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2 Introduction

In graph theory, the Johnson graph is a class of undirected graphs defined over a family
of sets where two sets of size m, which serve as nodes, are adjacent if they intersect in a
m — 1 elements. This class of graphs were named after American mathematician, Selmer
Martin Johnson, who worked on bounds for codes on the now so-called Johnson scheme,
which is the association scheme analogue of Johnson graphs.

Later, these graphs were generalized into a larger class of graphs known as the Gen-
eralized Johnson graphs J,(m, k) where nodes are m—subsets of an n—set and two nodes
are adjacent if they intersect in k elements. These graphs were of particular interest to us
because they serve as a tool for exploratory data analysis TODO: cite oldford hurley 2011.

In this paper, we make use of algebraic and combinatorial ideas in order to capture the
structure of cliques in Johnson graphs. In particular, we characterize the total number of
cliques in J,,(m, m—1), define two natural types of cliques and provide a partial solution to
the open problem of finding the coclique number of .J,,(m, m — 1). Additionally, we extend
our results to the more general case of generalized Johnson graphs J,(m, k). Finally, we
establish a connection between Erdos Renyi graphs and navigation graphs and use our
results to demonstrate how one may conduct hypothesis tests on cliques to investigate a
dataset.

3 Clique types and clique number of a Johnson graph

Proposition 3.1. The Johnson graph J,(m,m — 1) is m(n —m)—regular. The number of
edges in a Johnson graph J,(m,m — 1) is given by

()2
Proof. See [3]. O

Proposition 3.1 provides us with an enumeration of the number of K5 copies present
in the Johnson graph J,(m,m — 1). We will soon enumerate copies of K, for r > 3 in
Jyn(m,m — 1), which we recall are known as cliques.

Definition 3.2. Let G be a graph. We say that a clique H is a maximum clique if there is
no clique with more vertices than H. Moreover, we let w(G) denote the number of vertices
in a maximum clique of G.

Proposition 3.3. Let G be the Johnson graph J,(2,1). Then the intersection of a mazimal
clique in G is either 0 or 1. Moreover, for n > 3, the size of a maximal clique is either 3
orn — 1 and hence

w(Jn(2,1)) = max{n — 1, 3}.

Proof. Let H be a maximal clique in G = J,(2,1). Consider S the intersection of all the

nodes in H
S = ﬂ v(v).

veH
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Since every node has 2 elements and any two nodes intersect in exactly one element, we
know that |S| < 1. Thus, |S] € {0, 1}.

If |S| = 0, then one can show that H must be a triangle. Indeed, consider the
configuration below.

{a,b} {a,c}
Q O

O
{b, c}

Is it possible to find a vertex which is adjacent to all vertices in the triangle above?
The answer is no because once a vertex is adjacent to any two of the vertices, such as
{a,b},{a,c}, it must be either of the form {a,d} or {b,c}. In the first case, {a,d} is not
adjacent to the third member of the triangle and hence cannot be part of the clique. In
the second case, it is already in the triangle.

Thus, a triangle is the largest possible clique in J,(2, 1) when we impose the restriction
that it has an empty intersection.

Now, suppose that |S| = 1 and that S = {i}. Then we know that a maximum clique
will have the form H = {i} x (N, \ {i}) for some i € NV,,. This is a clique of size n — 1
which cannot be any larger as we exhausted all nodes that contain 7.

Thus, we know that the maximal cliques in J,(2,1) can only only be of either size 3
or n — 1 and hence w(J,,(2,1)) = max{n — 1, 3}. O

We saw above that there are only two possible sizes for the intersection of a clique in
Jn(2,1) for n > 3. We will soon generalize this observation and demonstrate that there
are only two possible clique intersection sizes. Now, we categorize of maximal cliques with
empty total intersection.

Proposition 3.4. Let G be the Johnson graphs J,(m,m — 1) with n > m + 1 and let H
be a mazximal clique in G. If B denotes the union

B:= U v(v),

veEH

then (,ep v(v) = @ if and only if v(a) Uv(b) = B for a,b distinct in H.

Proof. Suppose that (), v(v) = &. Fix a and b distinct vertices in H and suppose that
B # v(a)Uv(b). We may assume that a and b have the form v(a) = {x}Ue,v(b) = {y}Ue
for some (m — 1)-set of variables e C N, and x # y in N,,.

Since B # v(a) Uv(b), there exists some 21 € B\ (v(a)|Jv(b)). Let ¢; be a vertex in
H for which z; € v(¢;). Since ¢1,a,b € H and H is a clique it must be that ¢; is adjacent
to a and b.
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Now, since z; € v(a) U r(b), it must be that ¢; has the form v(¢;) = {21} U f where
fis a (m — 1)-subset of N,,. Moreover, since x # z;, we see that in order for ¢; to be
adjacent to a, f must be e. If f = e, then we also then guarantee that c; is adjacent to b.

We now inductively extend our construction into a sequence zq, . .., z; of variables and
nodes ¢y, ..., ¢ where

1. z; €v(cj) ifandonlyifi=jforalli=1,...,1,
2. 2 ¢ v(a) Uv(b) UUZiv(c)),
3. B=v(a)Uv(b) J(Uir(cs)) and

4. a,b and all ¢; are pairwise adjacent.

As before, we see that since ¢g has the form v(cs) = {25} U es where z; € e5 and H is a
clique, it must be that e, = e.

Now, we demonstrate that this collection must include all vertices from H. Fix u € H
and suppose that u & {a,b} J(U_,{c:}).

We now consider two cases regarding the structure of u: either v(u) is a subset of
v(a)|Jv(b) or it is not.

Case 1: u = {z} Ue, for some 1 < s <.

Since H is a clique, we know that u must be adjacent to ¢s = {25} U e and u must be
adjacent to a. The former implies that |e, Ne| =m — 1 as z, € v(cs) Nv(u). The latter
implies that |e, Ne| =m as zs € v(a). This is impossible.

Case 2: v(u) C v(a) Uv(b).

Suppose that v(u) C v(a)Ur(b). Then it must be that w is of the form v(u) = {z, y}Ue,
for some (m — 2) subset e, of e to ensure the adjacency to a and b. However, now u is
not adjacent to ¢; forall 1 <i <lasz,y & {z:1<i<I}and |e,Ne|] =m — 2. This
contradicts that H is a clique.

Thus, we have just demonstrated that the collection {a,b}U{¢; : 1 <i <[} must be all
of H where for any vertex u € H, v(u) contains the set e and a singleton outside of e. This
contradicts our assumption that N,cxv(v) = @ and hence it must be that B = v(a) Uv(b)
for any two distinct a, b vertices in H.

Conversely, suppose that B = v(a) U v(b) for any two distinct a,b in H. Then since
lv(a) Uv(b)| = m + 1, we have that |B| = m + 1. Furthermore, since any a € H is an
m—subset of B, we find that H C J where J :={A C B: |A| = m}.

We now demonstrate that H = J. Suppose that there is some v € J for which v ¢ H.
Since v satisfies v(v) C B and has cardinality m, there is some unique i, € B for which
v(v) = B\ {iy}. Fix a vertex u € H and similarly, note that that v must have the form
v(u) = B\ {i,}, for some i,, € B. Now, we have that

v(v) Nw(u) = B\ {i} () B\ {in} = B\ {iun. i},

which is a set of size m — 1 as 7, # i,. By maximality of H, it must be that v € H and
hence H = J.



Now, we demonstrate that the intersection (., v(v) is empty. Since (., v(v) C B,
it suffices to show that for all z € B, x € (,.,¥(v). Fix z € B and consider the vertex
v, where v(v,) = B\ {z}. Since v, is a node in J and = ¢ B, we have that = & (,., v(v)

and hence
m v(v) = @.

]

Remark 3.5. Proposition 3.4 indicates that J,,(m,m — 1) has a family of maximal cliques
that have the form

Jg = {v:|v(v)]|=m,v(v) C B},
where B is some (m + 1)—subset of N,. We refer to maximal cliques of this form and

their subcliques by D,,q,. Another family which we encountered in Theorem 3.3 is the one
which takes on the form

Ja=A{u:|v(u)|=m,ACr(u)},
where A is some fixed (m — 1)—subset of AV,,. We refer to maximal cliques of this form and
their subcliques by D,in.
The following proposition asserts that only maximal cliques of type D,,., and type

Dyin, exist in J,(m,m — 1) for m > n+ 1.

Theorem 3.6. Let H be a mazimal clique in the Johnson graph J,(m,m — 1). Then the
intersection of H s either 0 or m — 1.

Proof. We proceed inductively on m. Consider the base case m = 2.

Let H be a maximal clique in J,(2,1). Suppose s = [,y ¥(v). Then since the
intersection of any two nodes is of size 1 and the intersection of the whole clique is bounded
below by 0, we find that

0< (v <1=2-1

veJ

Now, suppose for some mg > 2, any m < mg and n > m + 1 satisfy that all maximal
cliques H in J,(m, m — 1) have an intersection with

() v(v)

veH

e {0,m —1}.

Fix n’ > mg + 1 and let I be a maximal clique in J,/(mg + 1,mg). Suppose that I is

such that
my > ﬂu(v) =s5>0.
vel
Let A := | ( ‘ denote the intersection of the clique and without loss of generality,
suppose th := N, and let I_4 denote the collection

I_4:={v(v)\A:vel}
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For every vertex v € I, the removal of A results in a node of size my + 1 — s. We now
demonstrate that /_4 forms a maximal clique in J,,_s(mg+ 1 — s, mg — s). First, suppose
that a is adjacent to b in J,/(mg + 1,mg). So, we have that |v(a) Nv(b)| = my. Moreover,
since A C v(a)(\v(b), we see that

@)\ )B4 =mo - s

Therefore, the collection I_,4 forms a clique in J,_s(mo + 1 — s,mg — $).

Next, we show that I_, is a maximal clique. Suppose there is some v € J,/_s(mg +
1 —s,my— s) for which v is adjacent to all of I_4 but is not in I_4. Consider the vertex v’
with variable set v(v') = v(v) UA. By construction this is a unique node in J,/(mg+ 1, my)
and it is adjacent to all u € I. As I was assumed to be maximal, it must be that v" € I
and we have a contradiction as then v € I_4.

Since I_ 4 is a maximal clique in J,_s(mo+1—s,my—s), by the inductive hypothesis,
i = | Nyer_, v(v)| € {0,my — s}. We note that ¢ must be 0 as otherwise removing the
intersection of a collection of sets would yield a collection of sets with nontrivial intersection,
which is impossible.

Now, since I_ 4 is a maximal clique with intersection 0, Proposition 3.4 implies that

U v(w)| =(me+1-35)+1.

vEl_ 4

Since we have only removed the variable set A from [ in our construction of I_,, this
implies that

U v(v)

vel

= J w@)UA)| =s+(mo+1—s)+1=(mg+1)+1

vel_ 4

Now, we demonstrate that for any two distinct vertices a,b € I, v(a) Uv(b) = J,c; v(v).
First, we note that v(a) Uv(b) C |J,c;¥(v) as a,b € I. On the other hand, since |v(a) U
v(b)| = mo + 2 and [|J,; ¥(v)| = mo + 2, we have that

v(a) Uv(b) = U v(v).

vel

By Proposition 3.4, I must be a clique for which

vel

contradicting our assumption that |A| = s > 0. The claim then holds by the principle of
strong induction on my. O

As a consequence of the above result, we can obtain the clique number of .J,(m, m—1)
foralln > m+ 1:



Theorem 3.7. The clique number w(J,(m,m — 1)) of the Johnson graph J,(m,m — 1) is
given by
max(m+1,n —m+1),

whenever n > m + 1.

Proof. Since there are only two types of maximal cliques, in order to determine the clique
number it suffices to compare their sizes. For maximally intersecting maximal cliques, the
size of such a clique is n — m + 1. On the other hand, an empty intersecting clique has
size m + 1. Therefore, the clique number of J,,(m,m — 1) is given by w(J,(m,m — 1)) =
max(m + 1,n —m+ 1). O

It is easy to show that for n > 2m,w(J,(m,m — 1)) = n —m + 1. Indeed, we have
that
n—-—m+1>m+1 << n+1>2m+1 < n > 2m.

Thus, we can conclude that w(J,(m,m—1)) = m+1for m+1 <n < 2m and w(J,(m,m—
1)) =n—m+1 for n > 2m.

There are several consequences to the two propositions above. First, we may use our
results to count cliques within Johnson graphs.

Theorem 3.8. For r > 3, the number of r—cliques in J,(m,m — 1) is given by

i) () G0

Proof. Let H be an r—clique for » > 3. Since every clique can be extended into a maxi-
mal clique, we know by Theorem 3.6 that H could be extended into either a clique with
maximum intersection m — 1 or minimum intersection 0. We shall demonstrate that H is
a subclique of exactly one of these maximal clique families.

We begin by demonstrating that an r—clique H can be solely identified to be a member
of one of the families by considering the total intersection or union of the clique H. To
be thorough, we show how both intersection and union can be used to identify the clique
type.

In proposition 3.4, we saw that for a maximal clique J with empty total intersection,
the union v(a) Ur(b) of any two distinct a,b € J is equal to the union of the whole clique
and has cardinality m + 1. If H is a subgraph of such a clique J, then clearly the union
of any two distinct vertices in H would satisfy the same two properties. That is, we find
that in such case

U v

veH
Moreover, we note that since H has the form H = {v : v(v) := B\ {z}, for some = ¢ B},

=m+ 1.




where B is some fixed (m + 1)—subset of N,,, we have that

() v(v)

= ﬂ(B\{fm})‘

i=1

= B\(Uﬂfi)

=m+1-—r.

On the other hand, if H were a subclique from the family of maximally intersecting cliques,
say for instance J, as in Remark 3.5, then we know that H has the form H = {v : v(v) :=
AU{z;}}. Therefore, we find that

U v(v)

= U(AU{a:i})‘
= AU(Uxi)
=m-—1 ; T

This is already different from the union we would find if H were a subclique from a clique
of form Jp since m —1+41r # m+ 1 for » > 3. Moreover, the intersection of the H in such
case will be given by

() v(v)

ﬂ(AU{l’z})|
i=1
= |A]
=m—1,
which does not equal to m + 1 — r for r > 3.

Therefore, there are only two possible types of r—cliques in J,(m, m — 1): those that
are subsets of some empty intersecting maximal clique or some maximum intersecting

maximal clique.
n m+ 1
m+1 r

such cliques. In the latter case, there are

i) ()

such cliques. O

In the former case, there are

Proposition 3.9. For all integers n > m > 1, the edges of J,(m, m—1) partition according
to their membership in the set of all maximal D,,q, cliques.
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Proof. Fix an edge e in J,(m,m—1). Then for some vertices A and B, v(e) = v(A)Nv(B)
and e can be identified with a set of size m — 1. This set corresponds to a unique, maximal
Doz clique in J,(m,m — 1). In particular, the clique {v : v(v) = v(e) Uz, z € N, \ v(e)}
is a maximal D,,,, clique containing e. It is clear that it is unique and all maximal D,
cliques have the same size, since they are relabellings of one another.

As an additional verification, we note that according to Proposition 3.1, J,(m,m — 1)

N n—m)
oy

edges. On the other hand, if what we claim is true, then the number of edges resulting
from the collection of all maximal D,,,, cliques should equate to

()

By the preceding argument, each (m — 1)—subset of N,, corresponds to a unique, maximal
Diyas clique of size n —m + 1. This is because we have n — (m — 1) options for the final
variable to include in each node belonging to the clique. Therefore, each of these cliques
corresponds to ("_g”l) edges. Lastly, we have (mﬁl) distinct, maximal D,,,, cliques and
hence in total, this collection results in

() e e ()2 )

as claimed. n

TODO: Is the above prop in the best place?

The following corollary provides a closed-form expression for the number of triangles
in a Johnson graph.

Corollary 3.10. The number of triangles in J,(m,m — 1) is given by

O )52

Proof. By Theorem 3.8, the number of triangles is given by

()0




This can be simplified as follows

W) )0 -

n! (n—k+1)!
(k=1 n—Ek+1)!3(n—k—2)
B nl(n—k—2)+nlk
C3lkl(n—k—=3)(n—k—2)
nl(n—k—2+k)

+

3k (n—k —2)!
~ nl(n-2)
~ 3lkl(n—k —2)!
~ nl(n—-2)
3k -k —2)!
(k+2)! (n—2) n!

2k 3 (k+2)(n—Fk—2)
B k+2\n—2 n
_( 2 )T<k+2>
_(m+1\n—-2 n
_( 2 ) 3 (m+1>’

as needed. O

We can use Theorem 3.8 to study the distribution of cliques in J,,(m, m — 1).

Corollary 3.11. The total number of cliques of size 3 or larger in J,(m,m — 1) is

(i) (et = (7)) 2 (e = ()

Proof. By Theorem 3.8, we know there are

) () G )

cliques of size r. The result then follows by summing over all » > 3 and by applying the
binomial theorem. O

4 Clique distribution of the Johnson graph

In this section, we concern ourselves with the distribution of cliques in J,(m,m — 1).
Our motivation for this stemmed from the idea of exploring data sets using navigation
graphs, which can be viewed as subgraphs of Johnson graphs. Thus, we were interested
in understanding what graph theory might say about the prevalence of one type of clique
over the other or if there were perhaps other insights one might glean from the structure
of the cliques that are present in a navigation graph.
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We begin with a straightforward result that shows that for m € N and r > 3 fixed,

almost all r—cliques in J,,(m, m — 1) are of type Daz, as n — 00.

Proposition 4.1. Fix m € N, and r > 3. Then the number of r—cliques in J,(m,m — 1)

is dominated by cliques of type D,ar. That 1s,

() ()

() (") + G (7)

— 1,

as n — Q.

Proof. First, we note that

ey
GRS O

and
(o) (0 . () (")

) )+ G ) GR) )+ ) )
e
T GO
Therefore, it suffices to show that
() (")
(o) (77)

Recall that for £ < n fixed, we have
(1) et

L)) 0w e g o
()07~ Bl ~ O =0

m—1

=o(1).

and so

as claimed above.

]

One might also wonder when we have balanced groups within the distribution. That
is, for which values of n and m are the counts of D,,;, and D,,., cliques equal? We begin
by solving a related but easier problem which will motivate our technique for finding the

solution to this problem.

Proposition 4.2. The only solution to the system

n n—m+1Y) n m+ 1
m—1 r \m+1 r
forr >0 is given by n = 2m.
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Proof. Let F,..(q) denote the clique-type generating series for D, and F,;,(q) denote
the clique-type generating series for D,,;,. Then these generating series can be written
compactly as follows

= (S0
_ (mn_ 1) (Tl P
ruati = (1) 2 (")
= (m’i 1) (1 +q)™*.

Thus, we have that the ratio is given by

Fmax (Q> _ (mril)

Frin(q) a (m+1> (L4 ey

_f;mez(@ =0 for all s > 0. If n > 2m,
min q)

n—2m gy n—2m r
(I+q" "= B

r=0

In order for this ratio to equal to 1, it must be that [¢°]
then we know that

and at least one positive power of ¢ has a non zero coefficient since

[¢'1(1+¢q)" " = E::i; (n _12m) >0,

whenever n > 2m. On the other hand, if n < 2m, we set £ = 2m — n and then by the
generalized binomial theorem, we have that

(grim=—t 3 (T - 1) (—1)q".

¢
(1+4q) = r

Since /¢ is an integer and ¢ > 0, we see that

(r+i—1> 40

-5

r>0

for all » > 0. Therefore,

has a non-zero coefficient for all ¢° with s > 0. If £ > 1, then

Fmax(Q) _ (mril) <8 + (-1
FWW(Q) (mn+1) s

11
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and thus the ratio cannot be equal to 1. So, we can conclude that the only candidate for
which we may see equality in the generating series is when n = 2m. We now show that
n = 2m ensures for equality of the two generating series.

If n = 2m, then since 2m — (m + 1) = m — 1, we have that (m:) = (m11) and
Fmax(Q) ( 711) 2m—2 0
=g =149 =1,
me(q> (m—l—l)
as needed. O

Corollary 4.3. Let G = J,(m,m — 1). The distribution of cliques in G of type D pap 1S
equal to the distribution of type D,y if and only if n = 2m.

Proof. We remark that in order to solve the system

L)) =G )

for all » > 3, it is sufficient to solve the system

(mn_ 1) <n _TJF 1)7‘(7“ —1(r—2)= (mi 1) (m: 1)7‘(7‘ —1)(r-2), (1)

for all » > 3. The advantage of the latter system is that it has a generating function
which has a nice factorization as a product of generating series, as we show below.

Let Fra:(q) and Fi;,(q) be as in the proof of 4.2. Let fi..(q) and frin(q) be the
generating series defined by

63
fmaz(Q) = qga_ngma;t(Q)

= @Pn—m+1D)n—m)n—m—1) (m " 1)(1 4 g

= <mn_ 1) i <n - T i 1)?“(?“ —(r—2)q",

r=3
33
fmin(q) = qsa—q?,me(q)

m -+ 1) (L™

- (mi 1) i (m: 1)7"(7“ —1(r=2)q",

r=3

= ¢+ DG~ 1)

We note that n and m are solutions to system (1) if and only if f,,4.(q) = fimin(q). So, we
divide fiaz(q) by fimin(¢) and examine when this generating series equals 1.

12



fuaela) €0 —m 4 D= m)(n—m = 1)(,)(1+ g
Finl9) @ (m + Dm(m = 1)(,[1) (1+ )2
_ (n—m+1L)(n—m)n—m-—1)(" )1 +q"*"

(m + Lm(m —1)(,},)

fmaz(q)
fmm(Q)

We may reuse the argument from Proposition 4.2 and note that since [¢°] =0, it
must be that (1 +¢)" *" =1 and n = 2m.

It is straightforward to verify that the other terms yield the proper cancellation when
n = 2m. O

Additionally, when the distribution of D,,;, and D,,,, cliques are identical, we are
immediately able to both identify the count and the size of the most common class of
clique.

Proposition 4.4. Let G = Jo,,(m,m — 1). Then the largest count of r—cliques occurs
when r = mT“, for m odd and for m even, the mode

- mTH When m 1s odd.
ORI, Else

Proof. Since n = 2m, the count of cliques of size r is given by

2(771227:1) (mjl)'

This is maximized when (m;rl) is maximized which occurs at r = mT“ for m odd and
5,5 + 1, for m even. O

We shall consider two obvious mechanisms for picking cliques at random. First, we
consider the distribution of picking a clique at random. Second, we consider the distribution
of cliques given a fixed clique type (either D00 08 D).

Under the first mechanism for sampling cliques, we sample uniformly at random from
all possible cliques. Let R be the random variable which denotes the size of the clique
selected. The total number of cliques in this setting is given by

n n\ m(n —m) maxtn- bt ) oo, n—m+1 n m+1
=1 _ .
e (o)) 2 LR L))

Thus, R has a probability mass function given by

(mTil) ("*TJFl) + (mﬁ-l) (m:rl)a 3<r< max(n -m+1,m+ ]_)
n m(n—m), =9
P(R - T) B EZZ; 2 r=1
17 r=0.
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Under the second mechanism, we begin by identifying the clique type of interest. For
instance, if we are interested in sampling from cliques of type D,,.;,,, then we could proceed
as follows.

1. Pick a maximal clique H of type D,,;,. This can be done in (mT_‘H) ways as it is

sufficient to know the union of a clique of type D,,;, to identify its maximal clique.
2. Pick a subclique by sampling uniformly at random from the subcliques of H.

Let R,.;, be the random variable recording the size of the subclique selected. Under this
scheme, we would obtain a clique of size r with probability

PR = 7) = () (™) )Z(m+1> 1 :(m—i—l)l 1

() 2275 (7 ro )2 .o

1
Thus, R, is clearly Binomial (m +1, 5) Conceptually, we may explain this by noting

that sampling cliques uniformly from a maximal clique of size m + 1 is akin to allocating
to node 7 a random variable Y; ~ Bernoulli (%) and forming a clique using only nodes for
which Y; = 1.

In the case that we are interested in sampling from cliques of type D, 4., our scheme
is given below.

1. Pick a maximal clique H of type D, ... This can be done in (mril) ways as it is
sufficient to know the intersection of a clique of type D, to identify its maximal
clique.

2. Pick a subclique by sampling uniformly at random from the subcliques of H.

Here, the random variable R,,,, which equals the size of the subclique selected is given by

() (71 ):(n—m+1> 1 _(n—m+1)1 1

() Sy (e roJrem oy

and hence R, is a Binomial(n —m+1, %)

P(Rpaz =1) =

This provides us with an additional proof for Corollary 4.2. The two clique type

distributions are equal if and only if R4, L R,.in. Hence, since two Binomial distributions
are equal if and only if they agree in their parameters, we see that this is only true when
n = 2m.

14
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Clique distributions of Jo( 19, 18) Clique distributions of J,o(11. 10)

Dmax Dmin Dmax Dmin
1.2e+08 -
150000 - 9 De+07 -
t t
§ 100000 - § B.0e+07 -
50000 - | | 3.0e+07 - III I I
D' | 1 T ; | , II Il , DUE"‘UU' | II I- ' T II. lI-
0 5 10 15 20 0 5 15 20 12 4 8 12
Size Size
Clique distributions of Jz5(10, 9) Clique distributions of J2(8. 7)
Dmax Dmin Dmax Dmin
8e+07 -
o Be+07 = w— le+08-
[
3 4e+07 - =]
8 a+(7 -
I I y I | |
Oe +DG-- : , Ue+EIL;' , -1 I- : """ ,
120 3 12 ] 10
Size Slze

TODO: What do we learn from this? How is this used? Can we mention that we
thought this was the way to go but realized that it only results in pretty math which we
include here? TODO: Should size 0 cliques appear in the distribution? Feels like nonsense.

5 Cliques in generalized Johnson and generalized Kneser
graphs

TODO: Need reintroduce the definitions

In this section, we focus on the generalized Johnson graph J,,(m, k) and illustrate how one
can enumerate all (r + 1)—cliques that contain a particular r—clique as a subset. In the
simple case of r = 3, our theorem provides a closed form expression for the number of
triangles in J,,(m, k).

5.1 Triangle Counts in J,(m, k)

In this section, we count the number of cliques of size r in J,,(m, k). In order to motivate
the intuition for the proof of the general theorem, we begin by considering r = 2, 3.

Proposition 5.1. The number of edges in J,(m, k) is given by
1/n\ /n— E\ (n—m
2\k)\m—k)\m—-k)’
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Proof. Begin by fixing the variables to appear in both edges. Since this must be precisely

n
k variables, this can be done in | ways.

Next, we pick the variables that appear in one node but not in the intersection. This

can be done in
n—k
m—k

ways as we only need m — k additional variables and we have n — k variables that we did
not use yet. Similarly, the second node can be constructed in

n—k—(m-—k)\ (n-m
m—k C\m—k
different ways as we need only pick m — k variables which we have not used yet.

Finally, since the order in which construct the two nodes does not matter, we divide
by 2. O]

We are now in position provide a complete enumeration of triangles in J,(m, k).

Theorem 5.2. The number of triangles in J,(m, k) is given by

L(n\/n—Fk\(n—m Zk: k\ (m—k\ (m—Fk\ (n—(2m—k)

3Nk \m—k)\m—k) = \s)\k—s k—s m—2k+s )
Proof. We can build a triangle in J,(m, k) by constructing it from a single edge into two
nodes and finally introducing the third node. Let {a, b, ¢} denote the nodes in our triangle.

Choose the first edge: Fix the variables in an edge e which will connect a to b.

This can be done in (Z) ways.

Choose the vertices incident to the first edge: Fix the other variables which
appear in the two vertices. This can be done in

) ()= G G

a € b

O O

ways.

16



Let S denote the subset of the variables in our edge e to be the intersection of all three
nodes in the triangle.

Pick the size for the intersection of the triangle: We know that s the size of
S must satisfy 0 < s < k as it is a subset of the edge e. This means that we have k + 1
nonoverlapping cases to consider for the size of the intersection of the triangle.

Finish constructing edges incident to c¢: Once we know s, we know that we must
pick from the elements in @ and b which are not in S to construct edges incident to a and
b which are not e. This can be achieved in

m—k\ (m—k

k—s k—s
ways as the size of v(a) \ (v(a) Nv(b)) is m — k and we only need k — s additional elements
from each vertex.

a SuU {EZ’.\ S} b

Sul Suld

Pick the remaining variables for ¢: By the time we complete the construction of
the edges incident to ¢, we will have chosen exactly s+ (k —s) + (k —s) = 2k — s variables.
Thus, we need to pick m — (2k — s) variables from the variables that we did not use yet -
variables that are not in v(a) U v(b). This can be done in

n— (2m —k)
m — 2k +s
ways since the size of |v(a) U ()] is 2m — k.

a € b

Lastly, we must divide by 3 as we have three edges in our triangle and any one of them
could have been chosen to be the first edge constructed which yields the same graph.

To summarize the steps above, we see that the number of triangles in J,,(m, k) is

17
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As a consequence of Theorem 5.2, we may bound the size of the intersection of all
triangles in J,(m, k).

Corollary 5.3. Let H = {a,b,c} be any triangle in J,(m, k) and let s be the size of the
intersection
s = ’y(a) ﬂ v(b) ﬂ u(c)’ :

2k —m < s <min(k,n — 3(m — k)).

Then s must satisfy

Proof. As evident in Theorem 5.2, the set of possible values that s can take is {0, 1, ..., k}.
Moreover, we know that there exists a triangle which satisfies an intersection of size s if
and only if the binomial coefficients in the summand are nonzero.

Thus, we need that s satisfies
E\ (m—Fk\ (m—Fk\ (n—(2m—k) >0
S k—s k—s m—2k+s )~
This implies that we need s to satisfy

k>s
m—k>k—s
n—(2m—k)>m—2k+s.

Combining these together gives us the inequality
2k —m < s <min(k,n — 3(m — k)).
O

We can use Theorem 5.2 together with Corollary 5.3 to derive an alternative proof to
Theorem 3.10.

TODO: Add remark about how this agrees with our classification of cliques in Johnson
because intersection m — 2 is for D,

Corollary 5.4. For the Johnson graph G = J,(m,k = m — 1), the intersection of any
triangle can only be of size k —1 or k—2. Moreover, the number of triangles in G is given

by
("))

18




Proof. We know that by Corollary 5.3, s must satisfy 2k —m < s < min(k,n — 3(m — k)).
Since k = m — 1, this simplifies to

2(m—1)—m=m—-2<s<min(m—1,n—3) <m — 1,

as claimed.

By specializing Theorem 5.2 to the case where £ = m — 1, we have that the number
of triangles t is given by

)OS0 )

m—1
1 n m—1 n—m-—1
= — —m+1)(n— P
3!(m_1)(n m+1)(n m)S:0 5 ) {mls<1}<s_m+2)
1 n n—m-—1 m—1
p—— —_— 1 —_
3!(m—1)<” m+1)n —m) 1 )+(m—2)]
1 n
:g(m_1>(n—m+1)(n—m)[n—m—1+m—1]
1 n
:§(m_1>(n—m+1)(n—m)(n—2)
Furthermore, we can simplify ¢ as
1 n!
t=— (n—m+1)(n—m)(n—2)

3 (m—1Dl(n—m+1)!
On the other hand we may simplify the expression

(m; 1) (n;2) (mn+ 1) - (le)m(n;Q) (m+ 1)!(Zl—m— 1)!

After elimination of terms that appear in both expressions, we find that the theorem
holds if and only if

(m+ 1)m  (n—=m+1)(n—m)
(m+Dn—m-1! (m—-D!(n—m+1)

which is true as

(m+1)m B 1
(m+D!n-—m-1)" (m—-Dl(n—m-—1)!
~ (n=m+1)(n—m)
(m—D(n—m+1)

as needed to be shown.
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5.2 r-cliques counts in J,(m, k)

In order to motivate the upcoming theorem, we start by generalizing our construction in
Theorem 5.2. Here, we demonstrate how to construct a K4 in an arbitrary J,,(m, k) by
first building a triangle.

In our construction of r-cliques in J,(m, k), we make use of compositions of integers
which we define as follows.

Definition 5.5. Let r € N be the size of a set of variables. We say that v = (v,7,...,7)
is a composition of m if v, > 0 for all i € [¢] and Zle v, =m.

Here, we are interested in integer compositions which are indexed by subsets of the
set N,.. That is, we will view « as a function 7 : P(N,) — Ny where we write v, := v(A)
for A C N,. In other words, we view a composition as a function from a set of size 2" into
the nonnegative integers whose sum is equal to some predetermined positive integer m.

Now, we are in position to state the result for the number of 4-cliques within J,,(m, k):

Theorem 5.6. The number of j-cliques in J,(m, k) that contain a particular triangle
{a, b, c} with intersection size s is given by

2 () GGG )0
(n— (3m—3/€+s)>’

Yo

where A is the set of all compositions ¥ = (Vaper Yabs Yaes Yoes Yar Vo» Yer Yz) F M satisfying
the constraints

Y abe + Yab + Yac + Yo = k (2)
Y abe + Yab + Yoc + Yo = k (3)
Y abe + Yac + e + Ye = k (4)

Moreover, the number of 4-cliques in J,(m, k) is
Gl Tl ot (T (e [ e i) D oL 9 TGy
ANE)\m—k)\m—k) = \s)\k—s k—s m— 2k +s i \Yabe Yab
<k—s) (k—s) (m—2k+s> (m—2k+s) (m—2k+s) (n—(3m—3k+s))
Yac Yoc Ya Yo e Yo .
Proof. In order to construct a 4-clique which contains the triangle {a,b,c}, we need to

consider how we could uniquely construct a vertex d such that the pairwise intersection of
{a,b,c} is k. To that end, we propose the following approach.

Pick from the intersection of the triangle: First, we pick ~,. > 0 from the
intersection S of {a, b, c}. This can be done in

(on)
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different ways.

Pick from the pairwise intersections and outside of the triangle intersection:
We may also pick elements from edges that do not appear in our triangle intersection S. For
instance, we may pick vy, variables from the edge e\ .S := (v(a)Nw(b))\ (v(a)Nv(b)Nr(c)).
Since the size of this edge is k and we are excluding the intersection which has size s, we

S) different ways.

can pick from this edge in (
Yab

Similarly, we can pick elements from edges e, €y just as done above. This means
that accounting for all pairwise intersections of variables in our triangle, we can choose

elements in
(k—s) (k—s)(k—s)
7ab ’Yac ’ch
different ways, where 5, ¥Yaes Voo = 0.

Pick elements unique to a node: Next, we may also pick variables that are unique
to a node. For instance, we may pick v, > 0 elements from a \ (bU ¢). Since this set has
m — 2k + s elements, such a selection can be done in

(m — 2k + s>

Ya
different ways. Since we can do the same with the other two nodes, in total the unique
node elements may be selected in

<m—2k+s) (m—2k+s> (m—Qk—i—s)
Ya Yo Ye
different ways, where ~y,, v, 7. > 0.

Pick elements outside of the triangle: We may have new variables which did not
appear in the triangle yet. Since the size of |v(a) U v(b) U v(c)| is given by 3m — 3k + s
(by principle of inclusion/exclusion) and there are n variables available to us, we may pick
new elements in

(n — (3m — 3k + s))

Yo
different ways, where v, > 0.

Lastly, we must ensure that our ~ satisfies that the sum of the variables we picked is
m (since that is the number of variables in our node d) and that the pairwise intersection
property holds. This can be ensured by picking compositions « for which v F m and

Y abe + Yab +7ac + Yo = k
Y abe + Yab + Yoc + Yo = k
Y abe + Yac +’ch +’Yc =k

4
Since there are 4 = <3> different triangles that would have yield the same 4-clique,

we divide by 4 to account for overcounting.
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Before continuing to the general case, we prove that for any collection of subsets of a
finite set N,,, there is a natural partition of N, induced by the collection.

Lemma 5.7. For any r > 1, given any collection (A;)i_, of subsets of N, the collection

given by Y {ﬂAi\ (UAZ'> :JQNT}

icJ igJ
is a partition of N,,. Moreover, for any j € N,., we have that

A= U |[NAa\U4A

JCN; LieJ igJ
J>i

Proof. First, we show that

N.<

JCN,

N (Ua)

icJ igJ

Fix x € N, and let J, = {i : © € A;} C N,. Since x € A; for all i € J,, we have that
x € Niey, Ai. It i & J,, then we find that x € J, and hence

z ¢ U A;
i€y
and we can conclude

xr €

N (Ua)

1€Jy €Iy

All that we have left to show is that the intersection of any two distinct members of
A is empty. To that end, fix J, H C N, distinct and suppose that

N (Ua)|n|nan (Ua)

ieJ igJ icH igH
22
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Since J and H are distinct, without loss of generality, we may assume that there is some
i € J\ H. Thus, we see that z € A; asi € J and x ¢ A; as i ¢ H, which then implies
xr € @ - which gives us the contradiction we seek. O]

Since we will be using this partition of N, repeatedly in our proof, we introduce the
following shorthand notation. For a given collection of subsets (A;)_; of A, we let

(A4 (UAi) (4N <ﬂAg)

ieJ igJ ieJ igJ

for any J C N,.

Remark 5.8. For instance, if a collection of subsets is given by (A, As),

In the generalization to our clique counting propositions, we will be interested in
nonnegative integer solutions to a particular system of equations which we will define as
follows.

For an r—clique H with nodes {4y, ..., A}, let C,x(H) denote the set of all com-
positions v indexed by subsets of N, satisfying

Z Yg=m (Subset size condition)
JCN:
Z v, =k, (Intersection condition 7)
JCN:
i€J

where intersection condition holds for all 7 € N,.

Now, we can prove our main result regarding the number of r-cliques in general.

Theorem 5.9. The number of (r + 1)-cliques in J,(m,k) which contain a particular
r—clique H with nodes {Ay, ..., A.} is given by

. x 1))

Ecn m, k JCN

where Cp,m x(H) is the set of all compositions v : P(N,) — Ng of m satisfying that for

alll € {1,2,...,1},
Z Y5 =k (5)

JC{1,...,r}jed
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Proof. Fix A,.1 € V,, adjacent to all of H and let v, := |v(4,41) N T(J)|. By 5.7,
(I'(J))scw, forms a partition of A, and thus

Z’YJ:

JCN,

U At NTO)| = r(Ayi)] = m.

JCN;

Similarly, since A, is adjacent to A; € H, we have that |v(A;) Nv(A,11)| = k for all
¢ and hence

= [v(Ary1) Nv(A)] = k.

Z Y=

i€JCN,

U AnT()

i€JCN,

Thus, v meets the subset size and intersection size condition. Furthermore, such a subset

A,11 can be constructed in
11 (IF(J )I)
JCH Y

Conversely, given an integer composition 7 in C,, 1 (H ), we can choose a corresponding

node adjacent to H in
11 (IF(J)I)

JCH Y

ways.

ways. Since (I'(J)) cn,. partitions N, and ~ satisfies both subset size condition and in-
tersection condition for A;, the corresponding node A,,; will be adjacent to all of H and
V(Ari)| = m.

Finally, since there are r + 1 = (T’jfl) different r-cliques that we could have chosen to
be H and would have yielded the same (r 4 1)-clique, we divide by 7 + 1 to account for
overcounting. O

Let’s examine an equivalent formulation for our counts for the number of 2—cliques and
3—cliques which can be constructed given a particular 1—clique and 2—clique, respectively.

Remark 5.10. Consider Lemma 5.7 when r = 1 and suppose that A; C N, with |A;| = m.
Then our partition of AV, is given by N, = A; U A, where v({1}) = A; and (@) = Af.

Now, for a given 1—clique with node A;, the number of 2—cliques which contain A,

is given by
SOOI <I7(J)I) . <|A1|) <|AC|)) _ (m) (n—m)
YYa TYe=m JC{1} v Y Y4, tYe=m T Vo k) A\m—k

Ya, =k Ya, =k

which gives us an additional characterization of the number of edges in Proposition
5.1.
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Remark 5.11. Given a 2-clique H = {A;, Ay}, suppose we are interested in count-
ing the number of 3-cliques which contain H. First, note that Lemma 5.7 states that
Q:={A N Ay A} \ A, Ay \ A1, N, \ (A1 U Ay)} forms a partition of N,. To find all pos-
sible triangles which contain H, we can proceed by considering all viable subsets of the
partition () that meet our intersection requirement and set size requirement:

2, 000 =2 (I ) )

n 'mk Jc{l 2}

where the sum on the right hand-side is over all v for which

Yara, T VA, +Y4, Vo =m
YaiA, T YA, =k
Y Ay Ay Y4, =k

()=, =0

Now, we show that this provides us with an equivalent formulation to the one in
Theorem 5.2.

First, we begin with the most restrictive component of the third node of A3: the subset
of As within Ay N A,. This corresponds to picking a value 0 < v, 4, = 5 < |41 N Ay = k.
Once this is determined, the two intersection constraints are solved uniquely by v,, =
Y4, = k — s. Lastly, we have that the set size constraint gives us that

Yo =m—2(k—s)—s.

Next, after we know the intersection sizes we can proceed with selecting subsets of our
partition to build As:

3] S [ [ Tt

3
Now, since there are (2) = 3 different 2-cliques contained within any 3-clique and we

could have started with any one of them to obtain the same 3-clique, we must divide by 3.

5.3 Types

In Theorem 3.7 and Proposition 3.6, we implicitly used the intersection of a clique and
union of a clique as a decision rule for classifying the type of a clique. In this section, we
generalize this idea and provide an intuitive explanation for what clique type means and
when two r—cliques are semantically different despite being graph isomorphic.

5.3.1 Equivalence classes of cliques

In the previous sections, we saw that nonnegative integer solutions to a system of equations
dictate the feasibility of constructing an (r 4+ 1)—clique from an r—clique. In this section,
we explore the different types of cliques that exist in J,(m, k), regardless of the variable
labelling of the nodes.
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Definition 5.12. We say that two r—cliques Hy = {4;,...,A,} and Hy, = {B; ..., B,}
have the same type if there exists a bijection f : N,, — N, for which f(A;) € H, for all
i € N,. If such an f exists, we say that H; and H, are equivalent as r—cliques or that
they have the same type. In such case, we call the map f a type isomorphism.

For an r—clique H, we let the set [H| denote the set of all r—cliques which share the
same type as H.

Example 5.13. It is clear here that any two 1—cliques (nodes) are equivalent as there are
m/! different bijections between one m—set and another m—set. For the remaining n — m
variables in ,,, we may permute them in (n — m)! ways. Therefore, there are

m!(n —m)!

bijections f : N,, — N,, which certify the type equivalence of nodes.

Additionally, we can show that any two 2—cliques (edges) are equivalent as follows.
Fix Hy = {A1, Ao} and Hg = { By, By} two edges in J,,(m, k). We claim that there are

2 x kl(m —k)l(m —k)l(n —2m + k)!

type isomorphisms between H, and Hg. We now demonstrate how one may construct
one of these isomorphisms. First, let S4 := v(A4;) Nv(Ay) and Sp := v(B;) Nv(Bs). Let
fs : Sa — Sp be any bijection. This can be chosen in k! ways as |S4| = k = |Sp|. Now,
extend fs into a mapping f; : Ay — By (without loss of generality) where fi|a\s, is a
bijection onto By \ Sp. This may be done in (m — k)! ways as |A;1] = (m — k)! = | Byl
Next, we need to extend fi into fi2 : Ay U Ay — B; U By such that fi5 is a bijection. We
can do this in (m — k)! ways as it suffices to only decide which bijection to choose to be
fi2las\sa @ A2\ Sa toB; \ Sp. Finally, we need to extend fi, to the whole space N,,. This
can be done in (n—2m+ k)! ways as any bijection from N,, \ (4; U Az) onto N,, \ (B1 U By)
would do. Lastly, we note that when we constructed f; above, we chose without loss of
generality that A; must map to B;. However, A; could have also mapped to B; to obtain
a valid type isomorphism. Thus, there are

2 x kl(m —k){(m — k)l(n —2m + k)!
type isomorphisms between any two edges in J,,(m, k).

Proposition 5.14. The type relation induces an equivalence relation on the set of all
cliques in J,(m, k).

Proof. Let H; ~ Hy denote that H; and H, have the same type. We are required to show
that ~ is reflexive, symmetric and transitive.

Reflezivity Fix Hy a clique in J,(m, k). Consider the identity mapping f : N, = N,. This is a
bijection on N, and moreover, f(A;) = A; for all A; € H;.

Symmetry Fix H = {A; : i € N} ~ Hy = {B; : i € N,} and let f : N, — N, be a
corresponding bijection. Then the map g := f~! is a bijection on N, and we see that
g(B;) = A; for all i € N,.
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Transitivity Suppose that H; ~ Hy and Hs ~ Hj and let f, g be bijections for which f(H;) = Ho,
g(Hsy) = Hs. Consider the mapping g o f. As f and g are bijections, so is g o f.
Moreover, it is clear that
9(f(H1)) = Hs,

and hence H, ~ Hs.

]

Example 5.15 (Isomorphic and non isomorphic triangles). Consider the two triangles
Ty = {{1,2},{1,3},{1,4}}, T» := {{1,2},{2,3},{1,3} in J4(2,1). These are both cliques
of size 3 but they have different types. In fact, T} is of type D4 and T is of type Doin.
To show explicitly that there is no graph isomorphism that preserves the node structure,
it suffices to consider where an isomorphism f : V(T}) — V(T3) would have to map the
element 1 to. It cannot be anything in {1,2,3,4} because 1 € v, for all v € V(T3) but no
element in A, appears in all of V(T5).

Now, if we have a triangle T3 := {{2,1},{2,3},{2,4}} in J4(2,1), we have 3! = 6
different choices for isomorphisms of type. Indeed, we see that any such isomorphism f
must map 1 to 2 but then any permutation on {2, 3,4} achieves the desired isomorphism.

{2,3} {1,3} L2

{1,2}

(1,3} {1,4}

The following theorem demonstrates how generating series can be used to count the
number of different types of triangles in J,,(m, k).

Theorem 5.16. Let ®;(q) be the generating series defined by
Then the type generating series for 3—cliques in J,(m, k) is given by

(1 _ q(mfk)Jrl)Z 1— q2(n72m+k+1)

(1—-q)? 1—¢?

[P @4(q)Py(2) Do (%) = [¢°" ]

Proof. Each type of triangle corresponds to a unique solution to the system

YA A, + YA, +'7A2 + Yo =m
Yai 4, T Va4, =k
YAy 4, Y 4, =k
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with integer solutions |y(J)| >+, > 0.

We solve the system by multiplying the first constraint by » = 2 and then substituting
a copy of each of the other constraints into the first. Thus, the original system of equations
will be equivalent to

Ya, +Va, + 275 =2(m — k)
y(J)] >~,>0

after simplification. We note that the second constraint gives us that the the generating
function ®;(q) is given by

1— D(J)|+1
i) =14qt - tgtN=""L
l—gq
since N|r(y) is the set of values that «; can take. Since addition of components of the /s
corresponds to a product of the generating functions of their parts (e.g. [4], [6]), we have
that the number of solutions to the system above is given by

| — gM@HL ] gT®I+1 | _ 2(r@)+)

[0 PN @o () Py(2) Do (%) = [¢°" ]

l—q 1—gq 1— q2
_ (m=k)+11 _ ,(m—k)+1 1 _ 2(n—2m+k+1)
a(m—ky L — 4 1—gq g
=q ] T — -
[ 2(m—k)] (1 — gm=RH+1y2 1 _ g2(n=2mtk+1)
=14

(1—q)? 1—¢?
O

Example 5.17. Consider the graph J5(m = 2,k = 1). The generating series for types of
triangles is then given by

(1 _ q(mfk)+1>2 1 — q2(n72m+k+1) B (1 _ q2>2 1 — qﬁ

(1—q)? 1—¢? C (1-g?1-¢
_(1-¢)(1-¢")
(1—q)

Upon expanding this series, we find that the coefficient of ¢>™~* is given by 2:

(1-¢°)(1—-¢°
(1—q)°

and hence the number of triangles in J5(2,1) is 2.

=1+2¢+2¢+2¢+2¢"+2¢"+ 0 (¢°),

This example brings us to the following corollary. This agrees with our results from
section 2 where we found that there are at most two types of cliques in J,,(m,m—1): Dpas
cliques categorized by having a total intersection of m — 1 and D,,;, cliques categorized by
having a total intersection of 0.
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Corollary 5.18. The number of types of triangles in J,(m,k =m — 1) is given by
0, n<m
1, n=m+1
2, n>m-+2

Proof. The case when n < m is clear as the graph does not exist then. As k =m — 1, by
Theorem 5.16, the number of types of triangles is given by

[q2(mfk)] (1-— q(m—k’)—i—l)Q 1 — g2(n—2m+k+1) _ [qz] (1— q(1)+1>2 1 — g2n—m)
(19 1—¢° 1-q? 1-¢
= [¢°] (1-¢*)(1—¢g"™)
(1—4q)
[qQ] (1 - qz - q2(n—m) + qQ(”—mH))
(1—q) '
Since
e (e
(1 __q)Z __nzo n q,
we have that
1— qz _ q2(n—m) + q2(nfm+1) . - D1\
[QQ]( =L ) — [q2]<1 P qz( ) + q2( +1)> Z ’ ¢
n>0

(6)

=[q2]z< N )(q — " = ) g R,

If n = m, then Equation (7) becomes

1) (nz 1) (q"—q" =g gty = (7)Y (n N 1) (¢"=q"—¢"+¢""*) = 0.
n>0

If n =m + 1, then Equation (7) becomes

[¢°] ; (nz 1) (q"=q" =" +q ) =[] ) (n Z 1) (q"—2¢"*?) = (g) —2 (é) =1

Ifn :_ m + 2, then Equation (7) becomes

7] Z (n Z 1) (" — ¢"*% — " PE2 4 2D = [ Z (n

n>0 n>0

S +

—_
N——
—

=

3

=

3

+
N7

We could do more with generating series as a tool for approaching these problems but
first we require some heavier machinery.
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6 Crude, refined generating series and MacMahon cal-
culus

In [5], the author introduced Partition Analysis as a computational framework for solving
problems concerning linear homogeneous diophantine inequalities and demonstrated how
they relate to the theory of integer partitions. In [2], the authors revitalized the idea by
implementing a package for the evaluation of Omega calculus computations and demon-
strating how the theory can be used to solve challenging counting problems in number
theory and computational geometry.

Definition 6.1. The operator (>2 is defined on functions with absolutely convergent multi-

Z . Z Ag o AN

S1€EZ srE€Z

sum expansions

in an open neighborhood of the complex circles |\;| = 1. The action of §>2 is given by

=

S1E€EZ Sr€Z S1EZ SrE€Z

The Omega operator has been used extensively in [2]|, |7] and [1]. The usefulness
of the operator is rooted in the realization that many rational functions have a closed
form expression for which the simplification under §>2 is readily available. We illustrate an

>

instance of its power below.

Example 6.2. Consider the problem of finding nonnegative integer solutions (ay, as, as)
to the system

a; + as +as = k
ay+as —asz > O,
for some k£ > 0 fixed. One way to approach this problem is to identify the generating

series for tuples (aj,as,as) which records both the sum a; + as + a3 and the constraint
a1 + as — as.

If we let F'(x,y, z, \) denote the generating series for all integer three tuples (aq, as, as)
which marks the difference a; + as — az > 0, then we know that it has the form

F(z,y,2,\) = E g2 28\ Ta2—as,
a1,a2,a320

Moreover, we can simplify the generating series as follows

F(z,y,z,\) = E pqy02 z%8 \01Ta2—as
a1,a2,a3>0

= )y () Y (A

a1>0 az>0 a3>0

1 1 1
IL—azA1—-y 1%
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If we let f(x,y,z) denote the generating series

fleyz) Y atyte,

a1,a2,a3>0
a1+a2—a3>0

then by definition we know that

1 1 1
=QF A) =0 :
In order to evaluate the above expression, one may use theorem 2.1 from [2] in the special
case where n = 2,m = 1,a = 0 to obtain that

1 1 1 1—2yz

R N7y ¥ - s e ey s

Finally, we find that the number of integer solutions to a; + as + a3 = k for a fixed
k > 0 where a; + as > as is given by

1-¢° k
lq"1f(a, 9, 9) = [¢"] = [¢"]
(1—¢)*(1—¢*)?
The above example illustrates that one may obtain counts of complicated systems
of linear diophantine equations by lifting the system to a more general space and then
specializing using the Omega operator.

1—q3
1—q-¢+¢*)*

The function F' in the example above which also contains nonnegative integers which
we wish to discard is sometimes called a crude generating series. This is because its
refinement under the (>2 operator produces the generating series we are interested in.

Definition 6.3. The operator () is defined on functions with absolutely convergent multi-

Z . Z Agpo g X1 NS

S1EZL SrEL

sum expansions

in an open neighborhood of the complex circles |A;| = 1. The action of € is given by
O Z o Z Agp s, AT N = Ag o
N S1€EZ SrEZL

That is, ) extracts the constant term of the series after setting the A’s to 1.
Example 6.4. Consider the problem of finding solutions to the system

a1+a2+a3+a4:k

CL1+CL2—(13—(14:O,
for some k > 0 fixed. We may begin by writing the crude generating series F'(w, x,y, z, \)
as

Flw,xz,y,z,\) = E W pi2gyts y0a \W1Ta2 a3 —ae

a1,a2,a3,a4>0
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Now, we express F' as

Flw,z,y,z,\) = (Z w‘“)\al) (Z m”)\”) (Z y“3)\_“3) (Z wa4/\_“4>

a1>0 a2>0 a3>0 as>0
1 1 1 1
S l-wAl—azAl1-%1-

X
Now, one may use the observation that for all F'(\)

QF(\) =QF(\) +QF\") - F(1),

and Theorem 2.1 from [2], we find that the refined generating series is given by

flw,z,y,2) = QF(w,z,y, 2)
1 1 1 1
I—wAl—azA1—%1~
1 —wzyz
(1 —wy)(1 —a2y)(l —wz)(1 —22)

Thus, the solutions to the linear dipohantine system is given by

[§e)

Z
A

k] 1_q4

[fV@ﬂﬂA%=MZTj?F.

6.1 Edge type generating series
We recall that the type of a 2-clique in J,(m, k) corresponds to a solution of the system

nzvab+7a+7b+7®

m:7ab+7a
m =Yg % ’
k:7ab

where v, < k and v,,7, < m — k. The crude generating series F(x,y, z, A) for the above
system, with flexibility in choice for k£ and m, is given by

= E m E k E E=Yab ym—"ap=a \Yab™ Vb . Vab Vo 2 Y0 . Y@
F(m,y,z,)\,g) B “ Yy Eab ‘ >‘a o a)‘b ‘ xag Lo Ty Ly s

m>0 E>0  YapYarYp Yz 20

’7ab§k
YarYe<m—Fk
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where x records the tuples «, y records the intersection size constraint and z records the
size of the node in the graph and A records the feasibility of the tuple. After simplifying,

m—k
F(CC, Y, z, A 5) = Z 2™ Zyk()‘a/\b)_k Z (/\a)‘bxab)’yab Z ()‘axa) Z )\bxb b Z X

m>0 k>0 Vup >0 V=0 yp= vy>0
Z . 1 1— ()\axa)mflﬁrl 1— ()\bmb)mfk+l 1

N 1= 51— A hiap 1 — \Za 1— Aoy 1 — 2y
m>0

B 1 1 1 1 1 n

C\T =z )P T — 2y (Mama)P T — 2Aa1,

1 1 1 1 1
(TampAa )11 — 2A Ny ) 1 — %/\b 1 — XMooy |1 — 25|

Now, we see that the type generating function for the 2-cliques is given by
f(w7 y) - 8 F(m7 y7 Z? A)'
Moreover, since we are only interested in the count of types, we may simplify F'(x,y, z, A)

by substituting ¢ in all occurrences of & and find that

Fla.y. 23 - TS T 1
x x=q — - o
'Y 2, q T—2z )11 =200  (Ma@) 11 =200 (@A) 11 — 22002

" 1 1 [ 1 }
1— 51— Aadog 1—q|’

and the number of types of a 2-clique in J,,(m, k) is given by
[qmykzm] 9 F(.’L‘, Yy, z, A) |$:q

Remark 6.5. Suppose we have a series F(x, A1, A2). In general, the operators of {2 and Q

=

do not commute and

Q Q#Q Q
)\2 )\1 )\1 /\2
For our purposes, we will always apply Q before we apply {2 so as to avoid removing valid

summands from the computation. That is, we will always apply the less restrictive map
prior to applying the more restrictive map.

6.2 Triangle type series in generality

We are interested in nonnegative integer solutions to the system

(1= Yape T Yab + Yae + Voo + Yo+ + Ve T Vo
M= Yape +~ Yab + Yac T Y
M =Y abe + Yab + Yoc + Yo
M = Yabe t Yac T Voe +Ye ;
k="Yabe T Ya
k = ’Yabc + 7ac
LK = Yabe + Ve
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Consider the crude generating series

_E:m—'y ~Yab—Yac—Y M= abe—Vbe—Yac—Ye =P~ Yabe = Vab k=Yabe=Vbe 0 Yabe 1 Yab
\I](m,Aje) — )\a abe ab ac a...)\c abc be ac cgab abe a e g abe Cl'agccl‘al‘; o e

be
720

1 1 1 1
= X
1 — — Fabe 1 — —ZFab 1 — —Zac 1 — —Zbe
AaAbAcEabEacEhe AaAbEab AaAcEac AbAcEpe

1 1 1 { 1 } &
Tq T Te ()‘a)\b)\c)m<5ab€acgbc) s
L—EIL—x][—xll—%

where A measures the feasibility of the node size being m, € measures the feasibility of the
intersection size being k and @ records the values of the tuples of A.

Now, in order to proceed in obtaining the triangle type generating series, we proceed
as follows

1. Apply Q to U(x, A e).
=

2. (a) Derive ¥k (x) by applying 9 to Q U(x, A, e) if we are interested in KG,, ..
Ze =\

(b) Derive ¥;(x) by applying Q@ to Q W(x, A, e) if we are interested in J,,(m, k).
=€ =A

3. Extract the coefficient of ¢" in ¢ (x)|,—, for the generating series of interest.

6.3 r—clique type generating series for r > 3

We know that for » € N, the type of an r—clique is a solution to the system

Z’YJ:n

JC[r]

Z 7] =1m, VZ
1€JC|r]

> v =k, Vi # j
ijeJClr]

If we let X\ record the node constraint and € record the intersection constraint, then we
obtain the crude generating series

1
el H 77
e - A
(TLics ML jesizs €i)

If one were to apply the operator {2 2 and then apply the substitution x|,—,, one would

=e =
obtain the refined generating series for the number of types of r—cliques in J,(m, k) for
any r > 3.
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6.4 Type generating series in full generality

The most general crude generating series for types we have derived contains all possible
configurations of types for all n, m, k and r. We shall denote it by ® and it is given by

k=>2ijeg Vs
O(w,z,yAe)= > Y > (H A ZZG”“’) [Te, 7 11 a7vivser
n,m,k>0 r>0 ]éi/o i=1 i#j JEN;
_ y ykJrs >\k+5 2ies Vs £ ‘YJ ‘YJ( l’ ) r

JCN,

IO LS IED NI EDIP I | | SReit

r>0 k>0 =1 i#] s>0 =1 JCN; v;>04ied 1,J€Ji#£]

., 1 ( 1 )
= w T T
; (1 — iy [Tis A Hi,je/\m;ﬁj 51}]’) L=y lic N

1
H 1 Ty )
JCN, |1 —
[Lics A Hi,jeJ;i;ﬁj Eij

where y; records the node size feasibility constraint, y, records the intersection size feasi-
bility constraint and w records the clique size of interest.

We would like to apply Q@ and Q to ®(w,x,y, A, £). This is one of the main challenges
=2 =€

we have left.

Why do we want to be able to apply it? Suppose we had a closed form expression for

¢J(w7w7y) = ngq)(w7way7 A7€)7

e A
then [¢"y7"y5]ds(w, x|s=q,y) will be a finite degree polynomial in w. In particular, the
degree of the polynomial will correspond to the clique number (the size of largest clique)
of J,(m, k), by construction.

6.5 Johnson graph coclique problem

Moreover, similar technique can be used to obtain the clique number of KG,,(m, k). That
is, if we instead were able to obtain a closed form for

qbK(waw?y) = gg_zq)(wumaya A7€>)
<A

then [¢"y"y5)dx (w, x|,—y, y) will be a finite degree polynomial in w whose degree is the
clique number of KG,, ,.

We begin by recalling the definition of a coclique.
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Definition 6.6. Let GG be a graph and H be a subset of the vertices of G. We say that H
is a coclique in G if for any distinct x,y € H, x and y are not adjacent in G. Equivalently,
the subgraph induced by H in G is empty.

In [3], the authors pose the following open problem on page 312:

Problem 6.7. What is the size of the largest coclique in the Johnson graph J,(k,k — 1)
for all n and k?

TODO: Not sure if we can call our work a theorem
We now explain how the above theorem addresses this open problem. Since H is a coclique
if and only if H is a clique in the complement in the complement of .J,,(m, m —1). Further-
more, we note that x,y in J,(m, m — 1) are adjacent if and only if |v(z) v(y)| =m — 1.
Therefore, z and y are not adjacent in J,,(m, m — 1) if and only if |v(z) v(y)| < m — 2.
Thus, the complement of J,(m,m — 1) is KG,(m,m — 2) and H must be a clique in
KG,(m,m —2) to be a coclique in J,(m, m — 1).

7 Connection to Random Graphs

TODO: Define G(n, p), mention motivation

Theorem 7.1. If G is a subgraph of the complete graph K, then L(G) is a subgraph of
the Johnson graph J,(2,1). Thus, since G(n,p) always produces a subgraph of the complete
graph, the line graph of G(n,p) will always be a subgraph of J,(2,1).

Proof. First, we show that the line graph of a complete graph is J,(2,1). Suppose that
the vertex set of K, is labelled {1,2,...,n}. Therefore, the vertices line graph of K, are
identified as a subset of the 2—subsets of {1,2,...,n}. Now, since every i,j € {1,...,n}
are adjacent in K,,, {4, j} is an edge in K,, and hence each of the 2—subsets of {1,2,...,n}
give to a vertex in L(K,).

Now, fix two vertices {i,j}, {k,l} in L(K,). In order for them to be adjacent in
L(K,), it would mean that the corresponding edges in must share exactly one vertex in
K, (as multiedges are not allowed). Thus, {7,j} and {k,l} are adjacent in L(K,) if and
only if

{i, 5y 0 {k, 3 =1,

which agrees with the classic definition of J,,(2,1).

Finally, since the line graph of a subgraph H of G is a subgraph of L(G), the claim
follows. O

Therefore, ER graphs form a model for how we may construct our navigation graphs,
at least in the case for when we only visit two variables at a time.
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Definition 7.2. Let R denote the projection operator from the set of all multisets of A,
onto the set of all subsets of NV,, which acts on a multiset by replacing multiplicities greater
than 1 with 1. That is,

R, i)Y = fivia, i}

This operator acts on line graphs of J,,(m, k) by contracting vertices. That is, suppose one
has a collection of vertices of the form

(a1 v =1, .,
then all such sets would contract into a single vertex corresponding to the m—set {iy, i, ... 4, }.

Theorem 7.3. For all n > m > k positive integers,
R(L(J.(m, k) = J,2m — k,m) + J,2m —k,m+ 1)+ -+ J,(2m — k,2m — k — 1),
where the addition operation is the usual graph addition (edge union of vertices).

Proof. Let H denote the graph L(.J,,(m, k)). To prove the claim, we must show that R(H)
consists of all of the (2m — k)—subsets of NV, and that two nodes are adjacent if and only
if the two corresponding sets have an intersection of size m.

First, we show that R(H) consists of nodes of the form AUelJ B, where e is a subset
of NV, of size k and A, B C N, \ e are disjoint sets of size m — k. To this end, fix e C N,
of size k let A, B be two disjoint sets A, B C N, \ e of size m — k. Then v(v;) = AUe and
v(vy) = B e are two adjacent nodes in J,(m, k). Applying the line graph operation to
this edge produces a node in H which has the form

v(v) ={zW:ze AUy ye Bu{i? i€}
Applying the reduction operator R, we find
R(v(v)) =AUel B.

Since every node in R(H) is constructed through identifying it with an edge in J,(m, k),
the first claim follows:

v(v)] = |AUed B| = |A|+ |B|+ |e| =2(m — k) + k = 2m — k,

for all v € V(R(H)).

Next, we must show that v; and vy are adjacent in R(H) if and only if they intersect
in at least m elements.

Suppose that |v(v)) Nv(vy)| > m. Fix e C v(v1) Nv(vg) of size m and suppose that
v = Ay Ue, vg = Ay Ue, where A; is the complement of e in v(v;),i = 1,2 and hence has
cardinality m — k. Fix f C e of size (m — k). Since e is of size m, it corresponds to a
unique node in J,(m, k). Now, consider the set u; = (e \ f) U A;. This is a set of size m
and hence also a node in J,(m, k). Since |e \ f| = k and A, is disjoint from e, we know
that the two nodes corresponding to e and u; are adjacent in J,(m, k). Similarly, the two
nodes corresponding to e and us = (e \ f) U Ay are adjacent in J,,(m, k). Therefore, the
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two edges that connect e with u; and e with uy must be adjacent in H. However, these
edges are precisely v; and v, after applying the projection operator R.

Conversely, suppose that v;, vy are adjacent in R(H). Then there exists x,y, z some
m—subsets of N, for which z ~ y,z ~ z in J,(m,k) and v(v;) = z Uy, v(vy) = x U 2.
Now, we claim that |v(vy) Nv(ve)| > m. Clearly, z C (x Uy)[)(z U 2) and |z| = m and
hence we are done. O

Corollary 7.4. For all positive integers n > m,

Proof. Follows immediately from Theorem 7.3 as when & = m — 1, the right handside
becomes
Jn(2m — (m —1),m) = J,(m + 1,m).

TODO: Find a home for this
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