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ABSTRACT

The structure of a set of high dimensional data objects (e.g.images,
documents, molecules, genetic expressions, etc.) is notoriously dif-
ficult to visualize. In contrast, lower dimensional structures (esp.
3 or fewer dimensions) are natural to us and easy to visualize. A
not unreasonable approach then is to explore one low dimensional
visualization after another in the hope that together thesewill shed
light on the higher dimensional structure.

In our poster, we describe the graph theoretic structure recently
proposed in [3] that represents low-dimensional spaces as graph
nodes and transitions between spaces as edges. Of interest are
walks along these graphs that reveal meaningful structure.If the
nodes are two dimensional and edges exist, say, only between2d
spaces which share a variate, then the walk could be represented dy-
namically as a series of scatterplots, one transitioning into the next
via a 3d rigid transformation. We demonstrate how these graphs
are constructed and dynamically explored via our open source R
package,RnavGraph.

Index Terms: I.5.5 [Pattern Recognition]: Implementation—
Interactive systems

1 INTRODUCTION

The purpose of cluster analysis is to conjecture plausible differ-
ences in kind amongst a given collection of instances. This is also
what our human visual system excels at; it has evolved to facili-
tate quick and considered detection of the visually like andunlike
through a wide variety of cues – e.g. location and relative prox-
imity, movement, shape, colour, texture and matching against pre-
determined patterns. Consequently, visualization is a natural and
powerful resource for cluster analysis; it is especially valuable in
identifying unanticipated structures.

Unfortunately, the same evolutionary path has meant our visual
system is poorly equipped to be of much help in identifying high
dimensional structure. And most data these days are of high,and
ever increasing, dimensionality. Consequently, automated methods
of pattern recognition and cluster analysis have seen increasing re-
cent use and development; even so, intuition as to what constitutes
a “cluster” in high dimensions remains largely, though by nomeans
exclusively, based on our experience with our own visual percep-
tion – e.g. near neighbours,k-means, local density modes, etc.

Automated and purely visual methods for cluster detection are
largely complementary in the circumstances in which they have
most value. Automated methods may be routinely applied to data of
many more dimensions than three, where our visual experience and
ability necessarily end. Unfortunately, to do so, automated meth-
ods rely (at least implicitly) on determining pre-defined patterns in
data configurations and so different methods can produce different
clusterings.

The point of visual clustering is to use interactive data visualiza-
tion tools in concert with automated methods so as to take best ad-

vantage of both. Following [3], we do this by introducing a graph
structure, called anavigational graph, or navGraph, whose ver-
tices represent a unique pair of variates. When we add only edges
between vertices which share a variate, the edge itself represents
a three dimensional space formed by the union of those variates.
Such anavGraph is called a3d-transition graph in [3].

For example, the Olive data in [2] records the percentage com-
position of the following eight fatty acids in 572 differentItalian
olive oils: arachidic (a), eicosenoic (e), linoleic (l1), linolenic (l2),
oleic (o), palmitic (p1), palmitoleic (p2) and stearic (s).One pos-
sible 3d transition graph is shown at the centre of Figure 1. The
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Figure 1: A 3d-transition graph for selected pairs of variates from the
Olive data. The “bullet” is the large (yellow) vertex at p1:l1. Vertices
connected to the bullet vertex are coloured differently (orange) from
those which are not (black). Outside each node, the point cloud of
the 572data points is shown for that variate pair.

2d point clouds associated with each node use a color key that
corresponds with the geographic regions of olive oils, i.e.North-
Apulia, South-Apulia, Calabria, Sicily, East-Liguria, West-Liguria,
Umbria, Coastal-Sardinia, and Inland-Sardinia. If these geographic
regions are the “true” cluster structure, it is possible to recover
much of this structure inRnavGraph simply through the spatial
structure of the data in low dimensions, as we will show partly in
the next section and in more detail in our poster.

2 VISUALLY CLUSTERING THE OLIVE DATA USING RNAV-
GRAPH

TheRnavGraph interface has two major pieces – the navigation
graph, or navGraph, and an interactive 2d scatterplot. The two dis-
plays are shown side by side in Figure 2 as they might appear ona



(a) The navGraph window. (b) The interactive scatterplot window.

Figure 2: On right, the brush has been used to highlight the top group
in the point cloud.

data analyst’s screen. The positions of the points in the scatterplot
display are determined by the position of the bullet in the navGraph
display. Our 2d scatterplot implementation can display points, text,
images and star glyphs. In addition, the scatterplot display is com-
pletely interactive, allowing the analyst to brush, zoom, pan, link
data between multiple displays and to analyze a subset of thedata.
In Figure 2b we show that the analyst has selected a brushing op-
eration and highlighted all points in the top group by sweeping out
a rectangular area. These selected points may be “deactivated”,
causing them to disappear, so as to allow the analyst to focuson
the remaining data. We show the remaining data in Figure 3 as a
point cloud of oelic vs. arachidic. The three different colourings

Figure 3: Closer examination of the o:a space. The
colouring represent from left to right: true region, k-means
clustering kmeans(data,k=9), and model based clustering
Mclust(data,1:20).

correspond to the true geographic regions and to the outcomeof
automated cluster methods, i.e. k-means and model based cluster-
ing. Surprisingly, neither method separates the “Inland” from the
“Coastal” areas of Sardinia (top left corner). Overall, thek-means
seems to be doing a better job than model based clustering.

The separation of “Inland” from the “Coastal” Sardinia olive
oils, however, can be shown withRnavGraph (and hence visu-
ally) quite well. In Figure 4, we show four states of a 3d-transition
from p1:l1 to l1:s. While the bullet is dragged along the edge,
the scatterplot dynamically displays the a 3d rigid rotation from one
scatterplot into the other. Of course, this separation of “Inland” vs.

Figure 4: The same navigation graph is shown with four different
bullet positions. The point clouds resemble a 3d rigid rotation.

“Coastal” olive oils is not evident on every 3d transition, but inter-
actively exploring all transitions along the graph strongly suggest
this separation. More exploration on the complete data set is shown
on our poster.

3 GRAPH CONSTRUCTION

A serious challenge is to determine the low-dimensional spaces
worth visiting. Forp variables, there are
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possible nodes in a
navGraph. In [3], Hurley and Oldford describe a variety of methods
for construction of graphs so as to focus only on those subspaces
that have interesting data structure. The resulting graph provides
a small navigational structure to explore, an important advantage
over other structures (e.g. a scatterplot matrix as navigation as in
[1]) which would be overwhelmed by large numbers of variables.
Experience to date suggests that scagnostic measures [6] are partic-
ularly valuable in identifying interesting subspaces. Allsuch meth-
ods from [3] are available in theRnavGraph package.

For very high dimensions, when the context does not naturally
produce a graph with small numbers of vertices and/or edges,some
dimensionality reduction should be pursued before building the
navGraph, see [3]. Figure 5 is an example of a data set of images

Figure 5: Image cloud of the Frey faces. The associated navGraph
bullet location is 46%along the way from i2:i3 to i3:i5.

taken from a movie. Each image is an array of 28×20 greyscale
pixels – a point inp = 560 dimensions! This dimensionality was
reduced to 5 (i1 to i5) by local linear embedding (LLE [4]) and
the navGraph constructed. Clearly, there is considerable structure
in this data and it is not restricted to the first two dimensions. By
using a navGraph to explore the reduced dimension set of variates,
the target number of dimensions can be considerably larger than
usual, e.g. 10 or 20.

Any 3d- or 4d-transition graph can be viewed through the
navGraph(. . .) function, with an unlimited variety of visualiza-
tions beyond point clouds, see [5].
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