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ABSTRACT

The structure of a set of high dimensional data objects {@ages,
documents, molecules, genetic expressions, etc.) isiaosby dif-
ficult to visualize. In contrast, lower dimensional struet (esp.
3 or fewer dimensions) are natural to us and easy to visualize
not unreasonable approach then is to explore one low diowgisi
visualization after another in the hope that together tmgdeshed
light on the higher dimensional structure.

In our poster, we describe the graph theoretic structurentgc
proposed in [3] that represents low-dimensional spacesashg
nodes and transitions between spaces as edges. Of integest a
walks along these graphs that reveal meaningful structlfrthe
nodes are two dimensional and edges exist, say, only bet@een
spaces which share a variate, then the walk could be repesseyr
namically as a series of scatterplots, one transitionitgtime next
via a 3d rigid transformation. We demonstrate how thesetgrap
are constructed and dynamically explored via our open soRrc
packageRnavG aph.

Index Terms:  |.5.5 [Pattern Recognition]: Implementation—
Interactive systems

1 INTRODUCTION

The purpose of cluster analysis is to conjecture plausiifferd
ences in kind amongst a given collection of instances. Ehago
what our human visual system excels at; it has evolved tdi-faci
tate quick and considered detection of the visually like anlike
through a wide variety of cues — e.g. location and relativaxpr
imity, movement, shape, colour, texture and matching agaire-
determined patterns. Consequently, visualization is arahand
powerful resource for cluster analysis; it is especialljughle in
identifying unanticipated structures.

Unfortunately, the same evolutionary path has meant owrabis
system is poorly equipped to be of much help in identifyinghhi
dimensional structure. And most data these days are of hiuh,
ever increasing, dimensionality. Consequently, autodhatethods
of pattern recognition and cluster analysis have seenasorg re-
cent use and development; even so, intuition as to what itatest
a “cluster” in high dimensions remains largely, though bymeans
exclusively, based on our experience with our own visuat@er
tion — e.g. near neighbours;means, local density modes, etc.

Automated and purely visual methods for cluster detectien a
largely complementary in the circumstances in which theyeha
most value. Automated methods may be routinely appliedtaafa
many more dimensions than three, where our visual experiend
ability necessarily end. Unfortunately, to do so, automateth-
ods rely (at least implicitly) on determining pre-definedteans in
data configurations and so different methods can produterelitt
clusterings.

The point of visual clustering is to use interactive datagliza-
tion tools in concert with automated methods so as to takeduks

vantage of both. Following [3], we do this by introducing agin
structure, called aavigational graph, or navGraph, whose ver-
tices represent a unique pair of variates. When we add omggsd
between vertices which share a variate, the edge itselésepts
a three dimensional space formed by the union of those eariat
Such anavGraph is called a3d-transition graph in [3].

For example, the Olive data in [2] records the percentage com
position of the following eight fatty acids in 572 differetalian
olive oils: arachidic (a), eicosenoic (e), linoleic (Ilipdlenic (12),
oleic (0), palmitic (p1), palmitoleic (p2) and stearic (§ne pos-
sible 3d transition graph is shown at the centre of Figure thie T
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Figure 1: A 3d-transition graph for selected pairs of variates from the
Olive data. The “bullet” is the large (yellow) vertex at p1:l1. Vertices
connected to the bullet vertex are coloured differently (orange) from
those which are not (black). Outside each node, the point cloud of
the 572 data points is shown for that variate pair.

2d point clouds associated with each node use a color key that
corresponds with the geographic regions of olive oils, Nerth-
Apulia, South-Apulia, Calabria, Sicily, East-Liguria, ¥l iguria,
Umbria, Coastal-Sardinia, and Inland-Sardinia. If theseggaphic
regions are the “true” cluster structure, it is possible eoover
much of this structure iRnavG aph simply through the spatial
structure of the data in low dimensions, as we will show gartl

the next section and in more detail in our poster.

2 VISUALLY CLUSTERING THE OLIVE DATA USING RNAV-
GRAPH

TheRnavG aph interface has two major pieces — the navigation
graph, or navGraph, and an interactive 2d scatterplot. Whedts-
plays are shown side by side in Figure 2 as they might appear on
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(b) The interactive scatterplot window.

(a) The navGraph window.

Figure 2: Onright, the brush has been used to highlight the top group
in the point cloud.

data analyst’s screen. The positions of the points in theespéot
display are determined by the position of the bullet in theGraph
display. Our 2d scatterplot implementation can displaynimitext,
images and star glyphs. In addition, the scatterplot dysisl@om-
pletely interactive, allowing the analyst to brush, zooran plink
data between multiple displays and to analyze a subset afatze

“Coastal” olive ails is not evident on every 3d transitionf inter-
actively exploring all transitions along the graph strgngliggest
this separation. More exploration on the complete datassgtown
on our poster.

3 GRAPH CONSTRUCTION

A serious challenge is to determine the low-dimensionatepa
worth visiting. Forp variables, there ar(ag) possible nodes in a
navGraph. In [3], Hurley and Oldford describe a variety otinoels
for construction of graphs so as to focus only on those suespa
that have interesting data structure. The resulting graphiges
a small navigational structure to explore, an importantaathge
over other structures (e.g. a scatterplot matrix as navigats in
[1]) which would be overwhelmed by large numbers of variable
Experience to date suggests that scagnostic measureg [idic-
ularly valuable in identifying interesting subspaces. $Alth meth-
ods from [3] are available in thenav G- aph package.

For very high dimensions, when the context does not nayurall
produce a graph with small numbers of vertices and/or ecgese
dimensionality reduction should be pursued before buijdine

In Figure 2b we show that the analyst has selected a brusiping o navGraph, see [3]. Figure 5 is an example of a data set of isnage

eration and highlighted all points in the top group by swagpiut
a rectangular area. These selected points may be “deactiyat
causing them to disappear, so as to allow the analyst to focus

the remaining data. We show the remaining data in Figure 3 as a

point cloud of oelic vs. arachidic. The three different eosiags
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Figure 3: Closer examination of the o:a space. The
colouring represent from left to right: true region, k-means
clustering kneans(dat a, k=9), and model based clustering

Ml ust (dat a, 1: 20) .

correspond to the true geographic regions and to the outame
automated cluster methods, i.e. k-means and model bass@relu
ing. Surprisingly, neither method separates the “Inlandirf the
“Coastal” areas of Sardinia (top left corner). Overall, kimeans
seems to be doing a better job than model based clustering.
The separation of “Inland” from the “Coastal” Sardinia eliv
oils, however, can be shown wifRnavGr aph (and hence visu-
ally) quite well. In Figure 4, we show four states of dBansition
frompl: | 1tol 1: s. While the bullet is dragged along the edge,
the scatterplot dynamically displays the a 3d rigid rotafiom one
scatterplot into the other. Of course, this separation wffid” vs.
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Figure 4: The same navigation graph is shown with four different
bullet positions. The point clouds resemble a 3d rigid rotation.

Figure 5: Image cloud of the Frey faces. The associated navGraph
bullet location is 46%along the way fromi 2:i 3t0i 3:i 5.

taken from a movie. Each image is an array of<280 greyscale
pixels — a point inp = 560 dimensions! This dimensionality was
reduced to 5 { 1 toi 5) by local linear embedding (LLE [4]) and
the navGraph constructed. Clearly, there is considerahletare
in this data and it is not restricted to the first two dimensioBy
using a navGraph to explore the reduced dimension set cfteari
the target number of dimensions can be considerably latgar t
usual, e.g. 10 or 20.

Any 3d- or 4d-transition graph can be viewed through the
navG aph(...) function, with an unlimited variety of visualiza-
tions beyond point clouds, see [5].
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