Graph traversals and visual ordering: Eulerians, Hamiltonians and pairwise comparisons

Catherine Hurley NUI Maynooth

joint work wtih Wayne Oldford (Waterloo)
catherine.hurley@nuim.ie

June 262008

Graph traversals and visual ordering: Eulerians, Hamiltonians and pairwise comparisons
 Outline

- Comparison of treatment groups
\rightarrow A new multiple comparison display
- Visual ordering as graph traversal
\rightarrow Eulerians and hamiltonians
- Parallel coordinates
\rightarrow guided by scagnostics

Comparison of treatment groups

Vit. C treated cancer patients: Cameron and Pauling 1978

Comparisons of cancer types

- Easy to visually compare adjacent groups
- not so easy for distant groups

95\% family-wise confidence level

- Which pairs are significantly different?
- 95\% Tukey HSD comparisons

Comparison of treatment groups

Comparisons of cancer types

Comparisons of cancer types

Require 3 sequences for all pairwise comparisons.

Note there is duplication: Breast-Ovary and Bronchus-Colon are in first and third plots

Comparison of treatment groups

Require 3 sequences for all pairwise comparisons.

Note there is duplication: Breast-Ovary and Bronchus-Colon are in first and third plots

Comparison of treatment groups

More compactly: Glue the sequences in the first two plots together, append an extra 'Stomach'.

New pairwise comparison display

Pairwise comparisons of cancer types

- Rearrange boxplots so significantly different means appear on Ihs.

New pairwise comparison display

- Rearrange boxplots so significantly different means appear on Ihs.
- Overlay 99\% (HSD) Cls $\left(\mu_{\text {left }}-\mu_{\text {right }}\right)$

New pairwise comparison display

- Rearrange boxplots so significantly different means appear on Ihs.
- Overlay 99\% (HSD) Cls $\left(\mu_{\text {left }}-\mu_{\text {right }}\right)$
- Red arrow: significantly different comparisons
- Simple yet informative

Improvement on..???

Hsu, Periggia (1994), Heiberger and Holland (2006)

Graphs: nodes, edges and weights

- n variables, cases, factor levels, boxplots: identify with nodes of graph
- visualisation: requires graph traversal
- All possible pairings are of interest: place an undirected edge between each pair of nodes
- Graph is complete, K_{n}

- Dissimilarity measure: edge weight

Hamiltonian and Eulerian paths

Hamiltonian path gives a permutation of vertices

Eulerian path visits all edges

Hamiltonian decomposition: an eulerian tour composed of edge-distinct hamiltonian cycles

Classical results: Euler paths- existence

- Eulerian tour (closed path) exists when every vertex is even. ie for $K_{2 m+1}$

```
- Example: K}\mp@subsup{K}{5}{
```

- Eulerian path (open) exists when two vertices are odd. Augment $K_{2 m}$ with extra edges to achieve this.

Which eulerian?

- How many?
- K_{7} : about 130 million choices
- K_{21} has more than 3.4×10^{184} discounting cyclic permutations

Online Encyclopedia of Integer Sequences (Sloane 2004)

- Prefer eulerians where low-weight edges (interesting comparisons) occur early on.
- Standard algorithm follows unused edges until all are visited. Our version (GrEul) picks low-weight edges.

Classical results: Hamiltonian Decompositions

K_{n} can be decomposed as follows:

- For $n=2 m+1$, into either
- m hamiltonian cycles, or
- m hamiltonian paths and an almost-one factor ©Eample:K
- For $n=2 m$ into either
- m hamiltonian paths, or
- $m-1$ hamiltonian cycles and a 1-factor (or perfect matching).

Which hamiltonian?

- Depends on question of interest.
- Sort nodes, eg by median
- Find shortest or lowest-weight path: (TSP)
- Choice of weights?
- How interesting is the comparison between treatements? or the relationship between variables?

Which hamiltonian decomposition?

How many?

- $K_{7}: 2$ canonical forms

120 like this

and 840 like this

- $K_{11}: 45,000+$ canonical forms

Colburn (1982)
Lucas-Walecki construction: gives one canonical form Skiplw

Hamiltonian decomposition algorithm

- for decomposition into hamiltonian cycles
- When n is even $n / 2-1$ edges must be visited twice
- Lucas-Walecki construction (1892)
- Construction: n even

126354

Hamiltonian decomposition algorithm

- for decomposition into hamiltonian cycles
- When n is even $n / 2-1$ edges must be visited twice
- Lucas-Walecki construction (1892)
- Construction: n even

$$
\begin{gathered}
126354 \\
231465
\end{gathered}
$$

Hamiltonian decomposition algorithm

- for decomposition into hamiltonian cycles
- When n is even $n / 2-1$ edges must be visited twice
- Lucas-Walecki construction (1892)
- Construction: n even same as zig-zag method used in Wegman (1990)

Hamiltonian decomposition algorithm

- for decomposition into hamiltonian cycles
- When n is even $n / 2-1$ edges must be visited twice
- Lucas-Walecki construction (1892)
- Construction: n even same as zig-zag method used in Wegman (1990)

black edges- visited twice

Hamiltonian decomposition algorithm

- for decomposition into hamiltonian cycles
- When n is even $n / 2-1$ edges must be visited twice
- Lucas-Walecki construction (1892)
- Construction: n even same as zig-zag method used in Wegman (1990)

black edges- visited twice
- Construction: n odd

$$
\begin{array}{lllll}
7 & 1 & 2 & 6 & 5
\end{array} 4
$$

Hamiltonian decomposition algorithm

- for weighted graphs

Goal: a decomposition where weights increase: first hamiltonian has lowest weights, 2nd has next lowest weights etc.

- Greedy algorithm:
- Start with Lucas-Walecki construction
- WHam: use TSP for first hamiltonian, using weights, vary cycle order, direction and contact point in others.
- Or:
- Or, peripatetic TSP: k-best edge-disjoint hamiltonians
- use other seriation as alternatives to TSP

Applications

- Pairwise comparison of treatments
- Parallel coordinates
- Interaction plots
- Star glyphs of multivariate data

Parallel coordinates

mtcars data from R: 6 variables

- Shows all pairs of variables adjacently.

Parallel coordinates

mtcars data from R: 6 variables

Correlation guided Hamiltonian decomposition

- Shows all pairs of variables adjacently.
- WHam: use correlation to choose decomposition
- Add correlation guide.

Parallel coordinates- more variables?

sleep data- 10 variables, 62 species

- Eulerian has 49 edges - use GrEul to follow interesting edges first.
- Barchart shows panel scagnostics
scagnostics package, Hofmann et al.
- Lots of skinniness, skewness

Brain and body weight log transformed, colour by life expectancy Use index values of 0.7 or more.

Parallel coordinates- more variables?

sleep data- 10 variables, 62 species

- Zoom on first 18 panels- captures 'interesting" relationships
- Lots of skinniness, skewness

Parallel coordinates- hamiltonian decomposition

- Hamiltonians that chase "interesting" relationships-here correlational structure
- WHam: first two (of 5) hamiltonians

Monotone (grey) + convexity (yellow)

Categorical data

The Donner Party- 1846-47, Sierra Nevada

- Categorical variables: spread out uniformly within bars, along axis
- Double axis
- All pairwise relationships, and p(survival $\mid x, y$)

Concluding remarks

- Other applications: PCP-categorical, star glyphs, interaction plots
- Wegman(1990) - LW hamiltonian path algorithm in parallel coordinate displays
- Bailey et al (2003)- Hamiltonian cycles, in DOE

$\star \star \star \star$

- Software EulerViz R-package
- Uses TSP(Hahsler et al), scagnostics (Hofmann et al)

- Further work... better algorithms?
- other types of graphs eg bipartite?
- Next talk....

Cars data

- Task: visually cluster cases

Default ordering of variables.
Dataset order H0

789 look similar, and to 1 ?
Other groups: 23, 56
4 on its own

Cars data

- Task: visually cluster cases

Default ordering of variables.
Dataset order H0

789 look similar, and to 1 ?
Other groups: 23, 56
4 on its own
Conclusions are order denendentl

Cars data

Eulerian order
Eulerian order

7

Another hamiltonian Hamiltonian decomp, H1:H2:H3

Groups: 789,23,56,14

Less shape variation between orderings.
Conclusions are less order dependent!

