the scaling.



Loon inspector - Layers tab
The map is added as a layer, which can be seen by selecting the “Layers” tab in the
inspector:



More than one plot - linking
The quakes data actually contains measurements on several variates:
str(quakes)

## 'data.frame': 1000 obs. of 5 variables:
## $ lat : num -20.4 -20.6 -26 -18 -20.4 ...
## $ long : num 182 181 184 182 182 ...
## $ depth : int 562 650 42 626 649 195 82 194 211 622 ...
## $ mag : num 4.8 4.2 5.4 4.1 4 4 4.8 4.4 4.7 4.3 ...
## $ stations: int 41 15 43 19 11 12 43 15 35 19 ...

We might construct a second plot of the quake magnitude versus its depth:
p2 <- l_plot(quakes[,c("depth", "mag")], ylabel = "magnitude",

showScales = TRUE, showGuides = TRUE,
linkingGroup = "quakes")

Notes:

I the data are given here as a data frame of two variates
I we specified that both ‘guides‘ and ‘scales‘ be on
I ‘p2‘ is assigned the string "quakes" as its "linkingGroup"

We can ensure that the original p participates in the same linking group by either
selecting “quakes” from the inspector for p or by setting p’s linking group directly:
l_configure(p, linkingGroup = "quakes", sync="pull")

This required a value for sync (i.e. synchronize) which here tells p to “pull” its values from the linking group.



More than one plot - linking

The second plot (p2) shows the quake magnitude versus its depth.



Linking - selection queries

Because the two plots are linked (in the same linkingGroup) we can form queries on
one plot by using selection (here sweep) and see the results (highlighted points) on the
second plot:

Earthquakes at this location seem to be mostly very deep, with only a couple of
relatively shallow quakes. The magnitude of earthquakes in this region seem to
relatively spread out (none are amongst the greatest or least magnitude quakes).



Linking - brushing

Alternatively, we could “brush” the magnitude versus depth plot with a tall brush from
left to write to see how the locations might change with depth of the quakes:

We observe the spatial pattern at left as we brush various depths at right.



Linking - brushing

Alternatively, we could “brush” the magnitude versus depth plot with a tall brush from
left to write to see how the locations might change with depth of the quakes:

We observe the spatial pattern at left as we brush various depths at right.



Linking - brushing

Alternatively, we could “brush” the magnitude versus depth plot with a tall brush from
left to write to see how the locations might change with depth of the quakes:

We observe the spatial pattern at left as we brush various depths at right.



Linking - brushing

Alternatively, we could “brush” the magnitude versus depth plot with a tall brush from
left to write to see how the locations might change with depth of the quakes:

We observe the spatial pattern at left as we brush various depths at right.



Linking - brushing

Alternatively, we could “brush” the magnitude versus depth plot with a tall brush from
left to write to see how the locations might change with depth of the quakes:

We observe the spatial pattern at left as we brush various depths at right.



Linking - brushing

Alternatively, we could “brush” the magnitude versus depth plot with a tall brush from
left to write to see how the locations might change with depth of the quakes:

We observe the spatial pattern at left as we brush various depths at right.



Linking - brushing

Alternatively, we could “brush” the magnitude versus depth plot with a tall brush from
left to write to see how the locations might change with depth of the quakes:

We observe the spatial pattern at left as we brush various depths at right.



Linking - brushing

Alternatively, we could “brush” the magnitude versus depth plot with a tall brush from
left to write to see how the locations might change with depth of the quakes:

We observe the spatial pattern at left as we brush various depths at right.



Loon plot states

A loon plot has only a single attribute, its class:

attributes(p)

## $class
## [1] "l_plot" "loon"

Nevertheless, there are various tcl states such as color that are associated with a loon plot. These may be
queried and/or set programmatically.

Because these are tcltk data structures, some special functions have been written to access and set these states.
These are

l_info_states(p) # gives the names and values of the states on p
names(l_info_states(p)) # returns just the names (not their values)
l_cget(p, "linkingGroup") # returns the value of the state "linkingGroup"
l_configure(p, color = "steelblue") # sets the color of all points to "steelblue"



Loon plot states
In R, loon provides some simpler means to achieve the same using more standard R functions. Namely, methods
have been written to make the loon states more naturally accessible in R

names(p) # returns just the names (not their values)

## [1] "glyph" "itemLabel" "showItemLabels"
## [4] "linkingGroup" "linkingKey" "zoomX"
## [7] "zoomY" "panX" "panY"
## [10] "deltaX" "deltaY" "xlabel"
## [13] "ylabel" "title" "showLabels"
## [16] "showScales" "swapAxes" "showGuides"
## [19] "background" "foreground" "guidesBackground"
## [22] "guidelines" "minimumMargins" "labelMargins"
## [25] "scalesMargins" "x" "y"
## [28] "xTemp" "yTemp" "color"
## [31] "selected" "active" "size"
## [34] "tag" "useLoonInspector" "selectBy"
## [37] "selectionLogic"

p["linkingGroup"] # returns the value of the state "linkingGroup"

## [1] "quakes"

p["color"] <- "steelblue" # sets the value of the state linkingGroup to "quakes"

Note that for some states like “linkingGroup” more than one value needs to be set simultaneously and this is only
achievable using l_configure(). For example,

# The following may fail when there are other plots in the new group
# because syncing info is also needed
p["linkingGroup"] <- "some other group"
# and this must be passed at the same time as the new group name; more on this shortly.
l_configure(p, linkingGroup = "some other group", sync = "pull")



Linking - via color

Rather than brush, we might also choose to colour the locations different colours
according to the depth. This is easily accomplished either by selecting points and
modifying their colour via the inspector, or by directly changing the color state of the
plot p:

# get 5 (equal width) levels by cutting the depths up
depthLevels <- cut(quakes$depth, breaks = 5)
p['color'] <- depthLevels



Linking - via color

Rather than brush, we might also choose to colour the locations different colours
according to the depth. This is easily accomplished either by selecting points and
modifying their colour via the inspector, or by directly changing the color state of the
plot p:

# get 5 (equal width) levels by cutting the depths up
depthLevels <- cut(quakes$depth, breaks = 5)
p['color'] <- depthLevels



Linking - via color

Note that equal count intervals can also be constructed by defining the break points:

quantile_breaks <- quantile(quakes$depth, probs = seq(0, 1, 0.2))
quantile_breaks[1] <- quantile_breaks[1] - 1 # to counter minimum becoming NA
p['color'] <- cut(quakes$depth, breaks = quantile_breaks)



Linking - via color

Note that equal count intervals can also be constructed by defining the break points:

quantile_breaks <- quantile(quakes$depth, probs = seq(0, 1, 0.2))
quantile_breaks[1] <- quantile_breaks[1] - 1 # to counter minimum becoming NA
p['color'] <- cut(quakes$depth, breaks = quantile_breaks)



Linking - via glyph shape
Similarly, we could change the shape of the points, that is its glyph, or its size
programmatically:

p["glyph"] <- "ocircle" # for "open circle"
sizeByMagnitude <- (10 ^ quakes$mag) / 10000 # N.B. Richter scale is log scale
sizeByMagnitude <- 2 + sizeByMagnitude - min(sizeByMagnitude)
p["size"] <- sizeByMagnitude



Linking - via glyph shape
Similarly, we could change the shape of the points, that is its glyph, or its size
programmatically:

p["glyph"] <- "ocircle" # for "open circle"
sizeByMagnitude <- (10 ^ quakes$mag) / 10000 # N.B. Richter scale is log scale
sizeByMagnitude <- 2 + sizeByMagnitude - min(sizeByMagnitude)
p["size"] <- sizeByMagnitude



Printing the plot

Note again, that at any time the current view of the loon plot p can be transferred to
a static grid graphics plot simply as plot(p).

For example, p now looks like

plot(p)

longitude

la
tit

ud
e

Tonga trench earthquakes



Point glyphs - shapes and sizes
There are numerous different shapes (and sizes) to choose from:

Again, size refers to the relative (for each shape) area of the glyph and does not mean
its linear extent (or diameter). (To change the size dramatically, as if by linear extent,
then the user might change the size by squaring.)



Linking - linked states

A glance at the second scatteplot shows that, like colour, the size of the glyph changed
there because it was linked to the first scatterplot. However the shape of the glyph did
not.

The states which are linked to, and hence eligible to change with, the plots participating
in the same linkingGroup are unique to each plot:

l_getLinkedStates(p)

## [1] "color" "selected" "active" "size"



Linking - linked states

Plots in the same linkingGroup indicate which of their states, they are willing to have
change with the group. These linked states can be queried via l_getLinkedStates()
as before:

l_getLinkedStates(p)

## [1] "color" "selected" "active" "size"

Linked states can be updated for any plot using l_setLinkedStates() as in:

l_setLinkedStates(p, c(l_getLinkedStates(p), "glyph"))
l_setLinkedStates(p2, c(l_getLinkedStates(p2), "glyph"))

As a consequence each of p and p2 will now change its glyph whenever the other does
(note that this requires the glyph to actually change before that change is propagated).
This is because they are members of a common linkingGroup quakes, which can be
queried (and set) via p['linkingGroup'].

Should another plot, say p3, be added to the same linkingGroup, then the state
glyph for p3 will not change whenever that of either p or p2 does unless p3 has also
registered its glyph state as a linked one. Only those linked states that are common
between plots in the same linkingGroup will be linked.



Plots and histograms via l_hist()
We could introduce other plots that are linked to the previous plots
p3 <- l_plot(quakes$mag, quakes$stations,

xlabel = "magnitude", ylabel = "Number of stations reporting",
showScales = TRUE, linkingGroup = "quakes")

h <- l_hist(quakes$stations, xlabel = "Number of stations reporting",
linkingGroup = "quakes")

Note:

I the strong positive relationship between the number of stations reporting a quake and its
magnitude

I the size of the circle is taken from the common linkingGroup but the shape is not
I the colours associated with depth appear in the scatterplot but not in the histogram



Loon inspector for a histogram - Analysis tab
When the histogram is the active window, the inspector changes its focus to the
histogram, now with panels specialized for a histogram on the analysis tab:



Analysis tab - stacked colors check box

To see where the various groups fall in the histogram, check “stacked colors” box in the
plot options section on the “Analysis” tab:



Analysis tab - selection by colour
Selecting by colour will drop the selected colours to the bottom of the histogram.

Multiple selection of colours is possible (i.e. via “shift + select”) from the inspector, or
directly on the histogram itself.

In the latter case, the colours are selected within each bar.



Histogram - selection by colour

Bars (and colours when stacked) can be selected on the histogram itself:
Selecting bars Selecting colours (a few reds)



Printing a plot - wysiwig or not?

Because loon plots are constructed in tcltk and their static versions in grid, there
may be small discrepancies between the two versions (typically in size and font
determinations) caused by translations from one system to the other.

These might could be addressed in at least three ways:

1. Adjust the loon graphic (e.g. changing glyph sizes) to effect the desired change in
the consequent grid graphic.

2. Adjust the grid object (or grob) itself. The translation (and drawing) is carried
out by the loon function grid.loon(), as in

gp <- grid.loon(p, draw = FALSE)
gp

## gTree[GRID.gTree.65]

which produces a grid graphics gtree containing all the information needed to
plot (and change) the translated loon plot in grid.

3. Most (all?) modern operating systems have a “screen shot” capability that allows
(at least) a pixmap image of any window to be captured. This could be used on
any loon window (including the inspector) and in fact was used to produce most
of the loon images in this document.



Printing a plot - more on the grid connection

Graphics in the grid package are built up from graphical objects or grobs.

In loon, in addition to simply plot(p), functions grid.loon() and loonGrob() can be used to
construct grobs from loon plots that can in turn be used as any other grob in grid.

I grid.loon(p) translates, draws, and (invisibly) returns the grob corresponding the current
state of the loon plot p.

I loonGrob(p) translates and returns the grob
I plot(p) translates and draws the grob

The resulting grob, can be used with all the rich functionality of the grid package. For example,

library(grid)
grid.ls(gp) # lists the contents of the grob
# Or, in RStudio, can be viewed interactively
View(gp)

Note that all of the elements of a loon plot appear in the grob, either explicitly or, if they were not
drawn in the loon plot, as an empty grob containing the arguments relevant to drawing them.

Being able to get and set the plot contents means that it is possible to capture different plot states
as grobs.



Navigation graphs
loon also provides a simple means to examine three (and higher) dimensional structure
interactively via its concept of a “navigation graph”:

# Get a navigation graph (set all sizes to be the same)
ng <- l_navgraph(quakes[,c("long", "lat", "depth")],

linkingGroup = "quakes", sync = "pull",
glyph = "ocircle", size = 5)

# Note that specifying the size will propagate this throughout
# the linking group OVERRIDING the sync = "pull" argument.

Nodes represent scatterplots of the named variates, edges are 3d transitions found by rotating
around the axis of the shared variate.

The large coloured circle, called the “navigator”, identifies the scatterplot shown in the separate
display at right.



Navigation graphs - the graph navigator

Selecting the navigator highlights which nodes are connected to it. Then one is
shift-selected to identify which scatterplot is to appear next.

Navigator not selected. Navigator selected. Destination node selected.

This can continue throughout the graph to produce a path through the three
dimensional space.

I Connected nodes will highlight at each step.
I The navigator needs to be moved off any node that is to be selected next.
I The navigator can be dragged or moved using scrolling.
I Each edge represents a 3d transition from one 2d space (scatterplot) to the next.



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graphs - navigating along a path

Moving the navigator along an edge causes the scatterplot to change by rotating the
points around the shared axis:



Navigation graph structure - a list of class l_navgraph

The navigation graph is a list:

str(ng)

## List of 5
## $ graph : 'l_graph' Named chr ".l3.graph"
## $ plot : 'l_plot' Named chr ".loon_2.plot"
## $ graphswitch: 'l_graphswitch' Named chr ".l3.graphswitch"
## $ navigator : 'l_navigator' Named chr "navigator0"
## ..- attr(*, "widget")= chr ".l3.graph"
## $ context : 'l_context' Named chr "context0"
## ..- attr(*, "widget")= chr ".l3.graph"
## ..- attr(*, "navigator")= chr "navigator0"
## ..- attr(*, "plot")= 'loon' Named chr ".loon_2.plot"
## - attr(*, "class")= chr [1:3] "l_navgraph" "l_compound" "loon"

Note that the list is of class l_navgraph as well as l_compound and loon. Each element is also a loon object of
various classes, including the class loon.

For example, programmatic access to the scatterplot can therefore be had via ng$plot; similarly for the other
elements.



Navigation graph structure - as an l_compound object

The navigation graph is an ‘l_compound:

Because an l_navgraph is also an l_compound, the generic function l_getPlots() will
return all elements which are also loon plots of some kind.

This helper function returns a list of plots with names that should be meaningful for
that kind of l_compound. For example,

l_getPlots(ng)

## $graph
## [1] ".l3.graph"
## attr(,"class")
## [1] "l_graph" "loon"
##
## $plot
## [1] ".loon_2.plot"
## attr(,"class")
## [1] "l_plot" "loon"



Navigation graph structure - the graph and the plot
The graph itself is a special kind of loon plot. It has all of the info_states of plot
plus several more related to being a graph. It is in fact a subclass of plot (in tcl not in
R).

For example,
g <- ng$graph
names(g)

## [1] "itemLabel" "showItemLabels" "glyph"
## [4] "linkingGroup" "linkingKey" "zoomX"
## [7] "zoomY" "panX" "panY"
## [10] "deltaX" "deltaY" "xlabel"
## [13] "ylabel" "title" "showLabels"
## [16] "showScales" "swapAxes" "showGuides"
## [19] "background" "foreground" "guidesBackground"
## [22] "guidelines" "minimumMargins" "labelMargins"
## [25] "scalesMargins" "x" "y"
## [28] "xTemp" "yTemp" "color"
## [31] "selected" "active" "size"
## [34] "tag" "useLoonInspector" "selectBy"
## [37] "selectionLogic" "activeNavigator" "nodes"
## [40] "from" "to" "isDirected"
## [43] "activeEdge" "colorEdge" "orbitDistance"
## [46] "orbitAngle" "showOrbit"

g["nodes"]

## [1] "long:lat" "long:depth" "lat:depth"

Generally, programmatic access to the scatterplot via ng$plot will be of most interest.
Again, both are accessible via l_getPlots(ng)



Navigation graph structure - other elements

The remaining components of an l_navgraph are generally only of interest in building
new displays. These are the graphswitch, the navigator, and the context.

For example, the navigator contains information on its display and interaction:

nav <- ng$navigator
class(nav)

## [1] "l_navigator" "loon"

names(nav)

## [1] "tag" "color"
## [3] "animationPause" "animationProportionIncrement"
## [5] "scrollProportionIncrement" "from"
## [7] "to" "proportion"
## [9] "label"



Visualizing several dimensions - l_pairs()
loon also provides a simple scatterplot matrix plot analogous to that produced by the
base graphics pairs():

allPairs <- l_pairs(quakes, showHistograms = TRUE, histLocation = "diag",
linkingGroup = "quakes", showGuides = TRUE)

I Each plot is a ‘loon‘
scatterplot and hence
can be interacted with
as before.

I Panning and zooming
of any plot causes the
other plots in the same
row and/or column to
change accordingly



Visualizing several dimensions - l_pairs()
loon also provides a simple scatterplot matrix plot analogous to that produced by the
base graphics pairs():

allPairs <- l_pairs(quakes, showHistograms = TRUE, histLocation = "diag",
linkingGroup = "quakes", showGuides = TRUE)

I Each plot is a ‘loon‘
scatterplot and hence
can be interacted with
as before.

I Panning and zooming
of any plot causes the
other plots in the same
row and/or column to
change accordingly



Visualizing several dimensions - l_pairs()

l_pairs() is a list of loon plots:

str(allPairs)

## List of 15
## $ x2y1: 'l_plot' Named chr ".l4.pairs.plot"
## $ x3y1: 'l_plot' Named chr ".l4.pairs.plot1"
## $ x4y1: 'l_plot' Named chr ".l4.pairs.plot2"
## $ x5y1: 'l_plot' Named chr ".l4.pairs.plot3"
## $ x3y2: 'l_plot' Named chr ".l4.pairs.plot4"
## $ x4y2: 'l_plot' Named chr ".l4.pairs.plot5"
## $ x5y2: 'l_plot' Named chr ".l4.pairs.plot6"
## $ x4y3: 'l_plot' Named chr ".l4.pairs.plot7"
## $ x5y3: 'l_plot' Named chr ".l4.pairs.plot8"
## $ x5y4: 'l_plot' Named chr ".l4.pairs.plot9"
## $ x1y1: 'l_hist' Named chr ".l4.pairs.hist"
## $ x2y2: 'l_hist' Named chr ".l4.pairs.hist1"
## $ x3y3: 'l_hist' Named chr ".l4.pairs.hist2"
## $ x4y4: 'l_hist' Named chr ".l4.pairs.hist3"
## $ x5y5: 'l_hist' Named chr ".l4.pairs.hist4"
## - attr(*, "class")= chr [1:3] "l_pairs" "l_compound" "loon"

Since l_pairs is also an l_compound, these could also have been accessed as
l_getPlots(allPairs). That way, the user can always rely on l_getPlots() to
return only the plots in the l_compound. Again, the names are meaningful in the
context of the particular l_compound.



Visualizing several dimensions - l_pairs()

For example, to have every scatterplot in the display also link on the value of its glyph,
and to turn off the stacking of colours in the histograms:

for (plot in l_getPlots(allPairs)) {
if (is(plot, "l_plot")){ # Must be an l_plot

l_setLinkedStates(plot,
c(l_getLinkedStates(plot), "glyph"))

}
if (is(plot, "l_hist")){ # Must be an l_hist

plot["showStackedColors"] <- FALSE
}

}

Note: the linking is not effected until scatterplots in the linkingGroup change their
glyph.



Visualizing several dimensions - l_pairs()
Once p (which has also registered glyph as a linked state) updates its glyph, so too
now will allPairs:



Visualizing several dimensions - l_navgraph()

With all six variates, the value of a navigation graph for exploring higher dimensional
data can be appreciated:

ng_all <- l_navgraph(quakes, linkingGroup = "quakes", sync = "pull")

There are now
(
5
2

)
= 10 nodes. Edges exist only between nodes which share a variate – a 3d

transition graph.



Visualizing several dimensions - l_navgraph()

Selecting 4d transition will produce the complement of the previous graph:

Now edges exist only between nodes which share no variates – a 4d transition graph.

Instead of rigid 3d rotations, now moving the navigator along an edge causes a 2d plane
to move along a geodesic through the 4d space from the 2d space of one pair of
variates to the 2d space of the others.



Adding information to observations - itemLabel
It will often be convenient to have some extra information available in the form of a
“tooltip” for each observation.

Often this could simply be the name or number identifying each observation. It could
also be something a little more informative, such as a table of values.

For the quakes data, for example we might attach the following information to the plot
as the value of its itemLabel:
# Make a little table of info:
indent <- " " # might also use tab character \t"
quakeLabels <- paste0("quake number: ", rownames(quakes), "\n",

indent, "magnitude: ", quakes[,"mag"], " Richter", "\n",
indent, "longitude: ", quakes[,"long"], "\n",
indent, "latitude: ", quakes[,"lat"], "\n",
indent, "depth: ", quakes[,"depth"], " km", "\n"

)

And we can now attach these to the previous l_plots (but not the histograms):

plots <- append(list(map = p, scatterplot = p2,
nav_3d = ng$plot, nav_5d = ng_all$plot),

l_getPlots(allPairs))
for (plot in plots) {

if (is(plot, "l_plot")){
plot["itemLabel"] <- quakeLabels
plot["showItemLabels"] <- TRUE

}
}



Visualizing several dimensions - l_serialaxes()

One problem with high-dimensional data is that a Cartesian coordinate system is based
on rectilinear layouts which require each new axis to be orthogonal to all the others.
This becomes impossible to display simultaneously beyond three dimensions.

In a non-Cartesian coordinate system, the axes are not restricted to being mutually
orthogonal. They could, for example, be parallel to each other or, alternatively, present
at various angles with one another.

This freedom from orthogonality means that many more coordinates can be laid out in
a 2d plane (or, in principle, in a 3d space).

Nevertheless, the axes will still have to appear in some order, necessarily emphasizing
the relation between neighbouring axes.

A “serial axes” display is one in which the axes are laid out in series, typically in parallel
to one another (parallel coordinates) or arranged as equi-angular radii about some origin
(radial coordinates).

The latter are sometimes called star glyphs or star plots (or any of a variety of more
colourful names like “radar chart”, “spider chart”, or “cobweb chart”); as in loon, we
will simply call them “radial axes” plots as one of two arrangements of serial axes.



l_serialaxes() - parallel coordinates
serialAxes <- l_serialaxes(quakes, axesLayout = "parallel",

itemLabel = quakeLabels,
showItemLabels = TRUE,
linkingGroup = "quakes")

Serial axes inspector
Serial axes (parallel coordinate) plot

Each 5-dimensional observation is a "curve" in parallel
coordinates.

Note that group selection (sweeping/brushing) does not appear in the inspector. Groups in a serial axes plot are
selected using an (always available) extendible line segment.



Parallel coordinates - the line-point duality

Each pair of parallel axes corresponds to a pair of orthogonal axes. Patterns seen in a
scatterplot should also appear as patterns in the parallel coordinates.

There is in fact a line-point duality that connects the geometry within a orthogonal
coordinate pair system to that of the geometry of a parallel coordinate pair system.

I A point in a scatter plot (pair of orthogonal coordinates) is a line between parallel
axes (a pair of parallel coordinates)

I A line in a scatter plot (pair of orthogonal coordinates) is a point of intersection of
lines between parallel axes (a pair of parallel coordinates)

I intersection may occur outside the parallel axes, possibly at infinity
I i.e. if you continue the lines beyond the axes they will intersect

I two parallel lines (same slope) in a scatterplot correspond to two different
intersection points one above the other in a parallel coordinate plot;

I lines with common intercepts in a scatterplot do NOT produce points of
intesections in the parallel coordinate plot at the same vertical location; changing
slope changes the horizontal and vertical position of the point of intersection.

I a curve in a scatterplot is a curve of intersection points in parallel coordinates
(think tangent lines, or lines formed by successive points along the curve)



Parallel coordinates - the line-point duality
These points can be easily illustrated using loon. Two different files containing
illustrative code is available on the course website (use
source("FullPathAndFileName.R") to load):

I "parallelCoordPointLine.R" illustrates the line-point duality.
I "parallelCoordCorrelation.R" illustrates the relation between parallel coordinates

and correlations using several examples.

Loading either file will produce several displays, so you might just load one at a time to
avoid clutter.

Once loaded, you will need to interact with each scatterplot as follows:

I select any group of points of interest
I from the inspector, invert the others and deactivate them;
I brush points in the scatterplot or lines in the parallel coordinate plot to observe

the connections
I select subsets of points in the scatterplot and

I move them around, or
I jitter selected points.

Reactivate all points, select and return all to their original position. Repeat with
different groups (select by colour).



Parallel coordinates - the line-point duality

For example,
Orthogonal coordinates Parallel coordinates

Note the correspondence between parallel lines in the orthogonal coordinates and
aligned points in the parallel coordinate space.



Parallel coordinates - correlation

Orthogonal coordinates Parallel coordinates



l_serialaxes() - states

A serial axes plot also has states, some of which are shared by other loon plots (e.g.
linkingGroup) and some of which are peculiar to it (e.g. axesLayout and lineWidth):

names(l_info_states(serialAxes))

## [1] "linkingGroup" "linkingKey" "itemLabel"
## [4] "showItemLabels" "showAxes" "showAxesLabels"
## [7] "linewidth" "scaling" "axesLayout"
## [10] "showArea" "axesLabels" "data"
## [13] "sequence" "active" "color"
## [16] "selected" "showGuides" "showLabels"
## [19] "useLoonInspector" "title" "tag"

Many of these are modifiable from the loon inspector; all of them can be modified
programmatically.

Two of particular interest are sequence and scaling affecting the ordering of the axes
and the scaling of the observations to fit on the axes.



l_serialaxes() - the sequence state
sequence contains the variates in the order in which they appear on the axes.
serialAxes["sequence"]

## [1] "lat" "long" "depth" "mag" "stations"

Note that axes can be repeated. For example,
serialAxes["sequence"] <- serialAxes["sequence"] [c(1, 2, 3, 1, 4, 2, 5, 3, 4, 5, 1)]
serialAxes["sequence"]

## [1] "lat" "long" "depth" "lat" "mag" "long"
## [7] "stations" "depth" "mag" "stations" "lat"

ensures that every variate will appear next to every other variate in the display.

I This allows the relationship
between every pair of
variates to be seen and
compared

I ‘eulerian()‘ (from the
PairViz) package) returns a
(numerical) sequence in
which every pair of variates
are adjacent at least once.

I other ordering methods are
available from ‘PairViz‘



l_serialaxes() - the scaling state

For plotting purposes, each axis ranges from 0 to 1. Unless the observations themselves
have values between 0 1nd 1, they will have to be rescaled before being located on the
serial axes.

The scaling determines the set over which the observed values are to be scaled.
Whatever the set of numbers is, a location scale transform is applied to have the
minimum value map to 0 and the maximum to 1.

scaling how the min and max are determined

variable separate min and max found for each variate/axis/column
(default)

observation separate min and max found for each observation/row

data min and max are determined using all values of all variates
and all observations

none no scaling is done, raw observation values are used



l_serialaxes() - radial coordinates
First reset the sequence to the original five and then change the layout of the axes:

serialAxes["sequence"] <- names(quakes)
serialAxes["axesLayout"] <- "radial"

Serial axes inspector Radial (serial) axes plot

Each point in the 5-dimensional space becomes a “shape” in 2d.



l_serialaxes() - radial coordinates

For example, here are three different earth quakes:

As can be seen, different observations will have different shapes, depending on their variate
values. Those which have similar shape and size will be near each other in the (scaled) higher
dimensional space. Similar shapes, but different sizes however do not indicate nearness in that
space.
For example identical shapes of diminishing size will all lie along a line with the smallest shapes
being nearer the origin (as defined by the minimum value on all variates).
The appearance of the glyph depends on the scaling used. The above use the default "variable"
scaling.



l_serialaxes() - radial coordinates
For example, here are three different scalings for the first of these quakes:

Variable scaling

Each axis scaled to fit range
of that variate.

Observation scaling

Axes scaled to observation’s
min and max across variates.

Data scaling

Identical scaling on all
variates and observations.

Which scaling is important depends on the problem.
I Variable scaling is most common and generally applicable.
I Observation scaling is useful to compare observations on the basis of which variates they

score highest/lowest on, without regard for how that score compares in magnitude to
other observations.

I Data scaling is useful to compare observations by relative magnitude of all values. It is
analogous to using Cartesian coordinates where all axes are on the same scale. No scaling
("none") is used when the data are all in [0, 1] and we wish to preserve the actual values.



l_serialaxes() - radial coordinates
And the three different scalings for the second quake:

Variable scaling

Each axis scaled to fit range
of that variate.

Observation scaling

Axes scaled to observation’s
min and max across variates.

Data scaling

Identical scaling on all
variates and observations.

Which scaling is important depends on the problem.
I Variable scaling is most common and generally applicable.
I Observation scaling is useful to compare observations on the basis of which variates they

score highest/lowest on, without regard for how that score compares in magnitude to
other observations.

I Data scaling is useful to compare observations by relative magnitude of all values. It is
analogous to using Cartesian coordinates where all axes are on the same scale. No scaling
("none") is used when the data are all in [0, 1] and we wish to preserve the actual values.



l_serialaxes() - radial coordinates
And finally the three different scalings for the third quake:

Variable scaling

Each axis scaled to fit range
of that variate.

Observation scaling

Axes scaled to observation’s
min and max across variates.

Data scaling

Identical scaling on all
variates and observations.

Which scaling is important depends on the problem.
I Variable scaling is most common and generally applicable.
I Observation scaling is useful to compare observations on the basis of which variates they

score highest/lowest on, without regard for how that score compares in magnitude to
other observations.

I Data scaling is useful to compare observations by relative magnitude of all values. It is
analogous to using Cartesian coordinates where all axes are on the same scale. No scaling
("none") is used when the data are all in [0, 1] and we wish to preserve the actual values.



l_serialaxes() - radial coordinates
A more obvious value of the different scaling might be found in Statistics Canada’s
census data on visible minority populations in Canadian cities. These are available in
loon as

data("minority")
str(minority)

## 'data.frame': 33 obs. of 18 variables:
## $ Arab : num 190 3840 165 125 195 ...
## $ Black : num 620 13270 1035 1250 330 ...
## $ Chinese : num 990 3100 295 975 295 ...
## $ Filipino : num 155 530 100 205 50 ...
## $ Japanese : num 65 410 10 10 0 170 30 0 2990 1800 ...
## $ Korean : num 45 620 65 120 15 ...
## $ Latin.American : num 320 690 95 210 280 ...
## $ Multiple.visible.minority : num 25 780 175 60 10 ...
## $ South.Asian : num 890 2900 350 485 45 ...
## $ Southeast.Asian : num 55 655 65 60 55 ...
## $ Total.population : num 179270 369455 124055 120875 149600 ...
## $ Visible.minority.not.included.elsewhere: num 40 180 10 30 10 ...
## $ Visible.minority.population : num 3460 27645 2425 3805 1280 ...
## $ West.Asian : num 65 670 70 270 0 ...
## $ lat : num 47.6 44.7 46.1 45.3 48.4 ...
## $ long : num -52.7 -63.6 -64.8 -66.1 -71.1 ...
## $ googleLat : num 47.6 44.6 46.1 45.3 48.4 ...
## $ googleLong : num -52.7 -63.6 -64.8 -66.1 -71.1 ...

These contain the population of various self-declared “visible minorities” in 33 cities
across Canada.



l_serialaxes() - radial coordinates
Effect of scaling on visible minority data in four large Canadian cities (west to east):
Vancouver (green), Calgary (purple), Toronto (red), and Montreal (blue):

Variable scaling

Each axis scaled to fit range of that variate.



l_serialaxes() - radial coordinates
Effect of scaling on visible minority data in four large Canadian cities (west to east):
Vancouver (green), Calgary (purple), Toronto (red), and Montreal (blue):

Observation scaling

Axes scaled to observation’s min and max across variates.



l_serialaxes() - radial coordinates
Effect of scaling on visible minority data in four large Canadian cities (west to east):
Vancouver (green), Calgary (purple), Toronto (red), and Montreal (blue):

Data scaling

Identical scaling on all variates and observations.



l_serialaxes() - radial coordinates

Effect of scaling on visible minority data in four large Canadian cities (west to east):
Vancouver (green), Calgary (purple), Toronto (red), and Montreal (blue):

Variable scaling

Each axis scaled to fit range
of that variate.

Observation scaling

Axes scaled to observation’s
min and max across variates.

Data scaling

Identical scaling on all
variates and observations.



Serial axes as glyphs - l_glyph_add_serialaxes()

Because serial axes can show many dimensions at once, they are also useful as glyphs in
a scatterplot.

For example, a radial axis plot will produce a unique glyph for each observation.
Similarities aband differences between glyph appearances will provide some information
on all variates.

Unfortunately, these glyphs cannot participate in linking between plots. They have
much internal structure which we might want to change separately for each plot and
this is the main reason that “glyph” is not one of the linked states by default.

So we remove "glyph" from the linked states of the plots to get back to the default
behaviour (NB. only because we previously added it to the linked states).

for (plot in plots) {
l_setLinkedStates(plot,

setdiff(l_getLinkedStates(plot),
"glyph"))

}

Now serial axes glyphs can be attached to any of these plots without causing any
conflict due to linking.



Serial axes as glyphs - l_glyph_add_serialaxes()
Serial axes glyphs must be created and added to the plot structure before being
displayed.

For example, suppose that we were to add serial axes glyphs to the first plot p. This is
accomplished in two steps.

First the glyph is constructed and added to the plot structure:

# Construction and attachment of serial axes as glyphs
serAxesGlyphs <- l_glyph_add_serialaxes(p, data = quakes,

label = "serial axes")

Second, selected points can now have their glyph be set to a serial axes glyph. Typically
this is done via its loon inspector. Just as with the default shapes, simply select the
points to be modified, select the glyph (from a menu if more than one such glyph has
been constructed) and click on set:

If, as above, the value from l_glyph_add_serialaxes() has been saved, then this
value may be used to programmatically set the glyph for any subset of points as

p['glyph'] <- serAxesGlyphs

Either way, the glyphs of the points in p can now appear in its display.



Serial axes as glyphs
As glyphs, serial axes have structure that is accessible via the “Glyphs” tab on the loon
inspector.

Now every observation is displayed (with linked colour, etc.)
as a serial axes glyph.



Serial axes as glyphs
The same functionality, and a little more, can be accessed programmatically:

names(serAxesGlyphs)

## [1] "showAxes" "showAxesLabels" "linewidth" "scaling"
## [5] "axesLayout" "showArea" "axesLabels" "data"
## [9] "sequence" "showEnclosing" "bboxColor" "axesColor"

serAxesGlyphs["axesLabels"]

## [1] "lat" "long" "depth" "mag" "stations"

The states “showAxesLabels”, “linewidth”, “axesLabels”, “data”, “sequence”,
“bboxColor”, and “axesColor” can only be changed programmatically (provided the value
has been saved beforehand as was done with serAxesGlyphs). Of these, only those
associated with the display, namely “linewidth”, “bboxColor”, and “axesColor”, should
be changed programmatically. The others should be determined only at the time of
construction.

serAxesGlyphs["linewidth"] <- 2
serAxesGlyphs["bboxColor"] <- "black"
serAxesGlyphs["axesColor"] <- "red"

Note that one of the states is “data” which suggests that different data could be used
to create the glyphs than that which created the plot. As long as the number of
observations is the same, this would work and could in some instances be very useful.



Serial axes as glyphs - l_glyph_add_serialaxes()

We might have a longer sequence and make this available on all plots (including p):

# Use a sequence to have all pairs appear
seqVars <- names(quakes)[c(1, 2, 3, 1, 4, 2, 5, 3, 4, 5)]

for (plot in plots) {
# Add the serial axes as glyphs to scatterplots
if (is(plot, "l_plot")) {

l_glyph_add_serialaxes(plot,
axesLayout = "radial",
data = quakes,
sequence = seqVars,
scaling = "variable",
showArea=TRUE,
label = "serial axes: all pairs")

}
}

The plots can now be used in conjunction and various areas explored for like shapes
and/or unusual shapes.
The “minority” vignette provides another example where the serial axes glyphs are more easily interpreted.



Programmatic access when a loon plot was not assigned at creation
Sometimes a loon plot is created without assigning it to a variable. This can be a nuisance whenever
we later want to interact with the plot programmatically.

For example, the plot would have been earlier created (unassigned) as

l_plot(quakes[, "long"], quakes[,"lat"]) # which would have printed as
## [1] ".l19.plot"
## attr(,"class")
## [1] "l_plot" "loon"

The printed value has all the necessary information. It consists of the plot’s tcltk name as a string
(notice the leading dot followed by the lower case letter L) and a vector of the loon class
inheritance. Note that the name string also appears appended to the title of the plot’s window.

Even after its creation, full programmatic interaction can still be made available to any loon plot
via a variable, say myplot, in two simple steps:

1. Assign the tcltk name string as the value of a variable as in
myplot <- “.l19.plot”.

2. Assign the correct class hierarchy to variable, here myplot
class(myplot) <- c("l_plot", "loon")

Now the variable myplot can be used just as if the loon plot had been assigned to it at creation.
NOTE It is enough to just assign the "loon" class, as in class(myplot) <- "loon", for access myplot[] and setting myplot[] <- to
work for names which would appear in names(myplot). However, this is not generally recommended because other important functionality
like plot(myplot) will not work without the full class hierarchy. Fortunately, the command history and output is often accessible and
contains the original output at creation; alternatively, constructing any other plot with the same command will also reveal the appropriate
class hierarchy needed for full loon functionality and the tcltk name usually appears in the window title.


