Interactive Clustering Overview and Tools

Wayne Oldford
University of Waterloo

Overview

- 1. Finding groups in data
- 2. Interactive data analysis
- 3. Enlarging the problem
- 4. Putting it together
- 5. Software modelling (illustration)
- 6. Summary

1. Finding groups in data

- Objects to be grouped together
 - locations
 - pairwise (dis)similarities

Applications:

- Web documents as objects to be grouped
- Building groups to use later as classification
- Building groups to serve as templates
- Building groups to understand/model

Group definition (like with like)

- homogeneous vs heterogeneous
- part of pattern

group definition is a problem

Clustering approaches

- Agglomerative (near points/clusters are joined)
 - Single linkage
 - Complete linkage
 - Average linkage

- Recursive splitting
 - e.g. minimal spanning tree

Cluster hierarchies

- Clusters are nested
- Often represented as a tree (dendrogram)
- Join/split history and 'strength' preserved

Other approaches

- k-means
 - assign points to k groups
 - re-assign to improve objective function
- model-based
 - likelihood/Bayesian; model search/averaging
- density estimation
 - groups = high-density regions
- classification to cluster
- visually motivated methods

Visual Empirical Regions of Influence (VERI)

May 17 2001 CASI 2001

Notes

- many choices
 - between and within methods
- built-in biases for shapes
- computationally costly
 - $O(n^2) ...$

Conceptual model: algorithmic, run to completion

typical software

resources dedicated to numerical computation

- teletype interaction
- runs to completion
- graphical "output"

Compare to interactive data analysis

Interactive data analysis

- exploratory, tentative
- graphical
- non-algorithmic
 - varied granularity
- integrated
- deep interaction

3. Enlarging the problem

Mutually exclusive and exhaustive groups

$$g_1, g_2, \ldots, g_k$$

form a partition

$$P = \{g_1, g_2, ..., g_k\}$$

of the set of data objects.

Goal: Explore the space of possible partitions.

Structuring the partition space

$$P_A = \{g_1, g_2, \dots, g_a\} \text{ and } P_B = \{h_1, h_2, \dots, h_b\}$$

- When a > b, P_A call a *finer partition* than P_B .
 - P_A is called a *refinement* of P_B (or P_B a *reduction* of P_A)
- P_A is *nested* in P_B only if a > b and *every* g_i is a subset of a single h_j write P_A P_B or P_B P_A
- When a = b, P_A is called a *reassignment* of P_B

Reduction

$$P_1 = \{g_1, ..., g_6\} \rightarrow P_2 = \{h_1, ..., h_4\} \rightarrow P_3 = \{m_1, m_2, m_3\}$$

- $h_i = g_i$ i = 1, 2; $h_3 = join(g_3, g_4)$; $h_4 = join(g_5, g_6)$
 - nesting: P_1 P_2
- disperse elements of h_4 over h_i i = 1, 2, 3 to give m_i for i = 1, 2, 3.
 - split $(h_4) = \{h_1^*, h_2^*, h_3^*\}; m_i = join (h_i^*, h_i)$
 - $-P_2$ } P_3 is false

Reduction decisions/options

- join operations: which groups?
 - e.g. inner, outer, centres, ...
 - distance measures to use ...
- dispersal operations:
 - selecting group(s)
 - Max volume, eigen-value, MST...
 - determining partitional method
 - random, VERI, MST, ...
 - choosing join ...

Refinement

$$P_2 = \{h_1, ..., h_4\}$$
 ---> $P_1 = \{g_1, ..., g_6\}$

•
$$g_i = h_i$$
 $i = 1, 2$; split $(h_3) \rightarrow g_3$, g_4 split $(h_4) \rightarrow g_5$, g_6

nesting: P₂ { P₁

Refinement decisions/options

- which groups to split?
 - e.g. inner, outer, directions, ...
 - distance measures to use ...
- how to split?
 - MST, outlying points, reassignment, ...

Reassignment

$$P_1 = \{g_1, ..., g_k\} \rightarrow P_2 = \{h_1, ..., h_k\}$$

- objective function d(P) to be minimized. $P \leftarrow P_1$
- for each object o in g_i , assign it to one of g_j (j != i) forming a new partition P_{ij} and find largest

$$\Delta_{ij}(o) = d(P) - d(P_{ij})$$

- repeat for all i, j. If max $\Delta_{ij} > 0$ move o from g_i , to g_j
- Repeat until $\Delta_{\text{max}} \leftarrow 0$

Reassignment decisions/options

Objective function

- distances, centres, ...
- within vs between/within, ...
- variates/directions
- Iteration strategy
 - single-pass, k-means, completelooping (greedy), start, ...

4. Putting it together

Series of moves in partition space:

1. Refine (P)
$$\rightarrow$$
 P_{new}

2. Reduce (P)
$$\rightarrow$$
 P_{new}

3. Reassign (P)
$$\rightarrow$$
 P_{new}

Additional ops on partitions

- Unary:
 - Subset (P)
 - Operate any of R (subset (P))
 - Manual (P) ... change P according to manual intervention (e.g. colouring)

n-ary operators

- resolve $(P_1, ..., P_m) \longrightarrow P_{new}$
- dissimilarity $(P_i, P_j) \longrightarrow d_{i,j}$
- display $(P_1, ..., P_m)$
 - dendrogram if $P_1 \{ ... \{ P_m \}$
 - mds plot of all clusters in $P_1, ..., P_m$
 - mds plot of all partitions $P_1, ..., P_m$

5. Software modelling

- Principal control panel:
 - current partition and list of saved partitions
 - refine, reduce, re-assign, re-start buttons
 - cluster plot button (mds plot)
 - random select button
 - subset focus and join toggle
 - operation on partitions button
 - manual button (form partition from point colours)

Secondary panels

- Refine:
 - performs refine, offers access to arguments
- Reduce
 - performs reduce, offers access to arguments
- Reassign
 - performs reassign, offers access to arguments
- Each will operate on only those points highlighted or on all if none selected.

Secondary panels (continued)

- Operate on partitions
 - saved partitions list
 - resolve selected partition
 - plot selected partitions using selected dissimilarity
 - dendrogram of selected partitions (if nested)
 - cluster-plot for clusters of selected parttitions (esp. for non-nested)

Software modelling (details)

• Objects:

- Point-symbols, case-objects (existing in Quail)
- Cluster-points
- Clusters
- Partitions

Methods

- Reduce, refine, reassign, ...

Software illustration

- Two prototype displays (buggy)
 - Single-window
 - Separate windows
- Integration with existing Quail graphics
- Manual, dendrogram, cluster plots, ...
- VERI clustering

6. Summary

- Cluster analysis is naturally exploratory and needs integration with modern interactive data analysis.
- Enlarging the problem to partitions:
 - simplifies and gives structure
 - encourages exploratory approach
 - integrates naturally
 - introduces new possibilities (analysis and research)

Acknowledgements

- Erin McLeish, several undergraduates and graduate students in statistical computing course at Waterloo
- Quail: Quantitative Analysis in Lisp http://www.stats.uwaterloo.ca/Quail