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2 Introduction

The binomial distribution is a classic example of a discrete probability distribution that
students encounter. We say that the random variable X has the binomial distribution
Binomial(n, p) if it can be written as a summation of n independent Bernoulli random
variables where each one has success probability p. That is, if we may write X =3 " | Y;
with ¥; ~ Bernoulli(p).

Poisson ([|9]) was the first to consider generalizing the Binomial(n,p) distribution.
In particular, he investigated the family of random variable X = > | Y; where Y; ~
Bernoull(p;). That is, he allowed the probability of success to vary between different
Bernoulli random variables. Today, a random variable X with this distribution is known
as a Poisson binomial random variable and is often denoted by X ~ PB(p1,...,pn).

In practice, the Poisson binomial distribution may apply when one is interested in
counting the total number of events occurring, where each individual is independent but
with possibly different underlying probability. For instance, in actuarial science (|5]), one
may model the total payout for life insurance using the Poisson binomial distribution. If an
individual payout for death is C' and 0 otherwise and insured individual ¢ has a probability
of death p; independently of other policyholders, the total payout is CX = >"" | Y;, where

e Y; ~ Bernoulli(p;) is the probability of individual ¢ passing away during their policy
duration,

e X =57 Y, is the total number of policyholders that have passed away at the time
of the payout.

In this paper, we generalize the Poisson binomial model and allow various dependen-
cies between the Bernoulli trials, which we call Bernoulli summable random variables. We
exploit combinatorial ideas such as the Multinomial Theorem and the Principle of Inclusion-
Exclusion to derive the moments and central moments of these random variables, which
enables us to produce a Central Limit the multinomial theorem to demonstrate that if
X =) ,c7 Y; for some countable indexing set Z and a collection of ¥; ~ Bernoulli(p;), then
the moments of X are uniquely expressible as a linear combination of the collection of prob-
abilities {P(Y;, = 1,...,Y;, = 1) : {i1,...in} € Z}. We establish a connection between
the moments obtained through our combinatorial link and the underlying distribution of
X.

Many well-studied random variables are often characterized by a small number of
parameters. For instance, the first and second moments uniquely define the distribution
of a Normal random variable. In measure and probability theory, the so-called generalized
problem of moments seeks to find a collection {f;} of functions for which the distribution
of a given class of random variables X is uniquely described by the expected values of

{E[fi(X)]}-
In this paper, we examine a technique for deriving the distribution of a finite support

random variable with known moments. In practice, one often has the distribution of a
random variable X and hence can determine the moments

E(X*) =Y 2"P(X =),

x>0
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However, for some random variables (even those with finite support), the distribution is
so complex that we must resort to estimation via simulation. We present a class of finite
random variables, which we call Bernoulli summable, that has a sometimes difficult-to-
express distribution but with moments that can be derived using straightforward combi-
natorial techniques. The closed-form expressions for the moments allow us to address the
problem of moments in the case of this class of random variables. That is, for a Bernoulli
summable random variable X, the collection { f;} which addresses the problem of moments
is { fi(x) = x'}, for a suitable collection of indices i.

The structure of the paper is as follows. First, we establish a relationship between
moments of a finite support random variable and its distribution using Vandermonde ma-
trices. Next, we propose and prove a generalization of the multinomial theorem and apply
it to commutative idempotents. Finally, we use the two preceding results to describe the
moments of a particular class of finitely supported random variables, thus obtaining a
procedure for the exact evaluation of their distributions.

As an application, we apply our results to clique counting within homogeneous Erdos-
Renyi random graphs. Thus, we obtain the moments of clique counts, prove a Lyapunov-
type Central Limit Result and construct a hypothesis test based on the number of cliques.

3 Bernoulli summable random variables

Definition 3.1. We say that an infinite sequence (Y7,Ys,...) of random variables is ex-
changeable if the joint distribution of (Y,qu),Ys(),...) is equal to that of (Y1,Ys,...)
for any finite permutation 0. We say that the collection of discrete random variables
(Y1,...,Y,) is n—exchangeable if

P(}/l = yl;YU(2) =Y2,... 7Yn = yn) = P(Ya(l) = yl>Y0(2) =Y2,... 7Y0(n) = yn)a

for any permutation o € S,, in the symmetric group on n variables.

As n—exchangeability applies to all permutations of length n and S, contains an
embedding of Sy for all ¢ < n, any collection that is n—exchangeable is also {—exchangeable
for all ¢ < n.

Definition 3.2. Let Y = (Y7,...,Y,) be a collection of discrete random variables and fix
a positive integer 1 < m < n. We call Y m—symmetric if

Y;

(levvaaaYm)£<Y;17Y; im)>

27°° )

for any subset {iy,is,...,%,} from {1,2,... n}.

The classic Binomial distribution Binomial(n,p) can be viewed as a sum of n inde-
pendent, identically distributed Bernoulli(p) trials. Thus, it is an instance of both an
n—exchangeable distribution and m—symmetric distribution for all m < n. Moreover, one
can view the Binomial(n, p) distribution as a special case of the so-called Poisson Binomial
distribution.



Definition 3.3. We say that a random variable X has the Poisson Binomial dis-
tribution PB(py,...,p,) if X can be represented as a sum X = Y ", Y; where Y; ~
Bernoulli(p;) are independent.

In this paper, we generalize the Poisson Binomial distribution by investigating random
variables where the assumption of independence of summands is relaxed, and under suitable
conditions, we allow for the index set in the summation to be countably infinite.

Definition 3.4. A random variable X is Bernoulli summable if X a finite random
variable that may be written as a sum of Bernoulli random variables Y; where ¢ € Z for
some indexing set Z. That is, suppose that we may write

X=>v,

i€

where all of the Y; ~ Bernoulli(p;).

We begin with a few straightforward examples of Bernoulli summable random vari-
ables.

Example 3.5 (Degenerate random wvariable). For i = 1,...n, let Y; be the constant 1.
Thus, Y; is Bernoulli(1) and the degenerate random variable

X=YVi-n
i=1

is an instance of a Bernoulli summable random variable.

Example 3.6 (Hypergeometric distribution). Let S be a random sample without replace-
ment of size n from a population with N individuals where g of them have an attribute of
interest. If X denotes the number of individuals in the sample with the desired attribute,

then we may write
n
X=2 Y
i=1

where Y; is the indicator random variable recording if the ¢—th sample member has the
desired attribute. We recall that in such a setting, X has the hypergeometric distribution
with parameters (N, g,n).

Our initial motivation for investigating Bernoulli summable random variables was
clique counting on Erdos Renyi random graphs. We say that G is a homogeneous Erdos-
Renyi random graph with parameters (n,p) if G has n vertices where an edge between
every pair of vertices has an equal probability p of appearing, independently of all other
edges. In this paper, we write G ~ G(n,p) when this is the case and we borrow the
convention from combinatorics and let A,, denote the set of the first n natural numbers

N, ={1,...,n}.



Example 3.7 (Degenerate random variable). The most trivial instance of a Bernoulli
summable random variable is one where all of the indicators are 1 (or 0). Let X; =), V;
where Y; ~ Bernoulli(1), for all . For instance, one may think of X; as the number of
vertices in G(n,p). Since we assume that we include all vertices, this is given by

n
Xl = § Y; is a vertex — 11,
=1

where Y] is a vertex ~ Bernoulli(1).

Example 3.8 (Edge count on Erdos-Renyi graphs). Let G be a realization of G(n,p) and
denote by Z the set of all 2-subsets of N,,. For i € Z, let Y; be the indicator random variable
recording if edge 7 is included in G. If X := >, _/V;, then X is the Bernoulli summable
random variable counting the number of edges in G(n, p). Since G(n,p) is an instance of a
homogeneous Erdos-Renyi model for graphs, the Y; are independent, identically distributed

Bernoulli(p) random variables and thus X ~ Binomial ( (Z) , p).

The random variable X in the preceding example is a simple instance of a more
general class of random variables on random graphs which motivates the study of Bernoulli
summable random variables.

Example 3.9 (r—clique counting in G(n,p)). If X, is the random variable counting the
number of cliques in G ~ G(n,p), then letting Z denote the set of all r—subsets of N,, =
{1,2,...,n} and Y}, record if the r—set A is a clique we have that

X, = Z Y,

ACN,, subset of size r

and hence X, is Bernoulli summable.

For » = 1 or 2, we saw that the random variable X, has a tractable distribution.
However, for » > 3 deriving the distribution of X, is not so straightforward. Indeed,
even for r = 3, evaluating Pr(X; = t) for any ¢t # (g) poses a challenge that has only
been addressed by asymptotic approximations in the literature ([3]). We shall derive the
moments of X, for all » > 3 and establish an expression in terms of the moments for the
probabilities of the form Pr(X, = t) using Vandermonde matrices.

In the following sections, we develop the tools necessary to establish a relationship
between the moments of a Bernoulli summable random variable X and its distribution. In
particular, we show that k—th moment of X may be written as a linear combination of
probabilities of the form P(Y;, =1,...,Y; =1) for m <k.

im

4 The multinomial theorem

The multinomial theorem expresses the power of a series in terms of powers of summands
as follows.



Theorem 4.1. Let yy,...,y, be a sequence of commutative elements over some ring and

fix k> 1. Then

k
(i) = ) (gl__%)yfl...yfln,

£;>0,Vi

Proof. May be found in [4] or [12] for example. O

When the y; are also idempotents, that is when y? = y;, then the above expression sim-
plifies. For each term yfl .-yl only those y; with £; > 1 remain and become 3;. The next
proposition describes the multinomial theorem when the summands are all commutative
idempotents.

Proposition 4.2. Let yy,...,y, be a sequence of commutative idempotents over some ring
and let > be any total order on the y1,...,y,. Then

k
m=1 [E Rt 7o)

i1 yereyim €N

where S(k,m) is the number of surjections from {1,...,k} onto {1,...,m}.
Proof. Prior to simplifying by commutativity, naively expanding (y; + - - - + 4, )" results in

(yl+y2+"'+yn)k = Z Y51 Yje = Y- (1)
(J1:52--2Jk ) ENE

Let F denote the set of all functions f : Ny — N,,. For a product y;,y;, - - - y;, on the RHS
of Equation 1, let f be the function which maps ¢ € N} to j,. Since every j, € N, this
defines a function f € F. Conversely, for every function f € F, we can associate to it
a unique summand of the form y;1)yse) - - yrmx). Thus, we have just demonstrated that
prior to simplifying by commutativity, the naive expansion of (y; + - - -+, )* will result in

n* summands of the form yya)yre) - - - sk for some function f : Nj — N,,.

Because y1, ..., y, are commutative idempotents, each product term y;, --- y;, above
will be equivalent, for some m € N, to a unique product y;, - -+ y;,, with ordered indices
i1 > ... > iy,. Therefore, we may rewrite Equation 1 as

k
+w+ ot = Y vy = alkm) > v Ui, (2)
(J1,52-dk) ENE m=1 z111>z>61/7(lf

where a(k,m) are the coefficients that record the number of ways a term of the form
Yi, -+ Yi,, Will show up after simplifying the y;, - - -y;,. We claim that a(k,m) is equal to
the number of surjective maps from N}, onto N,,.

Fix 4y # -+ # i, € N,. Let I C F be the set of all functions f : N, — N,
for which ygy -+ ypx) simplifies into vy, ---y;,,. Let G be the set of all surjections



g : Ny — {i1, ..., in}. Weshall show that F' = G. If f € F, thenysa) - Yro) = Yir -+ * Yim
after simplification. Therefore, f(Ny) C {i1,...,%n}. Since the two summands are equal,
it must be that every i, appears in f(N}) and thus f(Ng) = {i1,...,%m}. Therefore, f € G.
If g € G, then clearly

Yg(1) " Ygk) = H Yo = H Ye,

Zeg(Nk) ée{ilv--wim}

and hence g € F. Since |F| = a(k,m) and |G| is the number of surjections from a k—set
onto an m—set,

a(k,m) = |F| = |G| = S(k,m),
as needed to be shown. O

Remark 4.3. We note that the total order = was only used for the convenience of selecting
a representative from each m—subset of the indexing set. If one chooses another way of
selecting such representative, one may simply write

Z Yiv » 0 Yy = Z Yiy = Y

i1 mim i1 Fim

Moreover, we note that since S(k,m) is given by ([12])

Slk.m) = 3 (1) (") om =

v=0

we may also express this expansion as

(y1+...+yn)’“:i > i(—l)”(:'})(m—v)’“yn---yz-m-

m=1 41#£Fipy v=0

i1,...,lm€./\[n

Next, we generalize the results above to deal with an infinite sequence of commutative
variables. We begin by viewing them from the perspective of formal power series to avoid
issues of convergence.

Proposition 4.4. Let (y;);>1 be a sequence of formal, commutative, idempotents over some
ring. Then

0 k k
(Z yi) = Z Z Sk, m)yi, - Yi,
- -

where S(k,m) is the number of surjections from {1,... k} onto {1,...,m}.

Proof. As in the proof to Proposition 4.2, it suffices to consider the coefficient of a term
of the form y;, - - -y;,,. The proof is identical save for the fact that here we have an infinite
summation on the right-hand side; however, this is not an issue when working with formal
power series. ]



5 Probability and the multinomial theorem

Since indicator variables over a commutative ring are commutative idempotents, we may
apply Proposition 4.2 to any finite sum of indicator variables.

Proposition 5.1. Let Yy, ...,Y, be a sequence of Bernoulli random variables with param-
eters p;. If X is the Bernoulli summable random variable that satisfies X = 3" | Y,

then i
m=1 i1#F#im

81y bm ENG

Proof. Since Y;? = Y; for all indicator random variables, we satisfy the hypothesis of

Proposition 4.2. Thus, by Proposition 4.2, we have

(}/1_{_' Z Z S(k m) i Yin,

m=1 i1#F#im
81500 8m ENp

and hence by linearity of expectation

k
=3 Y Shm)EY, - Yi,).
L s vl

]

This allows us to express the moments of any Bernoulli summable random variable.
Next, we extend Proposition 3 in order to express central moments as well.

Proposition 5.2. Let Yy,...,Y, be a sequence of Bernoulli random variables with param-
eters p;. If X is the Bernoulli summable random variable that satisfies X =Y ;| Y; and

p=FEX)=> " pi then

B((X — 1)) Z()Z S Sk mEY, - (sz)m.

m=1 417#Fim

21,0008 ENR



Proof. By Proposition 5.1 and the classic Binomial theorem, we have

n =k k
(A pz) (_1)€_kz Z S(kvm)E(Sfu th)

21,...,imENR

[]

Similarly, if we have a collection (Y;);>1 where Y; ~ Bernoulli(p;) and X is the sum
X = ).+, Y;, then we may show that X is finite almost surely under the convergence of
> i1 Pi- Indeed, by the Borel-Cantelli lemma, since E(X) = > "7, E(Y;) = u < oo, it must
be that the probability that infinitely many of the Y; are 1is 0: P(limsup,, ,., Y, = 1) = 0).

Moreover, under sufficient assumptions on the (Y;);>1, we show that all of the moments
of X are finite.

Corollary 5.3. Let (Y;);>1 be a sequence of independent Bernoulli(p;) random variables
with 2121 pi = < oo. If X is the Bernoulli summable random variable X = 2121}/;7
then for any k > 1

k

E(Xk):,uZS(k,m) Z pil".pim—1_<m_1) Z p’l?l'..pimfl < 0.

m=1 1F - Fim—1 17 Fim—1

Proof. Since ) -, p; is a convergent series and the product of a finite number of convergent
series is a convergent series, we have that for all m > 1

m
Z Diy = Py = <sz> =u" < o0.
i1 Fim i>1

T genes im €N

Therefore, by Proposition 4.4
k

E(X*=>" > S(kmp, - pi,

m=1 iy i
D] 5eees im €N



Alternatively, we note that

> b D= Y Put P Y Pin

i1 Fim i1 F e Flm—1 im@{i1,e s im—1}
= Y b P (=P =P
i1#Flim—1
:/’L Z pil.upimfl_ Z p??l.“pimfl_”'_ Z pil.upfm—l
1 Fim—1 17 Fim—1 117 Fim—1
= D> PP —(m=1) > Pl D,
il#"'#@nfl il#"'#iﬂlfl

where the last equality follows because

Z pflpiz o Dig = Z pilpi Y Z DiiPiy * - 'p?m_l-

Q17 Fim—1 i1 Flm 1 i1 Fim 1
Thus,
k
B(X*) = Z Z S(k,m)pi, -+ pi,
m=1 iy Fim
i1y sim €N
k
=Y Stkom)u | D PP, —(m=1) > phepi,,
m=1 i1 F - Flm—1 i F - Flm 1
k
=pY Stkm) | D pyop,—m=1) Y plp,,
m=1 i1 FFlm—1 i1 # e Flm—1

6 The relationship between moments and distributions

We recall an essential property for finite support random variables. That is, for a finite
support random variable X, the distribution of X is uniquely determined by its moments.

Proposition 6.1. Let X be a finite support random variable and suppose that the support
of X consists of 0,1,... L. Then for all x € {0,1,... ¢}, we can write P(X = x) as a
linear combination

P(X =1) =) anBE(X").

Moreover, the ay, do not depend on our distribution of X nor on the values of the moments.



Proof. We know that for all 0 < k </

E(X*) =Y 2"P(X =),

=0
and hence we may write
Vp =M,
where V = V (/) is the Vandermonde matrix given by
(11 1 1]
0 1 2 14
V _ 02 12 22 62 :
0f 1t 2 0

p is the distribution vector

p =
_P(X = E)_
and M is the moments vector ~ _
1
E(X)
M = | B(X?)
| E(XY)]

Now, since V is a Vandermonde matrix, we have that the determinant is given by (|6],

[10])
det (V) = H (7 —1) Hk"—€$,

1<i<j<t

where ($ is a so-called superfactorial. Of particular interest to us is the observation that
since ¢$ is nonzero, V is invertible and hence for some matrix A, we have that

p=AM.
O
Although a closed form expression for the exact entries of the Vandermonde inverse is

not known, there are a few recursive relations that allow one to evaluate this. For instance,
it has been shown in [1] that

(C=DIVO; =V - -1V( - 1)]2} = V=D,

[V(g_lzlj 1+Z é—]_— zg 1

10



where we set [V(é)];j1 to 0 if ¢ or j are greater than ¢ or less than 1.

Thus, there is a way to obtain the distribution of a finite random variable by deter-
mining finitely many moments. In particular, we need as many moments as the support
of the random variable.

Proposition 6.1 is useful when one is able to obtain the moments of a finite random
variable without using the probability mass function directly. By Proposition 5.1, Bernoulli
summable random variables meet this criteria. According to Proposition 5.1,

EXM =3 Y  SkmEY;--Y,)

m=1 i1#Fim

and we see that the moments of X are uniquely determined by the family of probabilities of
{P(Yy, =1,---Y;,, =1):{i1,...,9n} CN,, for some m < n}. We note that probabilities
of the form P(Y; = 0,Y, =1:j € J,k € K), for some J # @ do not appear in the
characterization above. Thus, a natural question arises: do we have some choice in the
values those probabilities might take? Moreover, does this characterization imply that there
might be two distinct, exchangeable collections of Bernoulli random variables (Y;,...,Y},)

and (Zi,...,Z,) for which } " |V, Z Yo Z?

The answer to both of the questions above is no. To see this, we claim that any
probability of the form P(Y; = 0,Y, =1:j € J,k € K) may be written uniquely an
integer combination of probabilities of the form P(Y;, = 1: k € K) for some collection of
indexing sets K, ..., K.

Proposition 6.2. Let J,K be disjoint subsets of N,,. Then any probability of the form
PY; =0,Y, =1:Vj € J,Vk € K) may be expressed as an integer combination of
probabilities of the form P(Y, =1:k € K'), where we use the convention that

PY,=1:kew@):=1.

Proof. We proceed by induction on the size of |J|. Suppose that J = {j}. If || = 0,
then

P(Y,=0,Y,=1:Vj € J,Vk € K) = P(Y; = 0)
:P(Ykzlkeg)—P(Ykzlk’E{j})
—1-P; = 1)

If |KC] > 0, then

PY;=0Y,=1:Vje T VkeK)=P(Y,=1:keK)—P(Y;=1Y, =1:VkeK)
=PYy,=1:keK)—-PY,=1:Vie CU{j}).

Suppose that for some ¢ < n, for any J,K C N, disjoint with |7| < ¢

P(Y;=0Y,=1:Yj€ JVk€K)=> a;P(Yy=1:k € Ky),

i

11



for some collection of indexing sets (K;);. Let J',K' C N,, disjoint with | J'| = ¢+ 1. Let
x be any index in J’ and let J, = J’\ {2}, then

PY;=0,Y,=1:VjeJ VkeK)=P(Y;=0,Y,=1:Vj € J,,Vk € K')
—P(Y;=0,Y,=1:Vj € J,,Vk € K'U{z}).
By the inductive hypothesis, P(Y; =0,Y, =1:Vj € J,,Vk € K') and P(Y; =0,Y, =1:
Vi € J., Vk € K'U{x}) are expressible as integer combinations of probabilities of the form
P(Yy =1:k € K'). Therefore, by the priniciple of induction, for any J, K C N, disjoint,

the probability P(Y; =0,Y, =1:Vj € J,Vk € K) is expressible as an integer combination
of probabilities of the form P(Yy, =1:Vk € K) for some collection of (K;);. O

Thus, not only does the joint distribution (Y3, ...,Y,) determine the distribution of X
for every discrete random variable X on {0, 1,...,n}, there is a unique distribution on the
exchangeable Bernoulli trials (Y3,Y5 ...Y},) for which Y | Y; has the same distribution as
X. For an alternative proof, we refer the reader to Proposition 2 in [7].

7 Applications

7.1 Deriving the moments of Bernoulli summable random vari-
ables

In this section, we apply Propositions 5.1 and 5.2 to derive expressions for the moments
of degenerate, binomial, hypergeometric and Conway-Maxwell Binomial random variables.
Lastly, we use Proposition 5.1 to expand the moment generating function for Poisson
Binomial random variables in a new way.

Example 7.1 (Degenerate random wvariables). In Example 3.5, we saw an instance of
a simple Bernoulli summable random variable which simplifies to a degenerate random
variable. Here, we use the tools established above to show that it is indeed the degenerate
random variable we claimed it was. Recall that the random variable X; counting the
number of vertices in G is given by

n
Xl = § Y; is a vertex — 1,
=1

where Y is a vertex ~ Bernoulli(1). By Propositions 5.1 and 6.1,

EXH) =Y > SkmE®Y;, -Yi,)

m=1141# - Eim

> > S(kym)-1

m=1 1% Fim

= sn()

m=1141#£Fim

12



where the last equality follows from the following combinatorial argument. Every function
f: N = N, can be identified as a surjection from f : Ny — f(Ny). Since the right hand
side is counting the number of such functions, it must be that F(XF) = n* as that is the
total number of functions from N, into NV},. Now, we conclude

E(X)) =n,E(X?) =n? ... E(X}) =n"=E(X))"

for all k € N. Since the only random variable to satisfy that F(X*) = E(X)* is the
degenerate random variable, the moments of this random variable classified the distribution
and X; must be the constant n.

Recall that in Example 3.9, we introduced an instance of Bernoulli summable random
variables X, that count the number of r—cliques on G(n, p). In the special case that r = 2,

n
we obtain a Binomial ( (2) , p) random variable. In this section, we write down a closed-

form expression for the raw and central moments of a Binomial(/N, 2) random variable, for

NeN.

Example 7.2 (Moments of binomial random variables). When r = 2, the Bernoulli
summable random variable X5 can be written as

X;=) Y,

where 4 is a 2-subset of N,, and Y; ~ Bernoulli(p), independently. By Proposition 5.1, the
moments of X5 are

Zsm Vi) + > S(k2)E(YeYi)+---4+ > S(kk) E(Yi Yy,
41740 1A A Fl
_ZSk1p+ZSk2 > Slkk)p
11712 11751'2#“'75%

::(f)s%hlnr+(g)5@zmpﬁ+~~+(f)sua@pk
:i(]j)SkZ

where N = (g) In fact, Proposition 5.1 implies that in general, if X is Binomial(n, p) then

BOX) =3 (7)s s 3)

=0

and by simplifying, one can confirm that this is equivalent to the formulation of Binomial
moments in [8]. The advantage that comes with using Proposition 4.2 is that it does not
rely on recursion which would need to be rederived for other families of random variables
and provides explicit expressions for moments in terms of the joint probabilities

PYy,=1,....Y, =1)=E(Y,;, - Y;).

13



Moreover, we can obtain an explicit expression for the central moments using Corollary
5.2. In particular, one can show that for our edge count random variable X,

s (3 o () Do

and more generally,

when X ~ Binomial(n, p).

As an aside, we note that formulation 3 implies that for & > n, E(X}) consists is a
sum consists of exactly n terms since S(n, ) vanishes for i > n.

Example 7.3 (Moments of hypergeometric random variables). Let S be a sample of size n
from a population consisting of N individuals where g of the individuals have a desired trait.
We saw in Example 3.6 that the random variable X counting the number of individuals
with the desired trait is a Bernoulli summable random variable with

X = i}/;a
i=1

where Y; ~ Bernoulli( ) By Proposition 5.1, for £ < g

9
N

k
E(X* =" > S(kmEY-Yi,)

m=141#Fim

R glg—1)---(g—m+1)
=2, 2 S(k’m)N(N—l)---(N—m+1)

m=141#H#im

= (n glg—1)---(g—m+1)
1(m)s(k’m)N(N—1)---(N—m+1)’

m=

where the last equality followed from m—symmetry. By Proposition 5.2, for ¢ < g

E((X — p)') = Z (Ii) mgkz:l (;:L) S(k,m) ]\}q((]%—_11)>-...-.((9N—_mm+j)1) (—1)* (n%yk,

4
k=0

Example 7.4. Suppose we have ¢ indistinguishable balls which we assign uniformly at
random into n distinguishable urns. Let Y; be the indicator random variable recording
if urn 7 is empty and let X be the corresponding Bernoulli summable random variable
counting the total number of empty urns. That is, X =", Y.

14



Through a straightforward counting argument, one can show that there (
to distribute ¢ indistinguishable balls into n distinguishable urns and therefore

l+n—1
- ) ways

_ # ways to distribute m balls into n — 1 urns

P(Y;=1) =

# ways to distribute m balls into n urns
(n+€—2)

_ ¢
n+0—1
(")

~on—1

A 4+n—1

By the same argument, for a subset {iy,...,%,} of Ny,

_ # ways to distribute ¢ balls into n — m urns

P(Y, =LY, =1,....Y,

=1
) # ways to distribute ¢ balls into n urns

<n+e— §m+1))

(")
m—=1)(n—-2)---(n—m)
l+n—1)L+n—2)-- L+ (n—m))

Thus, we may write the moments of X as

EX* =YY S(kmEY, Y,

m=1i1#Fim

k
_ L =Dm=2n—m)
-3 S st

B C+n—1D{l+n—-2)---({+(n—m))

k
_ n (n—1)(n—2)---(n—m)
_m;<m>5(k’m>(£+n—1)(e+n—2>-.-(g+(n_m))’

where the last equality followed from m—symmetry of the distribution.

Similarly, we can deduce the central moments by Proposition 5.2:

E(X - => (/i) Y > Skm)P(Y;, =1,...,Y;, =1)(-1)* (Zpi>
k=0 m=1 1417 Fim i=1

0 (i) 2 (0 <;:L> Stkm) g . 1;(2)&_—2;)' - 7&172 =)

m=1
nin—1)\"*
(E +n— 1) ’
n—1 n—1

where p; = ] and p = n€+n——1

Example 7.5 (Conway-Mazwell Binomial distribution). For n € N;p € [0,1],v € R, we

say that X has the Conway-Maxwell Binomial distribution with parameters (n, p, v) if the

distribution of X is given by

l

k=




where (), ,,,, is the normalizing constant
n n 14
Chpy = Z < ) P (1 —p)" .
=0

This distribution was first investigated in [11], where the authors remarked that the random
variable X can be viewed as a sum of exchangeable, non-independent Bernoulli random
variables Y; with joint distribution given by

1 n vt L
P(E = y17 ct 7Yn = yn) = C (Zn y) pzi:l yl(l - p)n Zi:l yl’
n,p,v =1 ?

where v > 1 in the case of negatively correlated trials and v < 1 for positively correlated
trials. We may use this observation to write an expression for the moments of X using
Proposition 5.1.

EX*=>" Y S(kmEY,,....Y.,)

m=1i1#...%im
k
=Y > SkmP(Y, =1,...,Y;, =1)
m=1141%...%in
k
=> > Stkm) > P, =1...Y, =LY, =y j¢&{in,... in})
m=1i1#...74m y;€{0,1}
Vg {1, sim}
k
=Y > Stkm) > P, =1...Y, =LY =y j¢{in,. .. in})
m=1i1#...#im y;€{0,1}
V{1, sim}
k 1 n v—1
-3 Y st ¥ o )
m=1i1%#...#im y;€{0,1} C”’p’” m+zj€{i1,...,im}yj
ng{ll,,lm}

m=1i1%...2im =0
: n—m n v s n—s
— Stkem) > (L ),) »A-p)
m=114i1#...#im s=m

Moreover, if we suppose that Y; ~ Bernoulli(p;) fori =1,...,nand welet pn:=>""  p; = E(X),

16



by Proposition 5.2 the central moments are given by

¢ k n ok
B(X - =Y (i) > 2 Skm)EXYy Y, )(=1)F (ZP)

k=0 m=1i1#£---#i i=1
VN n —k
_ (k> Z Z S(k,m)P(Y;, =1,...)Y;, =1)(-1)"* (ZpZ)
k=0 m=1141%Fim i=1
y4 n ik
()3 X swmen(Sa) s
k=0 m=1 1417 Fim i=1
Yoo PV, =1, =LY, =y i & i, i)
y;€{0,1}
Vig{i1,..., im}
TN n =k
-S()X T sthme-n (2@») x
k=0 m=1 i1 # iy i=1
n v—1
n—m n s
S(UIM() va-er
p— S—m S

Example 7.6 (The moment generating function of Poisson Binomial random variables).
Suppose that for 1 < i < n, Y; ~ Bernoulli(p;) independently. The random variable X
given by the sum X = )" Y] is thus a Poisson Binomial random variable with parameters

(p17 s 7pn>‘

As the Y; are independent, computing the moment generating function of X is straight-
forward:

Mx(t) = E(etZim )

= H(1 — pi + pi€’
i=1
As a consequence of Proposition 5.1, we may simplify this product.
Mx(t) = B(e™)

E>1 'm 141 i,

k
:1+Z%Z > Stkmpi,pi,.

E>1 7 m=1d12£Aim

7.2 The degree distribution of G(n,p)

In this section, we derive the joint distribution of the degrees of vertices in G(n,p). We
use this in conjunction with our previous results to count the number of vertices in G(n, p)
of a particular, fixed degree.

17



The following is a well-known result on the degrees of vertices in G(n, p).

Proposition 7.7. Let i € N, and G ~ G(n,p). If D; is the degree of vertex i in G, then

R G [

That is, D; ~ Binomial(n — 1,p).

Proof. Let E,s be the indicator random variable recording if the edge between r and s is
present in G. Then

Di =) Ey,
J#
and since the £;; are independent, Bernoulli(p) for all ¢ # j, D; ~ Binomial(n — 1,p). O
In our quest to derive the joint distribution of the degrees, we begin by studying the
more straightforward case where we are only interested in the degrees of two vertices. First,

we demonstrate that the degree of one vertex is independent of the degree of another, given
their adjacency.

Proposition 7.8. Suppose that n > 2 and G = G(n,p). Then
P(D1|Ey2, Do) = P(D1|Eh).

Proof.

P(Dl =dy, B =e,Dy = d2)

P(D; = di|Dy = dy, E1s =€) = P(Dy =ds, E19 =¢,)

B P(Z#LQ Ej =di —e, Z#Lg Ejp=dy—e,E1g =¢)
P(Z#m Ejp=dy —e, B2 = e)

(o )P oL —p)n 2 (22 ) plame(1 — p)n 272 )

((Z:i)de_e(l _ p)n—Q—(dz—e) % pe

n—2\ 4_ —2—(dy—
_ e — n (d1—e)
(dl_e)p (1-p)

P(Z]’;ﬂ’g Ejl = dl — €, E12 = 6)
P(Elg = 6)

= P(Dl = dl‘Elg = 6).

18



Using Proposition 7.8, we can derive the bivariate degree distribution of an Erdos
Renyi graph.

Proposition 7.9. The joint distribution (D1, Ds) of G = G(n,p) is given by

(B o [ (o)

n—1 L
% ( d )pdl(l_p)n 1 dl‘
1

Proof.
P(Dy =ds|Dy = dy) = Z P(Dsy = dy, E1s = €| Dy = dy)

e{0,1}

_ Z P(Dy =dy, E1y =e,Dy = d;)
ecq{0,1} P<D1 = d1)

— Z P(Dy = d3|Ery = e, Dy = di)P(Ers = e, Dy = dy)
ec{0,1} P(Dl = dl)

_ Z P(Dy = dy|E13 = €)P(E1y = e, Dy = dy)
ec{0,1} P(Dy = dy) ’

by Proposition 7.8. Now,
P(Eyp=eDy=dy) p(1—p)c(2)p" (1 —pr2(ao

P(D; = dy) - (nd—ll)pdl(l — p)n-i-di

B (CZ__Qe)pdl (1 _ p>n—1—d1
= (nd—ll)pdl (1 _ p)n—l—dl

n—1-— d1 d1
=t |5 e [ 525

we can evaluate the conditional distribution

n—2 n—1-—d
P(DQ = d2|D1 = dl) = Z ( )pd26(1 —p)ni?f(dzfe) (][620] {Tll} + |:[[e:1}

ec{0,1} d2 €

n—l—d1 n—2 do _9_d
= | 1_ n 2
St (L)
dy n=2\ 4,1 —2—dy+1
2 1 —p)" 2+l
[ (G )aen

n—1

Therefore, the joint is given by

q%} (n i 2>pd2(1 —p)" T {%} (;2__21)],(12—1(1 —p)”_Q_dQH)

n—1\ 4 —1—d
1(1 — )™ 1
X( d, )p (1-p)
Il
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Next, we generalize Proposition 7.8 to the case of more than two vertices.

Proposition 7.10. Let Z be a collection of vertices in G(n,p) and let D :={D; :i € T}.
If j T and E; is the random vector recording the edges between j and Z then

P(D;|E;, D) = P(D;|E;).
Proof.

P(D; =d;,E; = ¢;, D =d)
P<Ej :ej7D:d>

P (Z&éj Efj = dj o ZiEI eij7Ej = €y, [Zk;ﬁz Ey =d; — €5 1€ I:|)
P <E] = €j, [Zk;ﬁz By = dl — €5 ! 1€ I})

P(D; =d;|E; = e;,D=d) =

P (Ej = €y, [Zk#zEkl = dl — €5 - 1 EI])
~p (S Te) |
0] icl P(Ej:ej, [Zk#zEkl:dl_eZ] ZZGI])
= P(D;[E;).
O
Finally, we can state the main result regarding joint degree distributions in G(n,p).

Theorem 7.11. Let G = G(n,p) and fix m < n. If

En={e:e=(e){ijcn.. e € {0,1}1},
the joint distribution of (D1, Da,...Dy,) = (dy,...,dy,) is

> pel - p)EE T ( S )p‘“zjemm (L= p) T e,
ecm, =1 dz B ZJENn\{i}ei,i

where
el = D e

{1,j}CNn

Proof. We will proceed inductively on m. Base case: m = 2: We saw in Proposition 7.9
that P(D; = dy, Dy = d5) is given by

(=530 G e
. (”d‘l 1)pd1<1 —prh (4)

Our goal is to demonstrate that this distribution is equal to

1= [ (", Y (U e
+p {(Z__Ql)pdl‘l(l —pi (;2__21)de‘1(1 - p)”‘l‘d““} : (5)
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Dividing Equation 4 by P(Dy = d;) = ("l;ll)pdl(l — p)" I h gives

n—2
() = Endh;pdldlu =) PD, = dy, By = 0)
dy

n—2
+ %pdl_dl(l _ p)n—l—dl—(n—l—dl)P(D2 — d27 E12 — 1)
dy

_ - 21_ n 2 s 2 1_ n 2
T (d2 >p( p) o1\, 1) (1-p) ,

which agrees with Proposition 7.9 after dividing by P(D; = d;). Thus we have just
demonstrated our base case holds.

Now, suppose that the claim holds for some m > 2. Recall that Proposition 7.10

states that
P(D,|E;, D) = P(D;|Ey),

where j is a vertex and D is the random variable recording the degrees of all vertices ¢ in
some set of vertices Z. Thus,

em+1

= Z P(Dpy1 = dpg1 | By = €41, [Dy = di, 1 < i <m)
em+1

X P(Em+1 = €m+1, [Dz = dia 1<:< m]))
= Z P(Dm+1 = dm+1‘Em+l = em+1)

em+1

X P(Em+1 = €enti, [DZ = dia 1<: < m]))

Simplifying terms we have

n—(m+1 —le n—(m+1)— —le
P(Dm—H = dm+1|Em+1 = em—i—l) = (d 1< |e )1|>pdm“ | m+1‘(1 —p) (m+1)=(dm+1-| m+1‘).
m+1 7 |Ym+

Next, we can use the inductive hypothesis as follows

P(Eni1 = emi1, [D; = di, 1 <i <m])) = P(Epy1 = epyr, [Di = di — €41, 1 < i <mf
in G\ {m+1})
— plem+1\(1 _ p)m+1—|em+1|

% 3 pel(1 - p)(3)-e ﬁ (d' o onolom )

ecEm i T Cimtl T Z#{i,mﬂ} €ij

X pdi—ei,m-s-l—z:j;é{i,mﬂ} €ij (1 _ p)"—m—l—di‘*‘ez‘,m-s-l+Zj¢{i,m+1} €ij

21



Thus, we see that

- 1
P(D;=d;,1<i<m+1])= Z ( n—(m+1) )pdm+1—lem+1l(1 _p)n_(m+1)_(dm+1_|em+1|)

emi1 dm+1 - |em+1|

e m —le e )= T " 1 "
Xp‘ m+1|(1_p) +1 | m+1‘ Zp‘ |(1_p)(2) |e‘H (d_e +1_Z'¢{‘ +1}€'j)
e€lm i=1 Nt Tem IFAem '

Xpdi_eiﬂn-i—l_Zj?&{i,erl} ¢i(1 — p)n_m_l_di+ei,nl+1+2j;&{i,m+1} eij

which can be further simplified into

= Y pleltlensil(q — p)mHH(E) —lemsal—lel ( n-m-—1 ) i+t =i Cimt1

e At = Dt Cimt1

% (1 . p)nf(erl)*(dm-H*Zi;ém-H eimt1) H ( T )
P di — €im+1 — Zj;é{i,m—i—l} Cij

Xpdi_ei,m+1_2j#{i,m+1} € (1 — p)"_m_l_di‘*‘eivmﬂ"‘Zj#{i,mﬂ} €ij

-3 p'f'u—p)(mf)‘f'ﬁ(dif )

f=(e.em+1)€E€m+1 ZJENn\{i}fij
Xpdifzje/vn\{i} fij (1-— p)nf(mﬂ)*dﬁzje/\m\i fi,

as claimed. Therefore, by induction, the joint distribution of (Dy,..., D,,) is given by
Z p|e|<1 ‘e| H ( >pdz_ZJ€Nn\{l} €ij (1 _ p)n_m_di+zj€Nn\i eij,
e€ém d; Z:JEJ\fn\{ i} €

]

Suppose interest lies in counting the number of vertices of degree ¢ in G(n,p). Let Z,
denote the total count and Y(é) be the indicator random variable recording if vertex i has
degree (. Therefore, Yi( ) is Bernoulh((” Npf(1 — p)"17%) and Z, is Bernoulli summable.

Proposition 7.12. The k—th moment of Z, is

Z Z S(k,m) Zple‘ )—lel

m= 17,175 #lm ecém
H ( )pe_zja\rn\{i} ‘il — p)n_m_”z:je\fn\i i,
pi ZyeNn\{z} €ij

Proof. By Proposition 5.1,

k
=>" > Stk,m)Py =1, ¥ =1)

m=1 iy i
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Since P(Y," =1,--- .Y\ =1)=P(D;, = ¢,...,D;,, = 0),

_i S Stkm) S pE( - p)(3)lel

m=1 i1 Him ecEm
H ( Z )pfzje/\m\{i} ¢ii (1 — p)" M R enm i i
i=1 JENn\{ites;
by Theorem 7.11. O

7.3 Bernoulli summable random variables on random graphs

The following lemma is necessary for expressing the probability of seeing a particular
collection of cliques in a homogeneous Erdos-Renyi graph.

Lemma 7.13. Let G be a realization of G(n,p). Fix r < s and suppose that A =

{21,...,2m} is a collection of m s—cliques. The total number of r—-cliques that are con-
tained within A is /
J
> (),
o#JC{1,...m}

where Iy := |(;c; %]

Proof. Our goal is to count the number of K, that are induced by at least one of the
i

s—cliques in A. Let (J) = {{aq,...,v} €4 : a1 # -+ # a,} denote the set of
r

r—cliques induced by the clique %;. Next, we prove that for any @ # J C {1,...,m},

) - (%)

jedJ

by showing that mJEJ (’L > _ (njej ’Lj).

r

Fix {a1,..., a0} € ;s 4j. Then {ay,... .} Ci; forall j € J and therefore

{og,... .} € (mie"ij).

,
Conversely, if {aq,...,a,} € (m]g j) then {oq,...,a,} C 1, for all j € J and thus
r

{Oél, PN ,Oér} S Aj,
for all 7 € J and the claim follows.

Therefore, the total number of r—cliques within A is

of Inclusion Exclusion ([12]), we know that
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_ Z (_1)|J|+1

2#£JC{1,....m}

= > 04)”“(?),

@#JC{1,...,m}

u(®) ne)

as needed to be shown. O

Our initial motivation for this theorem was to find the moments of clique counts on
random graphs and we can now evaluate these moments. Our next result achieves this
objective.

Corollary 7.14. Let G be a realization of G(n,p). Let X, denote the number of cliques
of size v in G and let Y; be the indicator variable recording if © forms an r—clique, where
i is an r—subset of the vertices {1,...,n}. Then X, =) . Y; satisfies

B =3 5 Y0 () - oty i

m=14y>>i,m v=0

and
TN m - n ok
NGy 1y k[ 1\, f(i1,im) ’
B-0) =X ()X 5 S ()it ((M)0)
k=0 m=111>>%,; v=0
where i1, ..., 1, are distinct, lexicographically ordered r-subsets of {1,...,n} and
. . I
Flig, - i) = Z (_1)Jl+1(2J>_
o#JC{1,...m}

Proof. Since X, = ). Y; is a sum of finitely many, distinct indicator variables, we may
apply Theorem 4.2 and thus

o= ()
SID> i<—1>“(f) (m—v)"Y;, Vi,

m=114i1>->im v=0
Thus, in order to evaluate the expected value E(XF), we need to evaluate

E(Ys, - Ys,)=P(Yi, =1,---,Y;, = 1).

im

By applying Lemma 7.13 to r = 2, we know that this is given by p/(1-#m) where

fln e im) = > (=M (I;)

o#JC{1,....m}

=1 Y;

im

Since we can evaluate the joint probabilities P(Y;
Proposition 5.2 and conclude

E((Xr—mf):i(i)i 2. i(—l)“(f)(m—v)k(—l)@kpf<i1 ~~~~~ im>((7j)p<é>)z_k.

k=0 m=1 41> >im v=0

1 7T = 1), we may apply
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In the literature, identifying the expected value of the number of r—cliques in an
Erdos-Renyi graph G ~ G(n,p) is straightforward: For ¢ an r—subset of {1,...,n}, let
Y; be the indicator random variable recording if ¢ forms an r—clique in G. Then X, the
number of r—cliques in G(n, p) is given by

X, = Z Y;la

i: r-subset of {1,...,n}

and by linearity of expectation, we have

CESEID M- (O R DI O ) FE)

i: r-subset of {1,...,n} i: r-subset of {1,...,n}

since E(Y;) = P(Y; = 1) = P(The (}) edges between the r vertices in  are in G)= p<g).
Here, we show how Proposition 4.2 can be used to express the variance of the count of
r—cliques in a more painless fashion than in [2].

Corollary 7.15. The variance V(X,.) of the number of cliques of size r > 3 in G(n,p) is

given by
o= ()0 S () (000 ()]

Proof. From Theorem 4.2, we have

VIX) = E(X}) - BOGY

EE O (0]
-3 ((1)) B0+ 3 Sy (B - orp () - Kj)p(;)r

1742 v=0
\ | 2 2 n ( ) 2
. 'Llf‘l’LQ . v . 2 . ™
i g S (o ()
1 117#%2
(111521 n
=30l 3 KT)P 1
11#£12
_ (r) \zlﬂzQ\ n
ST ;
i (41,62):41 Fi2
2
_ n—s\/(n—r n\ ()
() )(r-s)(r-s)p =[]
where we note that (Z) (:f:j) (Z:!) is the number of ways to construct a pair (4;,%,) of
distinct r—sets for which the intersection is of size s. O]
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Proposition 7.16. Let Gy,...,Gy,... be a sequence of independent, Erdos Renyi ran-
dom graphs G(n,p). Let X,.(G;) be the random variable counting the number of r—cliques
on G; and denote by S, = Y -, % the average number of r—cliques in the graphs
G1,...,Gy. Then as n approaches infinity,

Vn(Sy — p) = N(0,0%),

where

and

N

#= (3

: (n) (jf:j) (Z:;“)pxg)—@ . [(j)p@)r.

Proof. This is a straightforward application of the Lindeberg-Levy Central Limit Theorem.
]

7.4 Inhomogeneous Erdos Renyi graphs

In this subsection, we specialize our results on Bernoulli summable random variables to
inhomogeneous Erdos Renyi graphs where the edge inclusions are independent but need
not have the same inclusion probability.

Example 7.17. Although our focus above was on homogeneous Erdos Renyi graphs, our
results are easily extended to inhomogeneous Erdos Renyi graphs by considering appro-
priate Bernoulli summable random variables. For instance, consider the random graph G
on 3 vertices with independent edge probabilities (p1, pa, p3). If our goal is to obtain the
distribution X, of the number of edges in GG, we can proceed as we would in the homoge-
neous case: identify the moments using Proposition 5.1 and multiply by the inverse of a
correctly chosen Vandermonde matrix.

Let Y; be the indicator recording if edge 7 is included in G and let ay := Zil iy PirDis
Q3 = p1p2ps3, then the moments of Xy are

3
E(Xy) =) pi=p,
i=1

EX) =Y Y S@mEY, -Y,)

m=141#Fim

= p+ 2(p1p2 + p1p2 + pip3) = i+ 2as,

and

EX3) =) > SBmEY;- Y,

m=1141#Fim

= [t + 6(p1p2 + p1p2 + p1p3) + 6(p1paps) = p + 6ag 4 6.
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If M denotes the matrix

1
M = H
n+ 209 ’
uw+ 6y + 63
and V is the Vandermonde matrix
1 11 1
01 2 3
V= 01 4 9|’
01 8 27

then the product V~'M yields the probability distribution of X:

P(X,=0)] [L000 —1.833 1.000 —0.166 1
P(X,=1)| |0.000 3.000 —2.500 0.500 "
P(X,=2)| = [0.000 —1.500 2.000 —0.500 1+ 20
P(X,=3)] [0.000 0333 —0.500 0.166 |u+ 6+ 6

(1 — 1.833u + (1 + 202) — 0.166(s + 6cva + 6as)
3M — 25(,u + 20[2) + 05(,u + 60[2 + 6053)

— 1504 2(p + 202) — 0.5(s0 + 6 + 603)

[ 0.3331 — 0.5(pt + 2015) + 0.166(j1 + 605 + 6ay)

Although our work in the previous sections assumed that the random graph G is
a realization of a homogeneous Erdos-Renyi graph, our results on clique counting and
the degree distribution can be generalized to inhomogeneous Erdos-Renyi random graphs,
where independence still holds but the probability of edge inclusion p might differ, because
of the versatility of Theorem 4.2. In particular, all of the results generalize by replacing p
by the appropriate edge probability p;; in each of the claims we made above.

For instance, the following proposition gives the moments of clique counts in the
inhomogeneous case.

Proposition 7.18. Let G be a realization of an inhomogeneous Erdos-Renyi on the vertices
{1,...,n}, where an edge e is included with probability p. independently of all other edges.
Let X, denote the number of cliques of size r in G and let Y; be the indicator variable
recording if © forms an r—clique, where @ is an r—subset of the vertices {1,...,n}. Then

X, =>,Y; satisfies

=2, > Skm) J[ »e

m=1 7,175757,777, EEE(il ..... ’Lm)

and

V4 g k
B ) =3 ()2 X st | IT w| (X I
k=0 m=1417#Fim e€E(41,...,Am) i ecE(i)

where E(t1,...,1,) is the union of the edges of the cliques on i1, ..., &y.
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Proof. Since X, = .Y, is a sum of finitely many, distinct indicator variables, we may
apply Theorem 4.2 and thus

B(Xy) = (Z n)

=Y Y Stkm)E(Y;--Y;,).

m=1i17£Fim

By assumption of independence,

EYi--Yi)= ][ pe

e€E (i1, im)

as needed to be shown. Note that the mean of X, is p = E(X,) = > ,EY;) =
>i [ Leep( Pe- Therefore, the (—th central moment is

{—k
N
B -0 =Y () )Eed) (- T o
k=0 i ecE(i)
’ ) k {—k
>()X X sww| I w (- In
k=0 m=1 i1 #Fim e€E(i1,...sim) i ecE(i)
[

8 Conclusion
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