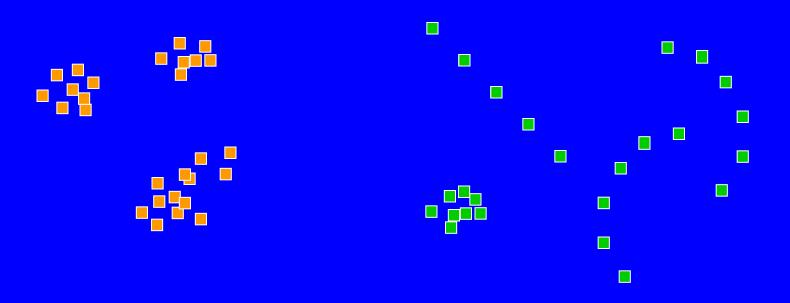
Interactive Clustering Overview and Tools

> Wayne Oldford University of Waterloo


May 17 2001

Overview

1. Finding groups in data 2. Interactive data analysis 3. Enlarging the problem 4. Putting it together 5. Software modelling (illustration) 6. Summary

1.Finding groups in data

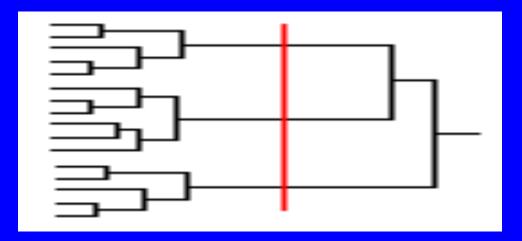
- Objects to be grouped together
 - locations
 - pairwise (dis)similarities
- Applications:
 - Web documents as objects to be grouped
 - Building groups to use later as classification
 - Building groups to serve as templates
 - Building groups to understand/model

Group definition (like with like)

- homogeneous vs heterogeneous
- part of pattern

group definition is a problem

Clustering approaches

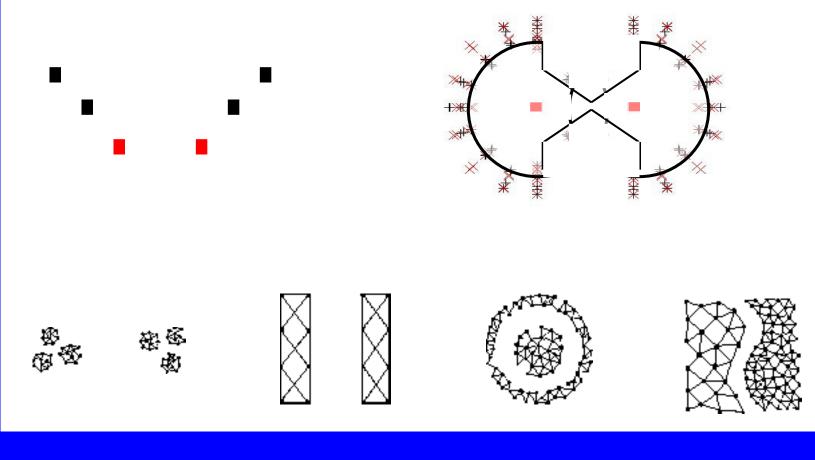

Agglomerative (near points/clusters are joined)
Single linkage
Complete linkage
Average linkage

Recursive splitting

 e.g. minimal spanning tree

May 17 2001

Cluster hierarchies



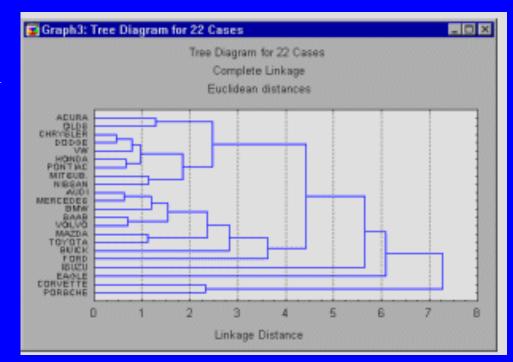
- Clusters are nested
- Often represented as a tree (dendrogram)
- Join/split history and 'strength' preserved

Other approaches

- k-means
 - assign points to k groups
 - re-assign to improve objective function
- model-based
 - likelihood/Bayesian; model search/averaging
- density estimation
 - groups = high-density regions
- classification to cluster
- visually motivated methods

Visual Empirical Regions of Influence (VERI)

May 17 2001


Notes

- many choices
 - between and within methods
- built-in biases for shapes
- computationally costly $- O(n^2) \dots$

Conceptual model: algorithmic, run to completion

typical software

- resources dedicated to numerical computation
 - teletype interaction
 - runs to completion
 - graphical "output"

Compare to interactive data analysis

May 17 2001

Interactive data analysis

- exploratory, tentative
- graphical
- non-algorithmic

 varied granularity
- integrated
- deep interaction

3. Enlarging the problem

Mutually exclusive and exhaustive groups g_1, g_2, \ldots, g_k form a partition $P = \{g_1, g_2, \dots, g_k\}$ of the set of data objects. Goal: Explore the space of possible partitions. Structuring the partition space $P_A = \{g_1, g_2, ..., g_a\}$ and $P_B = \{h_1, h_2, ..., h_b\}$

- When a > b, P_A call a *finer partition* than P_B.
 P_A is called a *refinement* of P_B (or P_B a *reduction* of P_A)
- P_A is *nested* in P_B only if a > b and *every* g_i is a subset of a single h_j write P_A } P_B or P_B { P_A
- When a = b, P_A is called a *reassignment* of P_B

Reduction

 $P_1 = \{g_1, ..., g_6\} \rightarrow P_2 = \{h_1, ..., h_4\} \rightarrow P_3 = \{m_1, m_2, m_3\}$

• $h_i = g_i$ i = 1, 2; $h_3 = join(g_3, g_4)$; $h_4 = join(g_5, g_6)$

- nesting: $P_1 \} P_2$

disperse elements of h₄ over h_i i = 1, 2, 3 to give m_i for i = 1, 2, 3.

- split $(h_4) = \{h_1^*, h_2^*, h_3^*\}; m_i = join (h_i^*, h_i)$ - P₂ } P₃ is false

Reduction decisions/options

- join operations: which groups?
 - e.g. inner, outer, centres, ...
 - distance measures to use ...
- dispersal operations:
 - selecting group(s)
 - Max volume, eigen-value, MST...
 - determining partitional method
 - random, VERI, MST, ...
 - choosing join ...

Refinement

 $P_2 = \{h_1, ..., h_4\}$ ---> $P_1 = \{g_1, ..., g_6\}$

• $g_i = h_i$ i = 1, 2; split $(h_3) \rightarrow g_3, g_4$ split $(h_4) \rightarrow g_5, g_6$

nesting: $P_2 \{ P_1 \}$

May 17 2001

Refinement decisions/options

- which groups to split?
 - e.g. inner, outer, directions, ...
 - distance measures to use ...
- how to split?
 - MST, outlying points, reassignment, ...

Reassignment $P_1 = \{g_1, ..., g_k\} \rightarrow P_2 = \{h_1, ..., h_k\}$

- objective function d(P) to be minimized. $P \leftarrow P_1$
- for each object o in g_i, assign it to one of g_j (j != i) forming a new partition P_{ij} and find largest

 $\Delta_{ij}(o) = d(P) - d(P_{ij})$

- repeat for all i, j. If max $\Delta_{ij} > 0$ move o from g_i , to g_j
- Repeat until $\Delta_{\text{max}} \ll 0$

May 17 2001

Reassignment decisions/options

Objective function

- distances, centres, ...
- within vs between/within, ...
- variates/directions
- Iteration strategy
 - single-pass, k-means, complete looping (greedy), start, ...

4. Putting it together

Series of moves in partition space: 1. Refine (P) -- > P_{new}

2. Reduce (P) -- > P_{new}

3. Reassign (P) $\rightarrow P_{new}$

Additional ops on partitions

- Unary:
 - Subset (P)
 - Operate any of **R** (subset (P))
 - Manual (P) ... change P according to manual intervention (e.g. colouring)

n-ary operators

- resolve $(P_1, ..., P_m) \rightarrow P_{new}$
- dissimilarity $(P_i, P_j) \rightarrow d_{i,j}$
- display $(P_1, ..., P_m)$
 - dendrogram if $P_1 \{ \dots \{ P_m \}$

mds plot of all clusters in P₁, ..., P_m
mds plot of all partitions P₁, ..., P_m

5. Software modelling

- Principal control panel:
 - current partition and list of saved partitions
 - refine, reduce, re-assign, re-start buttons
 - cluster plot button (mds plot)
 - random select button
 - subset focus and join toggle
 - operation on partitions button
 - manual button (form partition from point colours)

Secondary panels

- Refine:
 - performs refine, offers access to arguments
- Reduce
 - performs reduce, offers access to arguments
- Reassign
 - performs reassign, offers access to arguments
- Each will operate on only those points highlighted or on all if none selected.

Secondary panels (continued)

- Operate on partitions
 - saved partitions list
 - resolve selected partition
 - plot selected partitions using selected dissimilarity
 - dendrogram of selected partitions (if nested)
 - cluster-plot for clusters of selected partitions (esp. for non-nested)

Software modelling (details)

• Objects:

- Point-symbols, case-objects (existing in Quail)
- Cluster-points
- Clusters
- Partitions
- Methods

– Reduce, refine, reassign, ...

Software illustration

- Two prototype displays (buggy)
 - Single-window
 - Separate windows
- Integration with existing Quail graphics
- Manual, dendrogram, cluster plots, ...
- VERI clustering

6. Summary

- Cluster analysis is naturally exploratory and needs integration with modern interactive data analysis.
- Enlarging the problem to partitions:
 - simplifies and gives structure
 - encourages exploratory approach
 - integrates naturally
 - introduces new possibilities (analysis and research)

Acknowledgements

- Erin McLeish, several undergraduates and graduate students in statistical computing course at Waterloo
- Quail: Quantitative Analysis in Lisp http://www.stats.uwaterloo.ca/Quail