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2 Introduction

In graph theory, the Johnson graph is a class of undirected graphs defined over a family
of sets where two sets of size m, which serve as nodes, are adjacent if they intersect in a
m − 1 elements. This class of graphs were named after American mathematician, Selmer
Martin Johnson, who worked on bounds for codes on the now so-called Johnson scheme,
which is the association scheme analogue of Johnson graphs.

Later, these graphs were generalized into a larger class of graphs known as the Gen-
eralized Johnson graphs Jn(m, k) where nodes are m−subsets of an n−set and two nodes
are adjacent if they intersect in k elements. These graphs were of particular interest to us
because they serve as a tool for exploratory data analysis TODO: cite oldford hurley 2011.

In this paper, we make use of algebraic and combinatorial ideas in order to capture the
structure of cliques in Johnson graphs. In particular, we characterize the total number of
cliques in Jn(m,m−1), define two natural types of cliques and provide a partial solution to
the open problem of finding the coclique number of Jn(m,m− 1). Additionally, we extend
our results to the more general case of generalized Johnson graphs Jn(m, k). Finally, we
establish a connection between Erdos Renyi graphs and navigation graphs and use our
results to demonstrate how one may conduct hypothesis tests on cliques to investigate a
dataset.

3 Clique types and clique number of a Johnson graph

Proposition 3.1. The Johnson graph Jn(m,m− 1) is m(n−m)−regular. The number of
edges in a Johnson graph Jn(m,m− 1) is given by(

n

m

)
m(n−m)

2
.

Proof. See [3].

Proposition 3.1 provides us with an enumeration of the number of K2 copies present
in the Johnson graph Jn(m,m − 1). We will soon enumerate copies of Kr for r ≥ 3 in
Jn(m,m− 1), which we recall are known as cliques.

Definition 3.2. Let G be a graph. We say that a clique H is a maximum clique if there is
no clique with more vertices than H. Moreover, we let ω(G) denote the number of vertices
in a maximum clique of G.

Proposition 3.3. Let G be the Johnson graph Jn(2, 1). Then the intersection of a maximal
clique in G is either 0 or 1. Moreover, for n ≥ 3, the size of a maximal clique is either 3
or n− 1 and hence

ω(Jn(2, 1)) = max{n− 1, 3}.

Proof. Let H be a maximal clique in G = Jn(2, 1). Consider S the intersection of all the
nodes in H

S =
⋂
v∈H

ν(v).
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Since every node has 2 elements and any two nodes intersect in exactly one element, we
know that |S| ≤ 1. Thus, |S| ∈ {0, 1}.

If |S| = 0, then one can show that H must be a triangle. Indeed, consider the
configuration below.

Is it possible to find a vertex which is adjacent to all vertices in the triangle above?
The answer is no because once a vertex is adjacent to any two of the vertices, such as
{a, b}, {a, c}, it must be either of the form {a, d} or {b, c}. In the first case, {a, d} is not
adjacent to the third member of the triangle and hence cannot be part of the clique. In
the second case, it is already in the triangle.

Thus, a triangle is the largest possible clique in Jn(2, 1) when we impose the restriction
that it has an empty intersection.

Now, suppose that |S| = 1 and that S = {i}. Then we know that a maximum clique
will have the form H = {i} × (Nn \ {i}) for some i ∈ Nn. This is a clique of size n − 1
which cannot be any larger as we exhausted all nodes that contain i.

Thus, we know that the maximal cliques in Jn(2, 1) can only only be of either size 3
or n− 1 and hence ω(Jn(2, 1)) = max{n− 1, 3}.

We saw above that there are only two possible sizes for the intersection of a clique in
Jn(2, 1) for n ≥ 3. We will soon generalize this observation and demonstrate that there
are only two possible clique intersection sizes. Now, we categorize of maximal cliques with
empty total intersection.

Proposition 3.4. Let G be the Johnson graphs Jn(m,m − 1) with n ≥ m + 1 and let H
be a maximal clique in G. If B denotes the union

B :=
⋃
v∈H

ν(v),

then
⋂
v∈H ν(v) = ∅ if and only if ν(a) ∪ ν(b) = B for a, b distinct in H.

Proof. Suppose that
⋂
v∈H ν(v) = ∅. Fix a and b distinct vertices in H and suppose that

B 6= ν(a)∪ν(b). We may assume that a and b have the form ν(a) = {x}∪e, ν(b) = {y}∪e
for some (m− 1)-set of variables e ⊆ Nn and x 6= y in Nn.

Since B 6= ν(a) ∪ ν(b), there exists some z1 ∈ B \ (ν(a)
⋃
ν(b)). Let c1 be a vertex in

H for which z1 ∈ ν(c1). Since c1, a, b ∈ H and H is a clique it must be that c1 is adjacent
to a and b.
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Now, since z1 6∈ ν(a) ∪ ν(b), it must be that c1 has the form ν(c1) = {z1} ∪ f where
f is a (m − 1)-subset of Nn. Moreover, since x 6= z1, we see that in order for c1 to be
adjacent to a, f must be e. If f = e, then we also then guarantee that c1 is adjacent to b.

We now inductively extend our construction into a sequence z1, . . . , zl of variables and
nodes c1, . . . , cl where

1. zi ∈ ν(cj) if and only if i = j for all i = 1, . . . , l,

2. zi 6∈ ν(a) ∪ ν(b)
⋃

(∪i−1
s=1ν(cs)),

3. B = ν(a) ∪ ν(b)
⋃

(∪i−1
s=1ν(cs)) and

4. a, b and all ci are pairwise adjacent.

As before, we see that since cs has the form ν(cs) = {zs} ∪ es where zs 6∈ es and H is a
clique, it must be that es = e.

Now, we demonstrate that this collection must include all vertices from H. Fix u ∈ H
and suppose that u 6∈ {a, b}

⋃
(∪li=1{ci}).

We now consider two cases regarding the structure of u: either ν(u) is a subset of
ν(a)

⋃
ν(b) or it is not.

Case 1: u = {zs} ∪ eu for some 1 ≤ s ≤ l.

Since H is a clique, we know that u must be adjacent to cs = {zs} ∪ e and u must be
adjacent to a. The former implies that |eu ∩ e| = m − 1 as zs ∈ ν(cs) ∩ ν(u). The latter
implies that |eu ∩ e| = m as zs 6∈ ν(a). This is impossible.

Case 2: ν(u) ⊆ ν(a) ∪ ν(b).

Suppose that ν(u) ⊆ ν(a)∪ν(b). Then it must be that u is of the form ν(u) = {x, y}∪eu
for some (m − 2) subset eu of e to ensure the adjacency to a and b. However, now u is
not adjacent to ci for all 1 ≤ i ≤ l as x, y 6∈ {zi : 1 ≤ i ≤ l} and |eu ∩ e| = m − 2. This
contradicts that H is a clique.

Thus, we have just demonstrated that the collection {a, b}∪{ci : 1 ≤ i ≤ l} must be all
of H where for any vertex u ∈ H, ν(u) contains the set e and a singleton outside of e. This
contradicts our assumption that ∩v∈Hν(v) = ∅ and hence it must be that B = ν(a)∪ ν(b)
for any two distinct a, b vertices in H.

Conversely, suppose that B = ν(a) ∪ ν(b) for any two distinct a, b in H. Then since
|ν(a) ∪ ν(b)| = m + 1, we have that |B| = m + 1. Furthermore, since any a ∈ H is an
m−subset of B, we find that H ⊆ J where J := {A ⊆ B : |A| = m}.

We now demonstrate that H = J . Suppose that there is some v ∈ J for which v 6∈ H.
Since v satisfies ν(v) ⊆ B and has cardinality m, there is some unique iv ∈ B for which
ν(v) = B \ {iv}. Fix a vertex u ∈ H and similarly, note that that u must have the form
ν(u) = B \ {iu}, for some iu ∈ B. Now, we have that

ν(v) ∩ ν(u) = B \ {iu}
⋂

B \ {iv} = B \ {iu, iv},

which is a set of size m − 1 as iu 6= iv. By maximality of H, it must be that v ∈ H and
hence H = J .
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Now, we demonstrate that the intersection
⋂
v∈J ν(v) is empty. Since

⋂
v∈J ν(v) ⊆ B,

it suffices to show that for all x ∈ B, x 6∈
⋂
v∈J ν(v). Fix x ∈ B and consider the vertex

vx where ν(vx) = B \ {x}. Since vx is a node in J and x 6∈ B, we have that x 6∈
⋂
v∈J ν(v)

and hence ⋂
v∈J

ν(v) = ∅.

Remark 3.5. Proposition 3.4 indicates that Jn(m,m− 1) has a family of maximal cliques
that have the form

JB := {v : |ν(v)| = m, ν(v) ⊂ B},

where B is some (m + 1)−subset of Nn. We refer to maximal cliques of this form and
their subcliques by Dmax. Another family which we encountered in Theorem 3.3 is the one
which takes on the form

JA := {u : |ν(u)| = m,A ⊂ ν(u)},

where A is some fixed (m−1)−subset of Nn. We refer to maximal cliques of this form and
their subcliques by Dmin.

The following proposition asserts that only maximal cliques of type Dmax and type
Dmin exist in Jn(m,m− 1) for m ≥ n+ 1.

Theorem 3.6. Let H be a maximal clique in the Johnson graph Jn(m,m− 1). Then the
intersection of H is either 0 or m− 1.

Proof. We proceed inductively on m. Consider the base case m = 2.

Let H be a maximal clique in Jn(2, 1). Suppose s =
⋂
v∈H ν(v). Then since the

intersection of any two nodes is of size 1 and the intersection of the whole clique is bounded
below by 0, we find that

0 ≤ |
⋂
v∈J

ν(v)| ≤ 1 = 2− 1.

Now, suppose for some m0 ≥ 2, any m ≤ m0 and n ≥ m+ 1 satisfy that all maximal
cliques H in Jn(m,m− 1) have an intersection with∣∣∣∣∣⋂

v∈H

ν(v)

∣∣∣∣∣ ∈ {0,m− 1}.

Fix n′ ≥ m0 + 1 and let I be a maximal clique in Jn′(m0 + 1,m0). Suppose that I is
such that

m0 >

∣∣∣∣∣⋂
v∈I

ν(v)

∣∣∣∣∣ = s > 0.

Let A :=
∣∣⋂

v∈I ν(v)
∣∣ denote the intersection of the clique and without loss of generality,

suppose that A := Ns and let I−A denote the collection

I−A := {ν(v) \ A : v ∈ I}.
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For every vertex v ∈ I, the removal of A results in a node of size m0 + 1 − s. We now
demonstrate that I−A forms a maximal clique in Jn′−s(m0 + 1− s,m0 − s). First, suppose
that a is adjacent to b in Jn′(m0 + 1,m0). So, we have that |ν(a) ∩ ν(b)| = m0. Moreover,
since A ⊆ ν(a)

⋂
ν(b), we see that∣∣∣(ν(a) \ A)

⋂
(ν(b) \ A)

∣∣∣ = m0 − s.

Therefore, the collection I−A forms a clique in Jn′−s(m0 + 1− s,m0 − s).
Next, we show that I−A is a maximal clique. Suppose there is some v ∈ Jn′−s(m0 +

1− s,m0− s) for which v is adjacent to all of I−A but is not in I−A. Consider the vertex v′
with variable set ν(v′) = ν(v)∪A. By construction this is a unique node in Jn′(m0 +1,m0)
and it is adjacent to all u ∈ I. As I was assumed to be maximal, it must be that v′ ∈ I
and we have a contradiction as then v ∈ I−A.

Since I−A is a maximal clique in Jn′−s(m0 +1−s,m0−s), by the inductive hypothesis,
i := | ∩v∈I−A

ν(v)| ∈ {0,m0 − s}. We note that i must be 0 as otherwise removing the
intersection of a collection of sets would yield a collection of sets with nontrivial intersection,
which is impossible.

Now, since I−A is a maximal clique with intersection 0, Proposition 3.4 implies that∣∣∣∣∣∣
⋃

v∈I−A

ν(v)

∣∣∣∣∣∣ = (m0 + 1− s) + 1.

Since we have only removed the variable set A from I in our construction of I−A, this
implies that∣∣∣∣∣⋃

v∈I

ν(v)

∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

v∈I−A

(ν(v)∪̇A)

∣∣∣∣∣∣ = s+ (m0 + 1− s) + 1 = (m0 + 1) + 1.

Now, we demonstrate that for any two distinct vertices a, b ∈ I, ν(a) ∪ ν(b) =
⋃
v∈I ν(v).

First, we note that ν(a) ∪ ν(b) ⊆
⋃
v∈I ν(v) as a, b ∈ I. On the other hand, since |ν(a) ∪

ν(b)| = m0 + 2 and |
⋃
v∈I ν(v)| = m0 + 2, we have that

ν(a) ∪ ν(b) =
⋃
v∈I

ν(v).

By Proposition 3.4, I must be a clique for which

⋂
v∈I

ν(v) = ∅,

contradicting our assumption that |A| = s > 0. The claim then holds by the principle of
strong induction on m0.

As a consequence of the above result, we can obtain the clique number of Jn(m,m−1)
for all n ≥ m+ 1:
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Theorem 3.7. The clique number ω(Jn(m,m− 1)) of the Johnson graph Jn(m,m− 1) is
given by

max(m+ 1, n−m+ 1),

whenever n ≥ m+ 1.

Proof. Since there are only two types of maximal cliques, in order to determine the clique
number it suffices to compare their sizes. For maximally intersecting maximal cliques, the
size of such a clique is n − m + 1. On the other hand, an empty intersecting clique has
size m + 1. Therefore, the clique number of Jn(m,m − 1) is given by ω(Jn(m,m − 1)) =
max(m+ 1, n−m+ 1).

It is easy to show that for n ≥ 2m,ω(Jn(m,m − 1)) = n −m + 1. Indeed, we have
that

n−m+ 1 ≥ m+ 1 ⇐⇒ n+ 1 ≥ 2m+ 1 ⇐⇒ n ≥ 2m.

Thus, we can conclude that ω(Jn(m,m−1)) = m+1 for m+1 ≤ n ≤ 2m and ω(Jn(m,m−
1)) = n−m+ 1 for n ≥ 2m.

There are several consequences to the two propositions above. First, we may use our
results to count cliques within Johnson graphs.

Theorem 3.8. For r ≥ 3, the number of r−cliques in Jn(m,m− 1) is given by(
n

m+ 1

)(
m+ 1

r

)
+

(
n

m− 1

)(
n−m+ 1

r

)
.

Proof. Let H be an r−clique for r ≥ 3. Since every clique can be extended into a maxi-
mal clique, we know by Theorem 3.6 that H could be extended into either a clique with
maximum intersection m− 1 or minimum intersection 0. We shall demonstrate that H is
a subclique of exactly one of these maximal clique families.

We begin by demonstrating that an r−cliqueH can be solely identified to be a member
of one of the families by considering the total intersection or union of the clique H. To
be thorough, we show how both intersection and union can be used to identify the clique
type.

In proposition 3.4, we saw that for a maximal clique J with empty total intersection,
the union ν(a) ∪ ν(b) of any two distinct a, b ∈ J is equal to the union of the whole clique
and has cardinality m + 1. If H is a subgraph of such a clique J , then clearly the union
of any two distinct vertices in H would satisfy the same two properties. That is, we find
that in such case ∣∣∣∣∣⋃

v∈H

ν(v)

∣∣∣∣∣ = m+ 1.

Moreover, we note that since H has the form H = {v : ν(v) := B \ {x}, for some x /∈ B},
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where B is some fixed (m+ 1)−subset of Nn, we have that∣∣∣∣∣⋂
v∈H

ν(v)

∣∣∣∣∣ =

∣∣∣∣∣
r⋂
i=1

(B \ {xi})

∣∣∣∣∣
=

∣∣∣∣∣B \ (
r⋃
i=1

xi)

∣∣∣∣∣
= m+ 1− r.

On the other hand, if H were a subclique from the family of maximally intersecting cliques,
say for instance JA as in Remark 3.5, then we know that H has the form H = {v : ν(v) :=
A∪̇{xi}}. Therefore, we find that∣∣∣∣∣⋃

v∈H

ν(v)

∣∣∣∣∣ =

∣∣∣∣∣
r⋃
i=1

(A∪̇{xi})

∣∣∣∣∣
=

∣∣∣∣∣A ∪ (
r⋃
i=1

xi)

∣∣∣∣∣
= m− 1 + r.

This is already different from the union we would find if H were a subclique from a clique
of form JB since m− 1 + r 6= m+ 1 for r ≥ 3. Moreover, the intersection of the H in such
case will be given by ∣∣∣∣∣⋂

v∈H

ν(v)

∣∣∣∣∣ =

∣∣∣∣∣
r⋂
i=1

(A∪̇{xi})

∣∣∣∣∣
= |A|
= m− 1,

which does not equal to m+ 1− r for r ≥ 3.

Therefore, there are only two possible types of r−cliques in Jn(m,m− 1): those that
are subsets of some empty intersecting maximal clique or some maximum intersecting
maximal clique.

In the former case, there are (
n

m+ 1

)(
m+ 1

r

)
such cliques. In the latter case, there are(

n

m− 1

)(
n−m+ 1

r

)
such cliques.

Proposition 3.9. For all integers n > m > 1, the edges of Jn(m,m−1) partition according
to their membership in the set of all maximal Dmax cliques.
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Proof. Fix an edge e in Jn(m,m−1). Then for some vertices A and B, ν(e) = ν(A)∩ν(B)
and e can be identified with a set of size m−1. This set corresponds to a unique, maximal
Dmax clique in Jn(m,m− 1). In particular, the clique {v : ν(v) = ν(e) ∪ x, x ∈ Nn \ ν(e)}
is a maximal Dmax clique containing e. It is clear that it is unique and all maximal Dmax

cliques have the same size, since they are relabellings of one another.

As an additional verification, we note that according to Proposition 3.1, Jn(m,m− 1)
has

m(n−m)

2

(
n

m

)
edges. On the other hand, if what we claim is true, then the number of edges resulting
from the collection of all maximal Dmax cliques should equate to

m(n−m)

2

(
n

m

)
.

By the preceding argument, each (m− 1)−subset of Nn corresponds to a unique, maximal
Dmax clique of size n −m + 1. This is because we have n − (m − 1) options for the final
variable to include in each node belonging to the clique. Therefore, each of these cliques
corresponds to

(
n−m+1

2

)
edges. Lastly, we have

(
n

m−1

)
distinct, maximal Dmax cliques and

hence in total, this collection results in(
n−m+ 1

2

)(
n

m− 1

)
=

(n−m+ 1)(n−m)

2

[
m

n−m+ 1

(
n

m

)]
=
m(n−m)

2

(
n

m

)
,

as claimed.

TODO: Is the above prop in the best place?

The following corollary provides a closed-form expression for the number of triangles
in a Johnson graph.

Corollary 3.10. The number of triangles in Jn(m,m− 1) is given by(
n

k

)(
n− k

3

)
+

(
n

k − 1

)(
n− k + 1

3

)
=

(
m+ 1

2

)
(n− 2)

3

(
n

m+ 1

)
.

Proof. By Theorem 3.8, the number of triangles is given by(
n

k

)(
n− k

3

)
+

(
n

k − 1

)(
n− k + 1

3

)
.
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This can be simplified as follows(
n

k

)(
n− k

3

)
+

(
n

k − 1

)(
n− k + 1

3

)
=

n!

k!(n− k)!

(n− k)!

3!(n− k − 3)!

+
n!

(k − 1)!(n− k + 1)!

(n− k + 1)!

3!(n− k − 2)!

=
n!(n− k − 2) + n!k

3!k!(n− k − 3)!(n− k − 2)

=
n!(n− k − 2 + k)

3!k!(n− k − 2)!

=
n!(n− 2)

3!k!(n− k − 2)!

=
n!(n− 2)

3!k!(n− k − 2)!

=
(k + 2)!

2!k!

(n− 2)

3

n!

(k + 2)!(n− k − 2)!

=

(
k + 2

2

)
n− 2

3

(
n

k + 2

)
=

(
m+ 1

2

)
n− 2

3

(
n

m+ 1

)
,

as needed.

We can use Theorem 3.8 to study the distribution of cliques in Jn(m,m− 1).

Corollary 3.11. The total number of cliques of size 3 or larger in Jn(m,m− 1) is(
n

m+ 1

)(
2m+1 − (m+ 2)−

(
m+ 1

2

))
+

(
n

m− 1

)(
2n−m+1 − (n−m+ 2)−

(
n−m+ 1

2

))
.

Proof. By Theorem 3.8, we know there are(
n

m+ 1

)(
m+ 1

r

)
+

(
n

m− 1

)(
n−m+ 1

r

)
cliques of size r. The result then follows by summing over all r ≥ 3 and by applying the
binomial theorem.

4 Clique distribution of the Johnson graph

In this section, we concern ourselves with the distribution of cliques in Jn(m,m − 1).
Our motivation for this stemmed from the idea of exploring data sets using navigation
graphs, which can be viewed as subgraphs of Johnson graphs. Thus, we were interested
in understanding what graph theory might say about the prevalence of one type of clique
over the other or if there were perhaps other insights one might glean from the structure
of the cliques that are present in a navigation graph.
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We begin with a straightforward result that shows that for m ∈ N and r ≥ 3 fixed,
almost all r−cliques in Jn(m,m− 1) are of type Dmax, as n→∞.

Proposition 4.1. Fix m ∈ N, and r ≥ 3. Then the number of r−cliques in Jn(m,m− 1)
is dominated by cliques of type Dmax. That is,(

n
m−1

)(
n−m+1

r

)(
n

m+1

)(
m+1
r

)
+
(

n
m−1

)(
n−m+1

r

) → 1,

as n→∞.

Proof. First, we note that

1 ≥
(

n
m−1

)(
n−m+1

r

)(
n

m+1

)(
m+1
r

)
+
(

n
m−1

)(
n−m+1

r

)
and (

n
m−1

)(
n−m+1

r

)(
n

m+1

)(
m+1
r

)
+
(

n
m−1

)(
n−m+1

r

) = 1−
(

n
m+1

)(
m+1
r

)(
n

m+1

)(
m+1
r

)
+
(

n
m−1

)(
n−m+1

r

)
≥ 1−

(
n

m+1

)(
m+1
r

)(
n

m−1

)(
n−m+1

r

) .
Therefore, it suffices to show that (

n
m+1

)(
m+1
r

)(
n

m−1

)(
n−m+1

r

) = o(1).

Recall that for k ≤ n fixed, we have (
n

k

)
= Θ(nk)

and so (
n

m+1

)(
m+1
r

)(
n

m−1

)(
n−m+1

r

) =
Θ(nm+1)Θ(1)

Θ(nm−1)Θ(nr)
= Θ(n2−r) = O(n−1) = o(1),

as claimed above.

One might also wonder when we have balanced groups within the distribution. That
is, for which values of n and m are the counts of Dmin and Dmax cliques equal? We begin
by solving a related but easier problem which will motivate our technique for finding the
solution to this problem.

Proposition 4.2. The only solution to the system(
n

m− 1

)(
n−m+ 1

r

)
=

(
n

m+ 1

)(
m+ 1

r

)
for r ≥ 0 is given by n = 2m.
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Proof. Let Fmax(q) denote the clique-type generating series for Dmax and Fmin(q) denote
the clique-type generating series for Dmin. Then these generating series can be written
compactly as follows

Fmax(q) =

(
n

m− 1

) ∞∑
r=0

(
n−m+ 1

r

)
qr

=

(
n

m− 1

)
(1 + q)n−m+1

Fmin(q) =

(
n

m− 1

) ∞∑
r=0

(
m+ 1

r

)
qr

=

(
n

m− 1

)
(1 + q)m+1.

Thus, we have that the ratio is given by

Fmax(q)

Fmin(q)
=

(
n

m−1

)(
n

m+1

)(1 + q)n−2m.

In order for this ratio to equal to 1, it must be that [qs]Fmax(q)
Fmin(q)

= 0 for all s > 0. If n > 2m,
then we know that

(1 + q)n−2m =
n−2m∑
r=0

(
n− 2m

r

)
qr,

and at least one positive power of q has a non zero coefficient since

[q1](1 + q)n−2m =

(
n

m−1

)(
n

m+1

)(n− 2m

1

)
> 0,

whenever n > 2m. On the other hand, if n < 2m, we set ` = 2m − n and then by the
generalized binomial theorem, we have that

(1 + q)n−2m =
1

(1 + q)`
=
∑
r≥0

(
r + `− 1

r

)
(−1)rqr.

Since ` is an integer and ` > 0, we see that(
r + `− 1

r

)
6= 0,

for all r ≥ 0. Therefore,

Fmax(q)

Fmin(q)
=
∑
r≥0

(
r + `− 1

r

)
(−1)rqr,

has a non-zero coefficient for all qs with s ≥ 0. If ` > 1, then

[qs]
Fmax(q)

Fmin(q)
=

(
n

m−1

)(
n

m+1

)(s+ `− 1

s

)
(−1)s 6= 0,

11



and thus the ratio cannot be equal to 1. So, we can conclude that the only candidate for
which we may see equality in the generating series is when n = 2m. We now show that
n = 2m ensures for equality of the two generating series.

If n = 2m, then since 2m− (m+ 1) = m− 1, we have that
(

n
m−1

)
=
(

n
m+1

)
and

Fmax(q)

Fmin(q)
=

(
n

m−1

)(
n

m+1

)(1 + q)2m−2m = (1 + q)0 = 1,

as needed.

Corollary 4.3. Let G = Jn(m,m − 1). The distribution of cliques in G of type Dmax is
equal to the distribution of type Dmin if and only if n = 2m.

Proof. We remark that in order to solve the system(
n

m− 1

)(
n−m+ 1

r

)
=

(
n

m+ 1

)(
m+ 1

r

)
for all r ≥ 3, it is sufficient to solve the system(

n

m− 1

)(
n−m+ 1

r

)
r(r − 1)(r − 2) =

(
n

m+ 1

)(
m+ 1

r

)
r(r − 1)(r − 2), (1)

for all r ≥ 3. The advantage of the latter system is that it has a generating function
which has a nice factorization as a product of generating series, as we show below.

Let Fmax(q) and Fmin(q) be as in the proof of 4.2. Let fmax(q) and fmin(q) be the
generating series defined by

fmax(q) = q3 ∂
3

∂q3
Fmax(q)

= q3(n−m+ 1)(n−m)(n−m− 1)

(
n

m− 1

)
(1 + q)n−m−2

=

(
n

m− 1

) ∞∑
r=3

(
n−m+ 1

r

)
r(r − 1)(r − 2)qr,

fmin(q) = q3 ∂
3

∂q3
Fmin(q)

= q3(m+ 1)m(m− 1)

(
n

m+ 1

)
(1 + q)m−2

=

(
n

m+ 1

) ∞∑
r=3

(
m+ 1

r

)
r(r − 1)(r − 2)qr,

We note that n and m are solutions to system (1) if and only if fmax(q) = fmin(q). So, we
divide fmax(q) by fmin(q) and examine when this generating series equals 1.

12



fmax(q)

fmin(q)
=
q3(n−m+ 1)(n−m)(n−m− 1)

(
n

m−1

)
(1 + q)n−m−2

q3(m+ 1)m(m− 1)
(

n
m+1

)
(1 + q)m−2

=
(n−m+ 1)(n−m)(n−m− 1)

(
n

m−1

)
(1 + q)n−2m

(m+ 1)m(m− 1)
(

n
m+1

)
We may reuse the argument from Proposition 4.2 and note that since [qs]

fmax(q)

fmin(q)
= 0, it

must be that (1 + q)n−2m = 1 and n = 2m.

It is straightforward to verify that the other terms yield the proper cancellation when
n = 2m.

Additionally, when the distribution of Dmin and Dmax cliques are identical, we are
immediately able to both identify the count and the size of the most common class of
clique.

Proposition 4.4. Let G = J2m(m,m − 1). Then the largest count of r−cliques occurs
when r = m+1

2
, for m odd and for m even, the mode

r =

{
m+1

2
When m is odd.

dm+1
2
e, bm+1

2
c, Else

Proof. Since n = 2m, the count of cliques of size r is given by

2

(
2m

m+ 1

)(
m+ 1

r

)
.

This is maximized when
(
m+1
r

)
is maximized which occurs at r = m+1

2
for m odd and

m
2
, m

2
+ 1, for m even.

We shall consider two obvious mechanisms for picking cliques at random. First, we
consider the distribution of picking a clique at random. Second, we consider the distribution
of cliques given a fixed clique type (either Dmax or Dmin).

Under the first mechanism for sampling cliques, we sample uniformly at random from
all possible cliques. Let R be the random variable which denotes the size of the clique
selected. The total number of cliques in this setting is given by

S := 1 +

(
n

m

)
+

(
n

m

)
m(n−m)

2
+

max(n−m+1,m+1)∑
r=3

(
n

m− 1

)(
n−m+ 1

r

)
+

(
n

m+ 1

)(
m+ 1

r

)
.

Thus, R has a probability mass function given by

P (R = r) =


(

n
m−1

)(
n−m+1

r

)
+
(

n
m+1

)(
m+1
r

)
, 3 ≤ r ≤ max(n−m+ 1,m+ 1)(

n
m

)m(n−m)
2

, r = 2(
n
m

)
, r = 1

1, r = 0.

13



Under the second mechanism, we begin by identifying the clique type of interest. For
instance, if we are interested in sampling from cliques of type Dmin, then we could proceed
as follows.

1. Pick a maximal clique H of type Dmin. This can be done in
(

n
m+1

)
ways as it is

sufficient to know the union of a clique of type Dmin to identify its maximal clique.

2. Pick a subclique by sampling uniformly at random from the subcliques of H.

Let Rmin be the random variable recording the size of the subclique selected. Under this
scheme, we would obtain a clique of size r with probability

P (Rmin = r) =

(
n

m+1

)(
m+1
r

)(
n

m+1

)∑m+1
r=0

(
m+1
r

) =

(
m+ 1

r

)
1

2m+1
=

(
m+ 1

r

)
1

2r
1

2m+1−r .

Thus, Rmin is clearly Binomial
(
m+ 1,

1

2

)
. Conceptually, we may explain this by noting

that sampling cliques uniformly from a maximal clique of size m + 1 is akin to allocating
to node i a random variable Yi ∼ Bernoulli

(
1
2

)
and forming a clique using only nodes for

which Yi = 1.

In the case that we are interested in sampling from cliques of type Dmax, our scheme
is given below.

1. Pick a maximal clique H of type Dmax. This can be done in
(

n
m−1

)
ways as it is

sufficient to know the intersection of a clique of type Dmax to identify its maximal
clique.

2. Pick a subclique by sampling uniformly at random from the subcliques of H.

Here, the random variable Rmax which equals the size of the subclique selected is given by

P (Rmax = r) =

(
n

m−1

)(
n−m+1

r

)(
n

m−1

)∑n−m+1
r=0

(
n−m+1

r

) =

(
n−m+ 1

r

)
1

2n−m+1
=

(
n−m+ 1

r

)
1

2r
1

2n−m+1−r ,

and hence Rmax is a Binomial
(
n−m+ 1, 1

2

)
.

This provides us with an additional proof for Corollary 4.2. The two clique type
distributions are equal if and only if Rmax

D
=Rmin. Hence, since two Binomial distributions

are equal if and only if they agree in their parameters, we see that this is only true when
n = 2m.
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TODO: What do we learn from this? How is this used? Can we mention that we
thought this was the way to go but realized that it only results in pretty math which we
include here? TODO: Should size 0 cliques appear in the distribution? Feels like nonsense.

5 Cliques in generalized Johnson and generalized Kneser
graphs

TODO: Need reintroduce the definitions
In this section, we focus on the generalized Johnson graph Jn(m, k) and illustrate how one
can enumerate all (r + 1)−cliques that contain a particular r−clique as a subset. In the
simple case of r = 3, our theorem provides a closed form expression for the number of
triangles in Jn(m, k).

5.1 Triangle Counts in Jn(m, k)

In this section, we count the number of cliques of size r in Jn(m, k). In order to motivate
the intuition for the proof of the general theorem, we begin by considering r = 2, 3.

Proposition 5.1. The number of edges in Jn(m, k) is given by

1

2

(
n

k

)(
n− k
m− k

)(
n−m
m− k

)
.

15



Proof. Begin by fixing the variables to appear in both edges. Since this must be precisely

k variables, this can be done in
(
n

k

)
ways.

Next, we pick the variables that appear in one node but not in the intersection. This
can be done in (

n− k
m− k

)
ways as we only need m− k additional variables and we have n− k variables that we did
not use yet. Similarly, the second node can be constructed in(

n− k − (m− k)

m− k

)
=

(
n−m
m− k

)
different ways as we need only pick m− k variables which we have not used yet.

Finally, since the order in which construct the two nodes does not matter, we divide
by 2.

We are now in position provide a complete enumeration of triangles in Jn(m, k).

Theorem 5.2. The number of triangles in Jn(m, k) is given by

1

3!

(
n

k

)(
n− k
m− k

)(
n−m
m− k

) k∑
s=0

(
k

s

)(
m− k
k − s

)(
m− k
k − s

)(
n− (2m− k)

m− 2k + s

)
.

Proof. We can build a triangle in Jn(m, k) by constructing it from a single edge into two
nodes and finally introducing the third node. Let {a, b, c} denote the nodes in our triangle.

Choose the first edge: Fix the variables in an edge e which will connect a to b.

This can be done in
(
n

k

)
ways.

Choose the vertices incident to the first edge: Fix the other variables which
appear in the two vertices. This can be done in(

n− k
m− k

)(
n− k − (m− k)

m− k

)
1

2
=

(
n− k
m− k

)(
n−m
m− k

)
1

2

ways.
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Let S denote the subset of the variables in our edge e to be the intersection of all three
nodes in the triangle.

Pick the size for the intersection of the triangle: We know that s the size of
S must satisfy 0 ≤ s ≤ k as it is a subset of the edge e. This means that we have k + 1
nonoverlapping cases to consider for the size of the intersection of the triangle.

Finish constructing edges incident to c: Once we know s, we know that we must
pick from the elements in a and b which are not in S to construct edges incident to a and
b which are not e. This can be achieved in(

m− k
k − s

)(
m− k
k − s

)
ways as the size of ν(a) \ (ν(a)∩ ν(b)) is m− k and we only need k− s additional elements
from each vertex.

Pick the remaining variables for c: By the time we complete the construction of
the edges incident to c, we will have chosen exactly s+ (k− s) + (k− s) = 2k− s variables.
Thus, we need to pick m− (2k − s) variables from the variables that we did not use yet -
variables that are not in ν(a) ∪ ν(b). This can be done in(

n− (2m− k)

m− 2k + s

)
ways since the size of |ν(a) ∪ ν(b)| is 2m− k.

Lastly, we must divide by 3 as we have three edges in our triangle and any one of them
could have been chosen to be the first edge constructed which yields the same graph.

To summarize the steps above, we see that the number of triangles in Jn(m, k) is

17



1

2

(
n

k

)(
n− k
m− k

)(
n−m
m− k

) k∑
s=0

1

3

(
k

s

)(
m− k
k − s

)(
m− k
k − s

)(
n− (2m− k)

m− 2k + s

)
.

As a consequence of Theorem 5.2, we may bound the size of the intersection of all
triangles in Jn(m, k).

Corollary 5.3. Let H = {a, b, c} be any triangle in Jn(m, k) and let s be the size of the
intersection

s =
∣∣∣ν(a)

⋂
ν(b)

⋂
ν(c)

∣∣∣ .
Then s must satisfy

2k −m ≤ s ≤ min(k, n− 3(m− k)).

Proof. As evident in Theorem 5.2, the set of possible values that s can take is {0, 1, . . . , k}.
Moreover, we know that there exists a triangle which satisfies an intersection of size s if
and only if the binomial coefficients in the summand are nonzero.

Thus, we need that s satisfies(
k

s

)(
m− k
k − s

)(
m− k
k − s

)(
n− (2m− k)

m− 2k + s

)
≥ 0.

This implies that we need s to satisfy

k ≥ s

m− k ≥ k − s
n− (2m− k) ≥ m− 2k + s.

Combining these together gives us the inequality

2k −m ≤ s ≤ min(k, n− 3(m− k)).

We can use Theorem 5.2 together with Corollary 5.3 to derive an alternative proof to
Theorem 3.10.
TODO: Add remark about how this agrees with our classification of cliques in Johnson
because intersection m− 2 is for Dmin

Corollary 5.4. For the Johnson graph G = Jn(m, k = m − 1), the intersection of any
triangle can only be of size k− 1 or k− 2. Moreover, the number of triangles in G is given
by (

m+ 1

2

)
(n− 2)

3

(
n

m+ 1

)
.

18



Proof. We know that by Corollary 5.3, s must satisfy 2k−m ≤ s ≤ min(k, n− 3(m− k)).
Since k = m− 1, this simplifies to

2(m− 1)−m = m− 2 ≤ s ≤ min(m− 1, n− 3) ≤ m− 1,

as claimed.

By specializing Theorem 5.2 to the case where k = m − 1, we have that the number
of triangles t is given by

t =

(
n

m− 1

)(
n−m+ 1

1

)(
n−m

1

)
1

3!

k−1∑
s=0

(
m− 1

s

)(
1

m− 1− s

)2(
n− (2m−m+ 1)

m− 2(m− 1) + s

)

=
1

3!

(
n

m− 1

)
(n−m+ 1)(n−m)

m−1∑
s=0

(
m− 1

s

)
1{m−1−s≤1}

(
n−m− 1

s−m+ 2

)
=

1

3!

(
n

m− 1

)
(n−m+ 1)(n−m)

[(
n−m− 1

1

)
+

(
m− 1

m− 2

)]
=

1

3!

(
n

m− 1

)
(n−m+ 1)(n−m) [n−m− 1 +m− 1]

=
1

3!

(
n

m− 1

)
(n−m+ 1)(n−m)(n− 2).

Furthermore, we can simplify t as

t =
1

3!

n!

(m− 1)!(n−m+ 1)!
(n−m+ 1)(n−m)(n− 2)

On the other hand we may simplify the expression(
m+ 1

2

)
(n− 2)

3

(
n

m+ 1

)
=

(m+ 1)m

2

(n− 2)

3

n!

(m+ 1)!(n−m− 1)!

After elimination of terms that appear in both expressions, we find that the theorem
holds if and only if

(m+ 1)m

(m+ 1)!(n−m− 1)!
=

(n−m+ 1)(n−m)

(m− 1)!(n−m+ 1)!
,

which is true as

(m+ 1)m

(m+ 1)!(n−m− 1)!
=

1

(m− 1)!(n−m− 1)!

=
(n−m+ 1)(n−m)

(m− 1)!(n−m+ 1)!
,

as needed to be shown.
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5.2 r-cliques counts in Jn(m, k)

In order to motivate the upcoming theorem, we start by generalizing our construction in
Theorem 5.2. Here, we demonstrate how to construct a K4 in an arbitrary Jn(m, k) by
first building a triangle.

In our construction of r-cliques in Jn(m, k), we make use of compositions of integers
which we define as follows.

Definition 5.5. Let r ∈ N be the size of a set of variables. We say that γ = (γ1,γ, . . . ,γ`)
is a composition of m if γi ≥ 0 for all i ∈ [`] and

∑`
i=1 γi = m.

Here, we are interested in integer compositions which are indexed by subsets of the
set Nr. That is, we will view γ as a function γ : P(Nr)→ N0 where we write γA := γ(A)
for A ⊆ Nr. In other words, we view a composition as a function from a set of size 2r into
the nonnegative integers whose sum is equal to some predetermined positive integer m.

Now, we are in position to state the result for the number of 4-cliques within Jn(m, k):

Theorem 5.6. The number of 4-cliques in Jn(m, k) that contain a particular triangle
{a, b, c} with intersection size s is given by

1

4

∑
γ∈A

(
s

γabc

)(
k − s
γab

)(
k − s
γac

)(
k − s
γbc

)(
m− 2k + s

γa

)(
m− 2k + s

γb

)(
m− 2k + s

γc

)
(
n− (3m− 3k + s)

γ∅

)
,

where A is the set of all compositions γ = (γabc,γab,γac,γbc,γa,γb,γc,γ∅) � m satisfying
the constraints

γabc + γab + γac + γa = k (2)
γabc + γab + γbc + γb = k (3)
γabc + γac + γbc + γc = k (4)

Moreover, the number of 4-cliques in Jn(m, k) is

1

4!

(
n

k

)(
n− k
m− k

)(
n−m
m− k

) k∑
s=0

(
k

s

)(
m− k
k − s

)(
m− k
k − s

)(
n− (2m− k)

m− 2k + s

)∑
γ∈A

(
s

γabc

)(
k − s
γab

)
(
k − s
γac

)(
k − s
γbc

)(
m− 2k + s

γa

)(
m− 2k + s

γb

)(
m− 2k + s

γc

)(
n− (3m− 3k + s)

γ∅

)
.

Proof. In order to construct a 4-clique which contains the triangle {a, b, c}, we need to
consider how we could uniquely construct a vertex d such that the pairwise intersection of
{a, b, c} is k. To that end, we propose the following approach.

Pick from the intersection of the triangle: First, we pick γabc ≥ 0 from the
intersection S of {a, b, c}. This can be done in(

s

γabc

)
20



different ways.

Pick from the pairwise intersections and outside of the triangle intersection:
We may also pick elements from edges that do not appear in our triangle intersection S. For
instance, we may pick γab variables from the edge eab\S := (ν(a)∩ν(b))\(ν(a)∩ν(b)∩ν(c)).
Since the size of this edge is k and we are excluding the intersection which has size s, we

can pick from this edge in
(
k − s
γab

)
different ways.

Similarly, we can pick elements from edges eac, ebc just as done above. This means
that accounting for all pairwise intersections of variables in our triangle, we can choose
elements in (

k − s
γab

)(
k − s
γac

)(
k − s
γbc

)
different ways, where γab,γac,γbc ≥ 0.

Pick elements unique to a node: Next, we may also pick variables that are unique
to a node. For instance, we may pick γa ≥ 0 elements from a \ (b ∪ c). Since this set has
m− 2k + s elements, such a selection can be done in(

m− 2k + s

γa

)
different ways. Since we can do the same with the other two nodes, in total the unique
node elements may be selected in(

m− 2k + s

γa

)(
m− 2k + s

γb

)(
m− 2k + s

γc

)
different ways, where γa,γb,γc ≥ 0.

Pick elements outside of the triangle: We may have new variables which did not
appear in the triangle yet. Since the size of |ν(a) ∪ ν(b) ∪ ν(c)| is given by 3m − 3k + s
(by principle of inclusion/exclusion) and there are n variables available to us, we may pick
new elements in (

n− (3m− 3k + s)

γ∅

)
different ways, where γ∅ ≥ 0.

Lastly, we must ensure that our γ satisfies that the sum of the variables we picked is
m (since that is the number of variables in our node d) and that the pairwise intersection
property holds. This can be ensured by picking compositions γ for which γ � m and

γabc + γab + γac + γa = k

γabc + γab + γbc + γb = k

γabc + γac + γbc + γc = k

Since there are 4 =
(

4

3

)
different triangles that would have yield the same 4-clique,

we divide by 4 to account for overcounting.
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Before continuing to the general case, we prove that for any collection of subsets of a
finite set Nn, there is a natural partition of Nn induced by the collection.

Lemma 5.7. For any r ≥ 1, given any collection (Ai)
r
i=1 of subsets of Nn, the collection

given by

A :=

{⋂
i∈J

Ai \

(⋃
i 6∈J

Ai

)
: J ⊆ Nr

}
is a partition of Nn. Moreover, for any j ∈ Nr, we have that

Ai =
⋃
J⊆Nr
J3i

[⋂
i∈J

Ai \
⋃
i 6∈J

Ai

]
.

Proof. First, we show that

Nn ⊆
⋃
J⊆Nr

[⋂
i∈J

Ai \

(⋃
i 6∈J

Ai

)]
.

Fix x ∈ Nn and let Jx = {i : x ∈ Ai} ⊆ Nr. Since x ∈ Ai for all i ∈ Jx, we have that
x ∈ ∩i∈JxAi. If i 6∈ Jx, then we find that x 6∈ Jx and hence

x 6∈
⋃
i 6∈Jx

Ai

and we can conclude

x ∈

[⋂
i∈Jx

Ai \

(⋃
i 6∈Jx

Ai

)]
.

All that we have left to show is that the intersection of any two distinct members of
A is empty. To that end, fix J,H ⊆ Nr distinct and suppose that

x ∈

[⋂
i∈J

Ai \

(⋃
i 6∈J

Ai

)]⋂[⋂
i∈H

Ai \

(⋃
i 6∈H

Ai

)]
.
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Since J and H are distinct, without loss of generality, we may assume that there is some
i ∈ J \ H. Thus, we see that x ∈ Ai as i ∈ J and x 6∈ Ai as i 6∈ H, which then implies
x ∈ ∅ - which gives us the contradiction we seek.

Since we will be using this partition of Nn repeatedly in our proof, we introduce the
following shorthand notation. For a given collection of subsets (Ai)

r
i=1 of Nn, we let

Γ(J) :=

[⋂
i∈J

Ai \

(⋃
i 6∈J

Ai

)]
=

[⋂
i∈J

Ai ∩

(⋂
i 6∈J

Aci

)]
,

for any J ⊆ Nr.

Remark 5.8. For instance, if a collection of subsets is given by (A1, A2),

Γ({1, 2}) = A1

⋂
A2

Γ({1}) = A1

⋂
Ac2

Γ({2}) = A2

⋂
Ac1

Γ(∅) = Nn
⋂

Ac1
⋂

Ac2.

In the generalization to our clique counting propositions, we will be interested in
nonnegative integer solutions to a particular system of equations which we will define as
follows.

For an r−clique H with nodes {A1, . . . , Ar}, let Cn,m,k(H) denote the set of all com-
positions γ indexed by subsets of Nr satisfying∑

J⊆Nr

γJ = m (Subset size condition)∑
J⊆Nr
i∈J

γJ = k, (Intersection condition i)

where intersection condition holds for all i ∈ Nr.

Now, we can prove our main result regarding the number of r-cliques in general.

Theorem 5.9. The number of (r + 1)-cliques in Jn(m, k) which contain a particular
r−clique H with nodes {A1, . . . , Ar} is given by

1

r + 1

∑
γ∈Cn,m,k(H)

∏
J⊆Nr

(
|Γ(J)|
γJ

)
,

where Cn,m,k(H) is the set of all compositions γ : P(Nr)→ N0 of m satisfying that for
all l ∈ {1, 2, . . . , r}, ∑

J⊂{1,...,r}:j∈J

γJ = k. (5)

23



Proof. Fix Ar+1 ∈ Vm adjacent to all of H and let γJ := |ν(Ar+1) ∩ Γ(J)|. By 5.7,
(Γ(J))J⊆Nr forms a partition of Nn and thus

∑
J⊆Nr

γJ =

∣∣∣∣∣ ⋃
J⊆Nr

Ar+1 ∩ Γ(J)

∣∣∣∣∣ = |ν(Ar+1)| = m.

Similarly, since Ar+1 is adjacent to Ai ∈ H, we have that |ν(Ai)∩ ν(Ar+1)| = k for all
i and hence

∑
i∈J⊆Nr

γJ =

∣∣∣∣∣ ⋃
i∈J⊆Nr

Ar+1 ∩ Γ(J)

∣∣∣∣∣ = |ν(Ar+1) ∩ ν(Ai)| = k.

Thus, γ meets the subset size and intersection size condition. Furthermore, such a subset
Ar+1 can be constructed in ∏

J⊆H

(
|Γ(J)|
γJ

)
ways.

Conversely, given an integer composition γ in Cn,m,k(H), we can choose a corresponding
node adjacent to H in ∏

J⊆H

(
|Γ(J)|
γJ

)
ways. Since (Γ(J))J⊆Nr partitions Nn and γ satisfies both subset size condition and in-
tersection condition for Ai, the corresponding node Ar+1 will be adjacent to all of H and
|ν(Ar+1)| = m.

Finally, since there are r + 1 =
(
r+1
r

)
different r-cliques that we could have chosen to

be H and would have yielded the same (r + 1)-clique, we divide by r + 1 to account for
overcounting.

Let’s examine an equivalent formulation for our counts for the number of 2−cliques and
3−cliques which can be constructed given a particular 1−clique and 2−clique, respectively.

Remark 5.10. Consider Lemma 5.7 when r = 1 and suppose that A1 ⊂ Nn with |A1| = m.
Then our partition of Nn is given by Nn = A1 t Ac1, where γ({1}) = A1 and γ(∅) = Ac1.

Now, for a given 1−clique with node A1, the number of 2−cliques which contain A1

is given by∑
γ:γA1

+γ∅=m

γA1
=k

∏
J⊆{1}

(
|γ(J)|
γJ

)
=

∑
γ:γA1

+γ∅=m

γA1
=k

(
|A1|
γA1

)(
|Ac|)
γ∅

)
=

(
m

k

)(
n−m
m− k

)
,

which gives us an additional characterization of the number of edges in Proposition
5.1.
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Remark 5.11. Given a 2-clique H = {A1, A2}, suppose we are interested in count-
ing the number of 3-cliques which contain H. First, note that Lemma 5.7 states that
Ω := {A1 ∩ A2, A1 \ A2, A2 \ A1,Nn \ (A1 ∪ A2)} forms a partition of Nn. To find all pos-
sible triangles which contain H, we can proceed by considering all viable subsets of the
partition Ω that meet our intersection requirement and set size requirement:

1

3

∑
Cn,m,k(H)

∏
J⊆{1,2}

(
|γ(J)|
γJ

)
=

1

3

∑(
|A1 ∩ A2|
γA1A2

)(
|A1 \ A2|
γA1

)(
|A2 \ A1|
γA2

)(
|Nn \ (A1 ∪ A2)|)

γ∅

)
,

where the sum on the right hand-side is over all γ for which

γA1A2
+ γA1

+γA2
+ γ∅ = m

γA1A2
+ γA1

= k

γA1A2
+γA2

= k

|γ(J)| ≥ γJ ≥ 0

Now, we show that this provides us with an equivalent formulation to the one in
Theorem 5.2.

First, we begin with the most restrictive component of the third node of A3: the subset
of A3 within A1 ∩A2. This corresponds to picking a value 0 ≤ γA1A2

= s ≤ |A1 ∩A2| = k.
Once this is determined, the two intersection constraints are solved uniquely by γA1

=
γA2

= k − s. Lastly, we have that the set size constraint gives us that

γ∅ = m− 2(k − s)− s.

Next, after we know the intersection sizes we can proceed with selecting subsets of our
partition to build A3:

k∑
s=0

(
2m− k

s

)(
m− k
k − s

)(
m− k
k − s

)(
n− 2m+ k

m− 2(k − s)− s

)

Now, since there are
(

3

2

)
= 3 different 2-cliques contained within any 3-clique and we

could have started with any one of them to obtain the same 3-clique, we must divide by 3.

5.3 Types

In Theorem 3.7 and Proposition 3.6, we implicitly used the intersection of a clique and
union of a clique as a decision rule for classifying the type of a clique. In this section, we
generalize this idea and provide an intuitive explanation for what clique type means and
when two r−cliques are semantically different despite being graph isomorphic.

5.3.1 Equivalence classes of cliques

In the previous sections, we saw that nonnegative integer solutions to a system of equations
dictate the feasibility of constructing an (r + 1)−clique from an r−clique. In this section,
we explore the different types of cliques that exist in Jn(m, k), regardless of the variable
labelling of the nodes.
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Definition 5.12. We say that two r−cliques H1 = {A1, . . . , Ar} and H2 = {B1 . . . , Br}
have the same type if there exists a bijection f : Nn → Nn for which f(Ai) ∈ H2 for all
i ∈ Nr. If such an f exists, we say that H1 and H2 are equivalent as r−cliques or that
they have the same type. In such case, we call the map f a type isomorphism.

For an r−clique H, we let the set [H] denote the set of all r−cliques which share the
same type as H.

Example 5.13. It is clear here that any two 1−cliques (nodes) are equivalent as there are
m! different bijections between one m−set and another m−set. For the remaining n−m
variables in Nn, we may permute them in (n−m)! ways. Therefore, there are

m!(n−m)!

bijections f : Nn → Nn which certify the type equivalence of nodes.

Additionally, we can show that any two 2−cliques (edges) are equivalent as follows.
Fix HA = {A1, A2} and HB = {B1, B2} two edges in Jn(m, k). We claim that there are

2× k!(m− k)!(m− k)!(n− 2m+ k)!

type isomorphisms between HA and HB. We now demonstrate how one may construct
one of these isomorphisms. First, let SA := ν(A1) ∩ ν(A2) and SB := ν(B1) ∩ ν(B2). Let
fS : SA → SB be any bijection. This can be chosen in k! ways as |SA| = k = |SB|. Now,
extend fS into a mapping f1 : A1 → B1 (without loss of generality) where f1|A1\SA

is a
bijection onto B1 \ SB. This may be done in (m − k)! ways as |A1| = (m − k)! = |B2|!.
Next, we need to extend f1 into f12 : A1 ∪ A2 → B1 ∪ B2 such that f12 is a bijection. We
can do this in (m − k)! ways as it suffices to only decide which bijection to choose to be
f12|A2\SA

: A2 \ SA toB2 \ SB. Finally, we need to extend f12 to the whole space Nn. This
can be done in (n−2m+k)! ways as any bijection from Nn \ (A1∪A2) onto Nn \ (B1∪B2)
would do. Lastly, we note that when we constructed f1 above, we chose without loss of
generality that A1 must map to B1. However, A1 could have also mapped to B1 to obtain
a valid type isomorphism. Thus, there are

2× k!(m− k)!(m− k)!(n− 2m+ k)!

type isomorphisms between any two edges in Jn(m, k).

Proposition 5.14. The type relation induces an equivalence relation on the set of all
cliques in Jn(m, k).

Proof. Let H1 ∼ H2 denote that H1 and H2 have the same type. We are required to show
that ∼ is reflexive, symmetric and transitive.

Reflexivity Fix H1 a clique in Jn(m, k). Consider the identity mapping f : Nn → Nn. This is a
bijection on Nn and moreover, f(Ai) = Ai for all Ai ∈ H1.

Symmetry Fix H1 = {Ai : i ∈ Nr} ∼ H2 = {Bi : i ∈ Nr} and let f : Nn → Nn be a
corresponding bijection. Then the map g := f−1 is a bijection on Nn and we see that
g(Bi) = Ai for all i ∈ Nr.
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Transitivity Suppose that H1 ∼ H2 and H2 ∼ H3 and let f, g be bijections for which f(H1) = H2,
g(H2) = H3. Consider the mapping g ◦ f . As f and g are bijections, so is g ◦ f .
Moreover, it is clear that

g(f(H1)) = H3,

and hence H1 ∼ H3.

Example 5.15 (Isomorphic and non isomorphic triangles). Consider the two triangles
T1 := {{1, 2}, {1, 3}, {1, 4}}, T2 := {{1, 2}, {2, 3}, {1, 3} in J4(2, 1). These are both cliques
of size 3 but they have different types. In fact, T1 is of type Dmax and T2 is of type Dmin.
To show explicitly that there is no graph isomorphism that preserves the node structure,
it suffices to consider where an isomorphism f : V (T1) → V (T2) would have to map the
element 1 to. It cannot be anything in {1, 2, 3, 4} because 1 ∈ v, for all v ∈ V (T2) but no
element in N4 appears in all of V (T2).

Now, if we have a triangle T3 := {{2, 1}, {2, 3}, {2, 4}} in J4(2, 1), we have 3! = 6
different choices for isomorphisms of type. Indeed, we see that any such isomorphism f
must map 1 to 2 but then any permutation on {2, 3, 4} achieves the desired isomorphism.

The following theorem demonstrates how generating series can be used to count the
number of different types of triangles in Jn(m, k).

Theorem 5.16. Let ΦJ(q) be the generating series defined by

ΦJ(q) = 1 + q + q2 + · · ·+ q|Γ(J)|.

Then the type generating series for 3−cliques in Jn(m, k) is given by

[q2(m−k)]Φa(q)Φb(x)Φ∅(q2) = [q2(m−k)]
(1− q(m−k)+1)2

(1− q)2

1− q2(n−2m+k+1)

1− q2
.

Proof. Each type of triangle corresponds to a unique solution to the system

γA1A2
+ γA1

+γA2
+ γ∅ = m

γA1A2
+ γA1

= k

γA1A2
+γA2

= k
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with integer solutions |γ(J)| ≥ γJ ≥ 0.

We solve the system by multiplying the first constraint by r = 2 and then substituting
a copy of each of the other constraints into the first. Thus, the original system of equations
will be equivalent to

γA1
+ γA2

+ 2γ∅ = 2(m− k)

|γ(J)| ≥ γJ ≥ 0

after simplification. We note that the second constraint gives us that the the generating
function ΦJ(q) is given by

ΦJ(q) = 1 + q + · · ·+ q|Γ(J)| =
1− q|Γ(J)|+1

1− q

since N|Γ(J)| is the set of values that γJ can take. Since addition of components of the γ ′Js
corresponds to a product of the generating functions of their parts (e.g. [4], [6]), we have
that the number of solutions to the system above is given by

[q2(m−k)]Φa(q)Φb(x)Φ∅(q2) = [q2(m−k)]
1− q|Γ(a)|+1

1− q
1− q|Γ(b)|+1

1− q
1− q2(|Γ(∅)|+1)

1− q2

= [q2(m−k)]
1− q(m−k)+1

1− q
1− q(m−k)+1

1− q
1− q2(n−2m+k+1)

1− q2

= [q2(m−k)]
(1− q(m−k)+1)2

(1− q)2

1− q2(n−2m+k+1)

1− q2
.

Example 5.17. Consider the graph J5(m = 2, k = 1). The generating series for types of
triangles is then given by

(1− q(m−k)+1)2

(1− q)2

1− q2(n−2m+k+1)

1− q2
=

(1− q2)2

(1− q)2

1− q6

1− q2

=
(1− q2) (1− q6)

(1− q)2 .

Upon expanding this series, we find that the coefficient of q2(m−k) is given by 2:

(1− q2) (1− q6)

(1− q)2 = 1 + 2 q + 2 q2 + 2 q3 + 2 q4 + 2 q5 +O
(
q6
)
,

and hence the number of triangles in J5(2, 1) is 2.

This example brings us to the following corollary. This agrees with our results from
section 2 where we found that there are at most two types of cliques in Jn(m,m−1): Dmax

cliques categorized by having a total intersection of m− 1 and Dmin cliques categorized by
having a total intersection of 0.
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Corollary 5.18. The number of types of triangles in Jn(m, k = m− 1) is given by
0, n ≤ m

1, n = m+ 1

2, n ≥ m+ 2

Proof. The case when n < m is clear as the graph does not exist then. As k = m− 1, by
Theorem 5.16, the number of types of triangles is given by

[q2(m−k)]
(1− q(m−k)+1)2

(1− q)2

1− q2(n−2m+k+1)

1− q2
= [q2]

(1− q(1)+1)2

(1− q)2

1− q2(n−m)

1− q2

= [q2]
(1− q2)(1− q2(n−m))

(1− q)2

= [q2]
(1− q2 − q2(n−m) + q2(n−m+1))

(1− q)2
.

Since
1

(1− q)2
=
∑
n≥0

(
n+ 1

n

)
qn,

we have that

[q2]
(1− q2 − q2(n−m) + q2(n−m+1))

(1− q)2
= [q2](1− q2 − q2(n−m) + q2(n−m+1))

∑
n≥0

(
n+ 1

n

)
qn

(6)

= [q2]
∑
n≥0

(
n+ 1

n

)
(qn − qn+2 − qn+2(n−m) + qn+2(n−m+1)).

(7)

If n = m, then Equation (7) becomes

[q2]
∑
n≥0

(
n+ 1

n

)
(qn−qn+2−qn+2(n−m)+qn+2(n−m+1)) = [q2]

∑
n≥0

(
n+ 1

n

)
(qn−qn+2−qn+qn+2) = 0.

If n = m+ 1, then Equation (7) becomes

[q2]
∑
n≥0

(
n+ 1

n

)
(qn−qn+2−qn+2+qn+2(2)) = [q2]

∑
n≥0

(
n+ 1

n

)
(qn−2qn+2) =

(
3

2

)
−2

(
1

0

)
= 1.

If n = m+ 2, then Equation (7) becomes

[q2]
∑
n≥0

(
n+ 1

n

)
(qn − qn+2 − qn+2·2 + qn+2(2+1)) = [q2]

∑
n≥0

(
n+ 1

n

)
(qn − qn+2)

=

(
3

2

)
−
(

1

0

)
= 2.

We could do more with generating series as a tool for approaching these problems but
first we require some heavier machinery.
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6 Crude, refined generating series and MacMahon cal-
culus

In [5], the author introduced Partition Analysis as a computational framework for solving
problems concerning linear homogeneous diophantine inequalities and demonstrated how
they relate to the theory of integer partitions. In [2], the authors revitalized the idea by
implementing a package for the evaluation of Omega calculus computations and demon-
strating how the theory can be used to solve challenging counting problems in number
theory and computational geometry.

Definition 6.1. The operator Ω
>
is defined on functions with absolutely convergent multi-

sum expansions ∑
s1∈Z

· · ·
∑
sr∈Z

As1,...,srλ
s1
1 · · ·λsrr ,

in an open neighborhood of the complex circles |λi| = 1. The action of Ω
>
is given by

Ω
>

∑
s1∈Z

· · ·
∑
sr∈Z

As1,...,srλ
s1
1 · · ·λsrr =

∑
s1∈Z

· · ·
∑
sr∈Z

As1,...,sr

The Omega operator has been used extensively in [2], [7] and [1]. The usefulness
of the operator is rooted in the realization that many rational functions have a closed
form expression for which the simplification under Ω

>
is readily available. We illustrate an

instance of its power below.

Example 6.2. Consider the problem of finding nonnegative integer solutions (a1, a2, a3)
to the system

a1 + a2 + a3 = k

a1 + a2 − a3 ≥ 0,

for some k ≥ 0 fixed. One way to approach this problem is to identify the generating
series for tuples (a1, a2, a3) which records both the sum a1 + a2 + a3 and the constraint
a1 + a2 − a3.

If we let F (x, y, z, λ) denote the generating series for all integer three tuples (a1, a2, a3)
which marks the difference a1 + a2 − a3 ≥ 0, then we know that it has the form

F (x, y, z, λ) =
∑

a1,a2,a3≥0

xa1ya2za3λa1+a2−a3 .

Moreover, we can simplify the generating series as follows

F (x, y, z, λ) =
∑

a1,a2,a3≥0

xa1ya2za3λa1+a2−a3

=
∑
a1≥0

(λx)a1
∑
a2≥0

(λy)a2
∑
a3≥0

(λ−1z)a3

=
1

1− xλ
1

1− yλ
1

1− z
λ

.
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If we let f(x, y, z) denote the generating series

f(x, y, z)
∑

a1,a2,a3≥0
a1+a2−a3≥0

xa1ya2za3 ,

then by definition we know that

f(x, y, z) = Ω
>
F (x, y, z, λ) = Ω

>

1

1− xλ
1

1− yλ
1

1− z
λ

.

In order to evaluate the above expression, one may use theorem 2.1 from [2] in the special
case where n = 2,m = 1, a = 0 to obtain that

f(x, y, z) = Ω
>

1

1− xλ
1

1− yλ
1

1− z
λ

=
1− xyz

(1− x)(1− y)(1− xz)(1− yz)
.

Finally, we find that the number of integer solutions to a1 + a2 + a3 = k for a fixed
k ≥ 0 where a1 + a2 ≥ a3 is given by

[qn]f(q, q, q) = [qk]
1− q3

(1− q)2(1− q2)2
= [qk]

1− q3

(1− q − q2 + q3)2
.

The above example illustrates that one may obtain counts of complicated systems
of linear diophantine equations by lifting the system to a more general space and then
specializing using the Omega operator.

The function F in the example above which also contains nonnegative integers which
we wish to discard is sometimes called a crude generating series. This is because its
refinement under the Ω

>
operator produces the generating series we are interested in.

Definition 6.3. The operator Ω
=
is defined on functions with absolutely convergent multi-

sum expansions ∑
s1∈Z

· · ·
∑
sr∈Z

As1··· ,srλ
s1
1 · · ·λsrr ,

in an open neighborhood of the complex circles |λi| = 1. The action of Ω
=
is given by

Ω
=

∑
s1∈Z

· · ·
∑
sr∈Z

As1,...,srλ
s1
1 · · ·λsrr = A0,...,0.

That is, Ω
=
extracts the constant term of the series after setting the λ’s to 1.

Example 6.4. Consider the problem of finding solutions to the system

a1 + a2 + a3 + a4 = k

a1 + a2 − a3 − a4 = 0,

for some k ≥ 0 fixed. We may begin by writing the crude generating series F (w, x, y, z, λ)
as

F (w, x, y, z, λ) =
∑

a1,a2,a3,a4≥0

wa1xa2ya3za4λa1+a2−a3−a4 .
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Now, we express F as

F (w, x, y, z, λ) =

(∑
a1≥0

wa1λa1

)(∑
a2≥0

xa2λa2

)(∑
a3≥0

ya3λ−a3

)(∑
a4≥0

wa4λ−a4

)

=
1

1− wλ
1

1− xλ
1

1− y
λ

1

1− z
λ

Now, one may use the observation that for all F (λ)

Ω
=
F (λ) = Ω

>
F (λ) + Ω

>
F (λ−1)− F (1),

and Theorem 2.1 from [2], we find that the refined generating series is given by

f(w, x, y, z) = Ω
=
F (w, x, y, z)

= Ω
=

1

1− wλ
1

1− xλ
1

1− y
λ

1

1− z
λ

=
1− wxyz

(1− wy)(1− xy)(1− wz)(1− xz)
.

Thus, the solutions to the linear dipohantine system is given by

[qk]f(q, q, q, q) = [qk]
1− q4

(1− q2)4
.

6.1 Edge type generating series

We recall that the type of a 2-clique in Jn(m, k) corresponds to a solution of the system
n = γab + γa + γb + γ∅
m = γab + γa
m = γab + γb
k = γab

,

where γab ≤ k and γa,γb ≤ m− k. The crude generating series F (x, y, z,λ) for the above
system, with flexibility in choice for k and m, is given by

F (x, y, z,λ, ε) =
∑
m≥0

zm
∑
k≥0

yk
∑

γab,γa,γb,γ∅≥0
γab≤k

γa,γb≤m−k
0≤k≤m

ε
k−γab
ab λm−γab−γa

a λ
m−γab−γb
b x

γab
ab x

γa
a x

γb
b x

γ∅
∅ ,
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where x records the tuples γ, y records the intersection size constraint and z records the
size of the node in the graph and λ records the feasibility of the tuple. After simplifying,

F (x, y, z,λ, ε) =
∑
m≥0

zm
∑
k≥0

yk(λaλb)
−k
∑
γab≥0

(λaλbxab)
γab

m−k∑
γa=0

(λaxa)
γa

m−k∑
γb=0

(λbxb)
γb

∑
γ∅≥0

x
γ∅
∅

=
∑
m≥0

zm
1

1− y
λaλb

1

1− λaλbxab

[
1− (λaxa)

m−k+1

1− λaxa

] [
1− (λbxb)

m−k+1

1− λbxb

] [
1

1− x∅

]
=

(
1

1− z
− 1

(λbxb)k−1

1

1− zλbxb
− 1

(λaxa)k−1

1

1− zλaxa
+

1

(xaxbλaλb)k−1

1

1− zλaλbxaxb

)
1

1− y
λaλb

1

1− λaλbxab

[
1

1− x∅

]
.

Now, we see that the type generating function for the 2-cliques is given by

f(x, y) = Ω
=
F (x, y, z,λ).

Moreover, since we are only interested in the count of types, we may simplify F (x, y, z,λ)
by substituting q in all occurrences of x and find that

F (x, y, z,λ)|x=q =

(
1

1− z
− 1

(λbq)k−1

1

1− zλbq
− 1

(λaq)k−1

1

1− zλaq
+

1

(q2λaλb)k−1

1

1− zλaλbq2

)
× 1

1− y
λaλb

1

1− λaλbq

[
1

1− q

]
,

and the number of types of a 2-clique in Jn(m, k) is given by

[qmykzm] Ω
=
F (x, y, z,λ)|x=q.

Remark 6.5. Suppose we have a series F (x, λ1, λ2). In general, the operators of Ω
>
and Ω

=

do not commute and
Ω
>
λ2

Ω
=
λ1

6= Ω
=
λ1

Ω
>
λ2

.

For our purposes, we will always apply Ω
>
before we apply Ω

=
so as to avoid removing valid

summands from the computation. That is, we will always apply the less restrictive map
prior to applying the more restrictive map.

6.2 Triangle type series in generality

We are interested in nonnegative integer solutions to the system

n = γabc + γab + γac + γbc + γa + γb + γc + γ∅
m = γabc + γab + γac + γa
m = γabc + γab + γbc + γb
m = γabc + γac + γbc + γc
k = γabc + γab
k = γabc + γac
k = γabc + γbc

,
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Consider the crude generating series

Ψ(x,λ, ε) =
∑
γ≥0

λm−γabc−γab−γac−γa
a · · ·λm−γabc−γbc−γac−γc

c ε
k−γabc−γab
ab · · · εk−γabc−γbc

bc x
γabc
abc x

γab
ab · · ·x

γc
c

=

[
1

1− xabc
λaλbλcεabεacεbc

][
1

1− xab
λaλbεab

][
1

1− xac
λaλcεac

][
1

1− xbc
λbλcεbc

]
×[

1

1− xa
λa

][
1

1− xb
λb

][
1

1− xc
λc

][
1

1− x∅

]
(λaλbλc)

m(εabεacεbc)
k,

where λ measures the feasibility of the node size being m, ε measures the feasibility of the
intersection size being k and x records the values of the tuples of λ.

Now, in order to proceed in obtaining the triangle type generating series, we proceed
as follows

1. Apply Ω
=λ

to Ψ(x,λ, ε).

2. (a) Derive ψK(x) by applying Ω
>ε

to Ω
=λ

Ψ(x,λ, ε) if we are interested in KGn,m.

(b) Derive ψJ(x) by applying Ω
=ε

to Ω
=λ

Ψ(x,λ, ε) if we are interested in Jn(m, k).

3. Extract the coefficient of qn in ψ(x)|x=q for the generating series of interest.

6.3 r−clique type generating series for r ≥ 3

We know that for r ∈ N, the type of an r−clique is a solution to the system∑
J⊆[r]

γJ = n

∑
i∈J⊆[r]

γJ = m, ∀i

∑
i,j∈J⊆[r]

γJ = k, ∀i 6= j

If we let λ record the node constraint and ε record the intersection constraint, then we
obtain the crude generating series

λmεk
∏
J⊆[r]

1

1− xJ
(
∏

i∈J λi)(
∏

i,j∈J,i6=j εi,j)

.

If one were to apply the operator Ω
=ε

Ω
=λ

and then apply the substitution x|x=q, one would
obtain the refined generating series for the number of types of r−cliques in Jn(m, k) for
any r ≥ 3.
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6.4 Type generating series in full generality

The most general crude generating series for types we have derived contains all possible
configurations of types for all n,m, k and r. We shall denote it by Φ and it is given by

Φ(w,x,y,λ, ε) =
∑

n,m,k≥0

∑
r≥0

∑
γJ≥0
J⊆Nr

(
r∏
i=1

λ
m−

∑
i∈J γJ

i

)∏
i 6=j

ε

k−
∑
i,j∈J
i 6=j

γJ

i,j

∏
J∈Nr

x
γJ
J ym1 y

k
2w

r

=
∑
k≥0

yk2
∑
s≥0

yk+s
1

∑
r≥0

∑
γJ≥0
J⊆Nr

r∏
i=1

λ
k+s−

∑
i∈J γJ

i

∏
i 6=j

ε
−γJ
i,j x

γJ
J

( ∏
J⊆Nr

x
γJ
J

)
wr

=
∑
r≥0

wr
∑
k≥0

yk2y
k
1

r∏
i=1

λki
∏
i 6=j

εki,j
∑
s≥0

ys1

r∏
i=1

λsi
∑
J⊆Nr

∑
γJ≥0

∏
i∈J

λ
−γJ
i

∏
i,j∈J,i6=j

ε
−γJ
i,j x

γJ
J

=
∑
r≥0

wr

(
1

1− y1y2

∏r
i=1 λi

∏
i,j∈Nri 6=j εi,j

)(
1

1− y1

∏r
i=1 λi

)

∏
J⊆Nr

 1

1− xJ∏
i∈J λi

∏
i,j∈J ;i 6=j εi,j

 ,
where y1 records the node size feasibility constraint, y2 records the intersection size feasi-
bility constraint and w records the clique size of interest.

We would like to apply Ω
=λ

and Ω
=ε

to Φ(w,x,y,λ, ε). This is one of the main challenges
we have left.

Why do we want to be able to apply it? Suppose we had a closed form expression for

φJ(w,x,y) := Ω
=
ε

Ω
=
λ

Φ(w,x,y,λ, ε),

then [qnym1 y
k
2 ]φJ(w,x|x=q,y) will be a finite degree polynomial in w. In particular, the

degree of the polynomial will correspond to the clique number (the size of largest clique)
of Jn(m, k), by construction.

6.5 Johnson graph coclique problem

Moreover, similar technique can be used to obtain the clique number of KGn(m, k). That
is, if we instead were able to obtain a closed form for

φK(w,x,y) := Ω
>
ε

Ω
=
λ

Φ(w,x,y,λ, ε),

then [qnym1 y
k
2 ]φK(w,x|x=q,y) will be a finite degree polynomial in w whose degree is the

clique number of KGn,m.

We begin by recalling the definition of a coclique.
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Definition 6.6. Let G be a graph and H be a subset of the vertices of G. We say that H
is a coclique in G if for any distinct x, y ∈ H, x and y are not adjacent in G. Equivalently,
the subgraph induced by H in G is empty.

In [3], the authors pose the following open problem on page 312:

Problem 6.7. What is the size of the largest coclique in the Johnson graph Jn(k, k − 1)
for all n and k?

TODO: Not sure if we can call our work a theorem
We now explain how the above theorem addresses this open problem. Since H is a coclique
if and only if H is a clique in the complement in the complement of Jn(m,m−1). Further-
more, we note that x, y in Jn(m,m− 1) are adjacent if and only if |ν(x)

⋂
ν(y)| = m− 1.

Therefore, x and y are not adjacent in Jn(m,m− 1) if and only if |ν(x)
⋂
ν(y)| ≤ m− 2.

Thus, the complement of Jn(m,m − 1) is KGn(m,m − 2) and H must be a clique in
KGn(m,m− 2) to be a coclique in Jn(m,m− 1).

7 Connection to Random Graphs

TODO: Define G(n, p), mention motivation

Theorem 7.1. If G is a subgraph of the complete graph Kn, then L(G) is a subgraph of
the Johnson graph Jn(2, 1). Thus, since G(n, p) always produces a subgraph of the complete
graph, the line graph of G(n, p) will always be a subgraph of Jn(2, 1).

Proof. First, we show that the line graph of a complete graph is Jn(2, 1). Suppose that
the vertex set of Kn is labelled {1, 2, . . . , n}. Therefore, the vertices line graph of Kn are
identified as a subset of the 2−subsets of {1, 2, . . . , n}. Now, since every i, j ∈ {1, . . . , n}
are adjacent in Kn, {i, j} is an edge in Kn and hence each of the 2−subsets of {1, 2, . . . , n}
give to a vertex in L(Kn).

Now, fix two vertices {i, j}, {k, l} in L(Kn). In order for them to be adjacent in
L(Kn), it would mean that the corresponding edges in must share exactly one vertex in
Kn (as multiedges are not allowed). Thus, {i, j} and {k, l} are adjacent in L(Kn) if and
only if

|{i, j} ∩ {k, l}| = 1,

which agrees with the classic definition of Jn(2, 1).

Finally, since the line graph of a subgraph H of G is a subgraph of L(G), the claim
follows.

Therefore, ER graphs form a model for how we may construct our navigation graphs,
at least in the case for when we only visit two variables at a time.
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Definition 7.2. Let R denote the projection operator from the set of all multisets of Nn
onto the set of all subsets of Nn which acts on a multiset by replacing multiplicities greater
than 1 with 1. That is,

R({i(`1)
1 , i

(`2)
2 , . . . , i(`r)

r }) = {i1, i2, . . . , ir}.

This operator acts on line graphs of Jn(m, k) by contracting vertices. That is, suppose one
has a collection of vertices of the form

{ {i(`1)
1 , . . . , i(`r)

r } : `j ≥ 1,∀j = 1, . . . , r}},

then all such sets would contract into a single vertex corresponding to them−set {i1, i2, . . . , ir}.

Theorem 7.3. For all n > m > k positive integers,

R(L(Jn(m, k)) ∼= Jn(2m− k,m) + Jn(2m− k,m+ 1) + · · ·+ Jn(2m− k, 2m− k − 1),

where the addition operation is the usual graph addition (edge union of vertices).

Proof. Let H denote the graph L(Jn(m, k)). To prove the claim, we must show that R(H)
consists of all of the (2m− k)−subsets of Nn and that two nodes are adjacent if and only
if the two corresponding sets have an intersection of size m.

First, we show that R(H) consists of nodes of the form A∪· e∪· B, where e is a subset
of Nn of size k and A,B ⊂ Nn \ e are disjoint sets of size m− k. To this end, fix e ⊆ Nn
of size k let A,B be two disjoint sets A,B ⊂ Nn \ e of size m− k. Then ν(v1) = A∪· e and
ν(v2) = B ∪· e are two adjacent nodes in Jn(m, k). Applying the line graph operation to
this edge produces a node in H which has the form

ν(v) = {x(1) : x ∈ A} ∪· {y(1) : y ∈ B} ∪· {i(2) : i ∈ e}.

Applying the reduction operator R, we find

R(ν(v)) = A ∪· e ∪· B.

Since every node in R(H) is constructed through identifying it with an edge in Jn(m, k),
the first claim follows:

|ν(v)| = |A ∪· e ∪· B| = |A|+ |B|+ |e| = 2(m− k) + k = 2m− k,

for all v ∈ V (R(H)).

Next, we must show that v1 and v2 are adjacent in R(H) if and only if they intersect
in at least m elements.

Suppose that |ν(v1) ∩ ν(v2)| ≥ m. Fix e ⊂ ν(v1) ∩ ν(v2) of size m and suppose that
v1 = A1 ∪· e, v2 = A2 ∪· e, where Ai is the complement of e in ν(vi), i = 1, 2 and hence has
cardinality m − k. Fix f ⊂ e of size (m − k). Since e is of size m, it corresponds to a
unique node in Jn(m, k). Now, consider the set u1 = (e \ f) ∪· A1. This is a set of size m
and hence also a node in Jn(m, k). Since |e \ f | = k and A1 is disjoint from e, we know
that the two nodes corresponding to e and u1 are adjacent in Jn(m, k). Similarly, the two
nodes corresponding to e and u2 = (e \ f) ∪· A2 are adjacent in Jn(m, k). Therefore, the
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two edges that connect e with u1 and e with u2 must be adjacent in H. However, these
edges are precisely v1 and v2 after applying the projection operator R.

Conversely, suppose that v1, v2 are adjacent in R(H). Then there exists x, y, z some
m−subsets of Nn for which x ∼ y, x ∼ z in Jn(m, k) and ν(v1) = x ∪ y, ν(v2) = x ∪ z.
Now, we claim that |ν(v1) ∩ ν(v2)| ≥ m. Clearly, x ⊆ (x ∪ y)

⋂
(x ∪ z) and |x| = m and

hence we are done.

Corollary 7.4. For all positive integers n > m,

R(L(Jn(m,m− 1))) = Jn(m+ 1,m).

Proof. Follows immediately from Theorem 7.3 as when k = m − 1, the right handside
becomes

Jn(2m− (m− 1),m) = Jn(m+ 1,m).

TODO: Find a home for this
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