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ABSTRACT

The structure of a set of high dimensional data objects (e.g. images,
documents, molecules, genetic expressions, etc.) is notoriously dif-
ficult to visualize. In contrast, lower dimensional structures (esp.
3 or fewer dimensions) are natural to us and easy to visualize. A
not unreasonable approach then is to explore one low dimensional
visualization after another in the hope that together these will shed
light on the higher dimensional structure.

In our poster, we describe the graph theoretic structure recently
proposed in [3] that represents low-dimensional spaces as graph
nodes and transitions between spaces as edges. Of interest are
walks along these graphs that reveal meaningful structure. If the
nodes are two dimensional and edges exist, say, only between 2d
spaces which share a variate, then the walk could be represented dy-
namically as a series of scatterplots, one transitioning into the next
via a 3d rigid transformation. We demonstrate how these graphs
are constructed and dynamically explored via our open source R
package, RnavGraph.

Index Terms: I.5.5 [Pattern Recognition]: Implementation—
Interactive systems

1 INTRODUCTION

The purpose of cluster analysis is to conjecture plausible differ-
ences in kind amongst a given collection of instances. This is also
what our human visual system excels at; it has evolved to facili-
tate quick and considered detection of the visually like and unlike
through a wide variety of cues – e.g. location and relative prox-
imity, movement, shape, colour, texture and matching against pre-
determined patterns. Consequently, visualization is a natural and
powerful resource for cluster analysis; it is especially valuable in
identifying unanticipated structures.

Unfortunately, the same evolutionary path has meant our visual
system is poorly equipped to be of much help in identifying high
dimensional structure. And most data these days are of high, and
ever increasing, dimensionality. Consequently, automated methods
of pattern recognition and cluster analysis have seen increasing re-
cent use and development; even so, intuition as to what constitutes
a “cluster” in high dimensions remains largely, though by no means
exclusively, based on our experience with our own visual percep-
tion – e.g. near neighbours, k-means, local density modes, etc.

Automated and purely visual methods for cluster detection are
largely complementary in the circumstances in which they have
most value. Automated methods may be routinely applied to data of
many more dimensions than three, where our visual experience and
ability necessarily end. Unfortunately, to do so, automated meth-
ods rely (at least implicitly) on determining pre-defined patterns in
data configurations and so different methods can produce different
clusterings.
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The point of visual clustering is to use interactive data visualiza-
tion tools in concert with automated methods so as to take best ad-
vantage of both. Following [3], we do this by introducing a graph
structure, called a navigational graph, or navGraph, whose ver-
tices represent a unique pair of variates. When we add only edges
between vertices which share a variate, the edge itself represents
a three dimensional space formed by the union of those variates.
Such a navGraph is called a 3d-transition graph in [3].

For example, the Olive data in [2] records the percentage compo-
sition of the following eight fatty acids in 572 different Italian olive
oils: arachidic (a), eicosenoic (e), linoleic (l1), linolenic (l2), oleic
(o), palmitic (p1), palmitoleic (p2) and stearic (s). One possible 3d
transition graph is shown at the centre of Figure 1. Different olive

Figure 1: A 3d-transition graph. The large yellow “bullet” is located at
vertex p1:l1. From there, orange vertices are immediately accessible,
black vertices are not. Each vertex is a 2D space having its own cloud
of data (alpha blending used to reveal point density; hue = region).

growing regions of Italy determine the 9 “true” clusters of the data
(identified by 9 different hues in the point clouds of Figure 1). The
regions correspond to spatial structure apparent in low dimensions.
This can be uncovered using RnavGraph.

2 VISUALLY CLUSTERING USING RNAVGRAPH

The RnavGraph interface has two major pieces – the navigation
graph, or navGraph, and an interactive 2d scatterplot. The two dis-
plays are shown side by side in Figure 2 as they might appear on a
data analyst’s screen. The positions of the points in the scatterplot
display are determined by the position of the bullet in the navGraph
display. Our 2d scatterplot implementation can display points, text,



(a) The navGraph window. (b) The interactive scatterplot window.

Figure 2: On right, the brush has been used to highlight the top group
in the point cloud. (N.B. no alpha blending yet in RnavGraph.)

images and star glyphs. In addition, the scatterplot display is com-
pletely interactive, allowing the analyst to brush, zoom, pan, subset,
and link data between multiple displays. In Figure 2b we show that
the analyst has selected a brushing operation and highlighted all
points in the top group by sweeping out a rectangular area. These
selected points may be “deactivated”, causing them to disappear fo-
cus to shift to the remaining data. We show the remaining data in
Figure 3 as a point cloud of oelic vs. arachidic. The three different

Figure 3: Closer examination of the o:a space. Colouring left to
right: true regions, k-means results, and mixture model clustering.

colourings correspond to the true geographic regions and to the out-
come of automated cluster methods, i.e. k-means and model based
clustering. Surprisingly, neither method separates the purple region
from the blue as in the first panel (i.e. “Inland” from the “Coastal”
area of Sardinia). K-means partly separates the green from the grey
but enlarges the pink; model based misses the grey altogether.

In contrast, separation of “Inland” from “Coastal” Sardinia olive
oils is easily detected with RnavGraph. In Figure 4, we show
four states of a 3d-transition from p1:l1 to l1:s. While the bul-
let is dragged along the edge, the scatterplot dynamically displays
the 3d rigid rotation of the p1:l1 point cloud into that of l1:s.
Of course, this separation of “Inland” vs. “Coastal” olive oils is

Figure 4: The same navigation graph is shown with four different
bullet positions. The point clouds follow the 3d rigid rotation.

not evident on every 3d transition, but interactively exploring all
transitions along the graph strongly suggest this separation. More
exploration on the complete data set is shown on our poster.

3 GRAPH CONSTRUCTION

A serious challenge is to determine the low-dimensional spaces
worth visiting. For p variables, there are

(p
2
)

possible nodes in a
navGraph. In [3], Hurley and Oldford describe a variety of methods
for construction of graphs so as to focus only on those subspaces
that have interesting data structure. The resulting graph provides
a small navigational structure to explore which is an important ad-
vantage over other structures that could be overwhelmed by large
numbers of variables (e.g. a scatterplot matrix as navigation as in
[1]). Experience to date suggests that scagnostic measures [6] are
particularly valuable in identifying interesting subspaces. All such
methods from [3] are available in the RnavGraph package.

For very high dimensions, when the context does not naturally
produce a graph with small numbers of vertices and/or edges, some
dimensionality reduction should be pursued before building the
navGraph, see [3]. Figure 5 is an example of a data set of images

Figure 5: Image cloud of the Frey faces. The associated navGraph
bullet location is 46% along the way from i2:i3 to i3:i5.

taken from a movie. Each image is an array of 28× 20 greyscale
pixels – a point in p = 560 dimensions! This dimensionality was
reduced to 5 ( i1 to i5) by locally linear embedding (LLE [4]) and
the navGraph constructed. Clearly, there is considerable structure
in this data and it is not restricted to the first two dimensions. By
using a navGraph to explore the reduced dimension set of variates,
the target number of dimensions can be considerably larger than
usual, e.g. 10 or 20.

Any 3d- or 4d-transition graph can be viewed through the
navGraph(. . .) function, with an unlimited variety of visualiza-
tions beyond point clouds, e.g. 3d density estimates and contour
plots, see [5].
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