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Graph traversals and visual ordering: Eulerians,
Hamiltonians and pairwise comparisons

Outline

• Comparison of treatment groups

—� A new multiple comparison display

• Visual ordering as graph traversal

—� Eulerians and hamiltonians

• Parallel coordinates

—� guided by scagnostics



Comparison of treatment groups
Vit. C treated cancer patients: Cameron and Pauling 1978
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• Easy to visually compare
adjacent groups

• not so easy for distant
groups
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95% family−wise confidence level

Differences in mean levels of Organ

• Which pairs are significantly
different?

• 95% Tukey HSD
comparisons

Response is sq. root of survival times



Comparison of treatment groups
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l Require 3 sequences for all pairwise
comparisons.

Note there is duplication: Breast-Ovary and Bronchus-Colon are in
first and third plots

Theory



Comparison of treatment groups
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Comparison of treatment groups

More compactly: Glue the sequences in the first two plots
together, append an extra ‘Stomach’.

Stomach Bronchus Colon Ovary Breast Stomach Colon Breast Bronchus Ovary Stomach
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New pairwise comparison display

Bronchus Breast Stomach Ovary Bronchus Colon Breast Ovary Colon Stomach Bronchus
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• Rearrange boxplots so significantly different means appear on
lhs.

• Overlay 99% (HSD) CIs (µleft − µright)

• Red arrow: significantly different comparisons

• Simple yet informative

Theory2
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New pairwise comparison display

Bronchus Breast Stomach Ovary Bronchus Colon Breast Ovary Colon Stomach Bronchus

10
20

30
40

50
60

Pairwise comparisons of cancer types

S
qr

t S
ur

vi
va

l

-4
0

-2
0

0
20

40

D
iff
er
en
ce
s

• Rearrange boxplots so significantly different means appear on
lhs.

• Overlay 99% (HSD) CIs (µleft − µright)

• Red arrow: significantly different comparisons

• Simple yet informative

Theory2



Improvement on..???
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95% family−wise confidence level

Differences in mean levels of Organ

multiple comparisons of means of sqrt
multiple comparisons of means of Survival

contrast value
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Hsu, Periggia (1994), Heiberger and Holland (2006)



Graphs: nodes, edges and weights

• n variables, cases, factor levels, boxplots: identify with nodes
of graph

• visualisation: requires graph traversal

• All possible pairings are of interest: place an undirected edge
between each pair of nodes

• Graph is complete, Kn
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• Dissimilarity measure: edge weight



Hamiltonian and Eulerian paths

Hamiltonian path gives a
permutation of vertices
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Eulerian path visits all edges
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Hamiltonian decomposition: an eulerian tour composed of
edge-distinct hamiltonian cycles
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Classical results: Euler paths- existence

• Eulerian tour (closed path) exists when every vertex is even.
ie for K2m+1

Example: K5

• Eulerian path (open) exists when two vertices are odd.
Augment K2m with extra edges to achieve this.



Which eulerian?

• How many?

� K7: about 130 million choices
� K21 has more than 3.4× 10184 discounting cyclic permutations

Online Encyclopedia of Integer Sequences (Sloane 2004)

• Prefer eulerians where low-weight edges (interesting
comparisons) occur early on.

• Standard algorithm follows unused edges until all are visited.
Our version (GrEul) picks low-weight edges.

Example: GrEul

Hierholzer 1873



Classical results: Hamiltonian Decompositions

Kn can be decomposed as follows:

• For n = 2m + 1, into either

� m hamiltonian cycles, or
� m hamiltonian paths and an almost-one factor Example:K5

• For n = 2m into either

� m hamiltonian paths, or
� m − 1 hamiltonian cycles and a 1-factor (or perfect matching).

Lucas-Walecki (1892) Alspach(1990)



Which hamiltonian?

• Depends on question of interest.

• Sort nodes, eg by median

• Find shortest or lowest-weight path: (TSP)

• Choice of weights?

� How interesting is the comparison between treatements? or
the relationship between variables?



Which hamiltonian decomposition?

How many?

� K7: 2 canonical forms

120 like this
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and 840 like this
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� K11: 45,000+ canonical forms

Colburn (1982)

Lucas-Walecki construction: gives one canonical form SkipLW



Hamiltonian decomposition algorithm
– for decomposition into hamiltonian cycles

• When n is even n/2− 1 edges must be visited twice

• Lucas-Walecki construction (1892)

• Construction: n even
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2 3 1 4 6 5
3 4 2 5 1 6

• Construction: n odd

7 1 2 6 3 5 4
7 2 3 1 4 6 5
7 3 4 2 5 1 6 7
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Hamiltonian decomposition algorithm
– for decomposition into hamiltonian cycles

• When n is even n/2− 1 edges must be visited twice

• Lucas-Walecki construction (1892)

• Construction: n even same as zig-zag method used in Wegman (1990)
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Hamiltonian decomposition algorithm
– for weighted graphs

Goal: a decomposition where weights increase: first hamiltonian
has lowest weights, 2nd has next lowest weights etc.

• Greedy algorithm:

� Start with Lucas-Walecki construction
� WHam: use TSP for first hamiltonian, using weights, vary

cycle order, direction and contact point in others.

• Or:

� Or, peripatetic TSP: k-best edge-disjoint hamiltonians
� use other seriation as alternatives to TSP



Applications

• Pairwise comparison of treatments

• Parallel coordinates

• Interaction plots

• Star glyphs of multivariate data



Parallel coordinates
mtcars data from R: 6 variables

Hamiltonian decomposition

Mpg Disp Hp Drat Wt Qsec Disp.1 Drat.1 Mpg.1 Qsec.1 Hp.1 Wt.1 Drat.2 Qsec.2 Disp.2 Wt.2 Mpg.2 Hp.2

• Shows all pairs of variables adjacently.

• WHam: use correlation to choose decomposition

• Add correlation guide.

Panel colors - three hamiltonian paths. Line color -transmission type.



Parallel coordinates
mtcars data from R: 6 variables

Correlation guided Hamiltonian decomposition

Hp Disp Wt Qsec Mpg Drat Qsec.1 Drat.1 Disp.1 Mpg.1 Hp.1 Wt.1 Disp.2 Qsec.2 Hp.2 Drat.2 Wt.2 Mpg.2

• Shows all pairs of variables adjacently.

• WHam: use correlation to choose decomposition

• Add correlation guide.

Panel colors - three hamiltonian paths. Line color -transmission type.



Parallel coordinates- more variables?
sleep data- 10 variables, 62 species

Eulerian on all scagnostics.

D P D.1 SWS Life PS TS D.3 P.2 SWS.2 SE.2 GP GP.1 P.4 PS.2 Life.2 D.4 SWS.4 TS.3 PS.4 TS.4 GP.4 Life.4 SE.4

Outlying

Skewed

Clumpy

Sparse

Striated

Convex

Skinny

Stringy

Monotonic

• Eulerian has 49 edges - use GrEul to follow interesting edges
first.

• Barchart shows panel scagnostics
scagnostics package, Hofmann et al.

• Lots of skinniness, skewness
Brain and body weight log transformed, colour by life expectancy
Use index values of 0.7 or more.



Parallel coordinates- more variables?
sleep data- 10 variables, 62 species

First 18 panels of Eulerian on all scagnostics.

D P LogBodyWt D.1 SE SWS P.1 Life D.2 PS SE.1 TS SWS.1 D.3 TS.1 P.2 PS.1 SWS.2 LogBodyWt.1

Outlying

Skewed

Clumpy

Sparse

Striated

Convex

Skinny

Stringy

Monotonic

• Zoom on first 18 panels- captures ‘interesting” relationships

• Lots of skinniness, skewness



Parallel coordinates- hamiltonian decomposition

Best Hamiltonian on scagnostics: Monotonic Convex

SWS TS PS Life GP LogBrainWt LogBodyWt SE D P

Second hamiltonian on scagnostics: Monotonic Convex

Life LogBrainWt TS SE SWS P PS D GP LogBodyWt

• Hamiltonians that chase “interesting” relationships-here
correlational structure

• WHam: first two (of 5) hamiltonians

Monotone (grey) + convexity (yellow)



Categorical data
The Donner Party- 1846-47, Sierra Nevada

Outcome Sex Status Age Sex.1 Age.1 Outcome.1 Status.1

0

1

Female

Male

Family

Hired

Single

Female

Male

0

1

Family

Hired

Single

• Categorical variables: spread out uniformly within bars, along
axis

• Double axis

• All pairwise relationships, and p(survival | x,y)



Concluding remarks

• Other applications: PCP-categorical, star glyphs, interaction
plots

• Wegman(1990) - LW hamiltonian path algorithm in parallel
coordinate displays

• Bailey et al (2003)- Hamiltonian cycles, in DOE

FFFF

• Software EulerViz R-package

• Uses TSP(Hahsler et al), scagnostics (Hofmann et al)

FFFF

• Further work... better algorithms?

• other types of graphs eg bipartite?

• Next talk....



Cars data
• Task: visually cluster cases

Default ordering of variables.
Dataset order H0

1 2 3

4 5 6

7 8 9

789 look similar, and to 1?
Other groups: 23, 56
4 on its own



Cars data
• Task: visually cluster cases

Default ordering of variables.
Dataset order H0

1 2 3

4 5 6

7 8 9

789 look similar, and to 1?
Other groups: 23, 56
4 on its own

Another hamiltonian
Order H3

1 2 3

4 5 6

7 8 9

14 look similar
23 look different

Conclusions are order dependent!



Cars data

Eulerian order
Eulerian order

1 2 3

4 5 6

7 8 9

Groups: 789,23,56,14

Another hamiltonian
Hamiltonian decomp, H1:H2:H3

1 2 3

4 5 6

7 8 9

Less shape variation between orderings.
Conclusions are less order dependent!


