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Abstract

A novel multinomial theorem for commutative idempotents is shown to lead to new
results about the moments, central moments, factorial moments, and their generating
functions for any random variable X = . Y; expressible as a sum of Bernoulli indicator
random variables Y;. The resulting expressions are functions of the expectation of
products of the Bernoulli indicator random variables. These results are used to derive
novel expressions for the various moments in a large number of familiar examples and
classic problems including: the binomial, hypergeometric, Poisson limit of the binomial,
Poisson, Conway-Maxwell-Poisson binomial, Ideal Soliton, and Benford distributions
as well as the empty urns problem and the matching problem. Other general results
include expressions for the moments of an arbitrary count random variable in terms of
its upper tail probabilities.

Keywords: factorial moments, central moments, binomial distribution, hypergeometric,
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1 Introduction

Consider the random variable
X=>Y
i€T

which sums (not necessarily independent) Bernoulli random variables Y; € {0, 1} over some
countable index set Z. When Y; is an indicator function for some event A, the Bernoulli
sum X counts the number of occurrences of the event in the set Z and, as such, arises in
numerous applications of probability. Of interest here is the determination of the moments,
central moments, and factorial moments of any arbitrary Bernoulli sum.

We develop expressions for these moments in terms of the expectation of products of
the Bernoulli ¥;s. This leads to novel proofs and/or expressions for the moments in many
well known problems and to novel approaches to determining such moments for any random
variable expressible as a Bernoulli sum.



The paper is organized as follows. Section 2 shows that the power of a sum of idempotents
is expressible in terms of the number of surjections from one finite set to another times a
sum of their products. This follows as a special case of the multinomial theorem. Section 3
builds on this to develop the main general results for the moments of a Bernoulli sum. Both
finite and infinite sums are considered and special attention is given to factorial moments
and generating functions.

These results are then applied to develop expressions for various classic distributions and
problems in Section 4. These include the binomial, poisson binomial, hypergeometric, and
Conway-Maxwell-Poisson binomial distributions, the Poisson limit of a binomial by moment
convergence, and the classic empty urns problem and the matching problem.

Section 5 considers the moments for any count random variable, developing expressions
based on the upper tail probability of that count. This general theory is then demonstrated
on the geometric, Poisson, Ideal Soliton, and Benford distributions. The paper ends with a
few concluding remarks in its last section.

2 Preliminaries

First, let N} denote the set {1, ..., k} for any finite integer k, and S(k, m) denote the number
of surjections from N, to N,,. If k < m, no surjective function exists and S(k,m) = 0;
otherwise, S(k, m) can be written as

m—1

m
S(k,m) =Y (=1)" —v)*
(k,m) UZD( ) <U)(m V)
(e.g., see Wilf, 2005). The number S(k, m) figures prominently in the closed form expressions

which follow.

In particular, S(k,m) (for all m < k) will be shown to appear in expressions for the kth
moments of a Bernoulli sum. To calculate the smaller moments of importance in statistical
inference (say k < 4), it will be convenient therefore to have S(k,m) evaluated for a few
m < k. Whenever k is at least as large as the second argument, the following values
obtain: S(k,0) =0, S(k,1) =1, S(k,2) =2 -2, S(k,3) =3*-3.2"+ 3, and S(k,4) =
4% —4.3% 4 6-2% — 4. These will appear in calculations up to the 4th moment (e.g. to
determine kurtosis). Again, note that S(k,m) = 0 whenever m > k.

Moments of X are expectations of powers of X which, in the case of X = Y ' | Y,
suggests beginning with a multinomial theorem, here expressed fairly generally as:

Theorem 2.1. The multinomial theorem. Let y,...,y, be a sequence of commutative
elements over some ring and fix k > 1. Then

k
W+ tu)= > (e g)yf“-yﬁ”-
k 1, »tn

L+l =
£,>0,Vi

Proof. E.g., see Goulden and Jackson (2004) or Wilf (2005). O



When the y;s are also idempotents, as they are in the definition of a Bernoulli sum, only
those y; with ¢; > 1 remain and simplify to yfi = y;. This leads to the following version of a
multinomial theorem where now S(k, m) appears.

Proposition 2.2. Let yy,...,y, be a sequence of commutative idempotents over some ring.
Then

k
(it ) =D Skm) D ya v,
m=1 {7,1,72777,}(;./\/-71
where S(k,m) is the number of surjections from Ny, onto Ny,.
(It is understood that the interior sum has m < min{k,n}.)

Proof. Naively expanding (y; + -+ + yn)k gives

(y1+y2+"'+yn)k = Z Y51 Y52 = Yji - (1)
(415525251 ) ENE

Let F denote the set of all functions f : Ny — N,. For a product y;,y;, - - - y;, on the right-
hand side of Equation 1, let f be the function which maps ¢ € N}, to j,. Since every j, € N,,,
this defines a function f € F. Conversely, a unique summand of the form y¢1)yre) - - Yrm)
can be assigned to each function f € F. That is, the naive expansion of (y; + --- + yn)*
results in n* summands of the form ;1)) - - - Yy for some function f : N — N,.

Since yi,...,Yy, are commutative idempotents, each product y;, --- y,, resolves to a
unique y;, - - - y;,, with indices i1 < ... < 4,,, for some m € N;. Equation 1 then becomes

E

(i +y2+-+y) = Z YinYio * Yir = a(k, m) Z Yir " Yim- (2)

(J1,d2,-dk ) ENE m=1 {i1,0im }CNR

Here a(k, m) counts the number terms y;, - - - y;, that simplify to y;, - - - y;,. It remains only
to show that a(k, m) equals S(k,m), the number of surjective maps from N} onto N,,.

To see this, first fix {i1,...,im} € N, and let F© C F denote the subset of functions
for which ysay -+ ypw) simplifies to y;, - - - y5,,. The count a(k,m) is identical to |F|. Then
consider the set, G, of all surjections ¢ : Ny — {i1,...,im}, which must have size |G| =
S(k,m). If F =G, then |F| = |G| and a(k,m) = S(k,m), as required.

Now F' = G iff every f € F is also in G and every g € GG is also in F. If f € F'| then
Yy Yrk) = Yir o Yim, giving f(Ng) = {i1,..., i}, and hence f € G. If g € G, then

clearly
Yg() =+ Yg(k) = H Yo = H Ye,
Leg(Ng) Lefin,...im}
and so g € F. O
Note that the inner sum »_ (ir,im}CNG Yir *** Yi, vanishes whenever m > n and hence

(y1 + -+ + yn)* is expressible as a sum of at most min(k,n) terms involving the coefficients
S(k,m).

A generalization of the result to powers of infinite sums, subject to convergence having
been settled for any particular values of the y;s, is relatively straightforward.



Proposition 2.3. Let (y;)i>1 be a sequence of formal, commutative, idempotents over some

ring. Then
0 k k
(S0) ~Xstem 5
i=1 m=1 {i1,0enrim }CN
where S(k,m) is the number of surjections from {1,... k} onto {1,...,m}.

Proof. Since the (y;)i>1 are formal, commutative idempotents over some ring, the proof
follows that of Proposition 2.2. O]

3 Moments of Bernoulli sums

Consider the Bernoulli sum random variable X of Section 1 with finite index set Z of size n.
Set Z can always be re-indexed to have X appear as

X = iYi.
i=1

Expressions for the moments of X can now be derived via Proposition 2.2.

Proposition 3.1. When X is expressible as a finite Bernoulli sum X = .| Y;, the kth
moment of X is expressible as

E(X*) =Y Sk,m) Y BV,

m=1 {1, eyim } CNn,
Proof. Since Y2 =Y; V i, it follows from Proposition 2.2 that

k
XE=Wi+- Y =) Skm) > Y,V

The result follows by applying expectation E(-) (or, more generally, any linear) operator to
each side. u

Since
E()/z }/;m):PT<Y;1 :]-) 7Yim :1)

Proposition 3.1 shows that the moments of any finite Bernoulli sum random variable can be
investigated via the joint distribution of those Bernoulli random variables used to construct
it — indeed, Proposition 3.1 could be rewritten in terms of this probability.

The central moments are generally of more statistical interest and a similar result is found
for them by applying Proposition 3.1. In this case, let p; = Pr(Y; = 1) = E(Y;) denote the
ith marginal mean in the sum and p = E(X) = Y"1 | p; the mean of X. A similar expression
for the kth central moment is given in Proposition 3.2.



Proposition 3.2. When X is expressible as a finite Bernoulli sum X = > " Y, with

pi = Pr(Y; =1) = E(Y;), then the kth central moment of X is expressible as

k ¢
X - =o'+ 3 () G sm) X B )
/=1 m= ;
where jp = E(X) =>"" | pi.

Proof. Applying the binomial expansion, then Proposition 3.1, yields

(5) 1 <—u>’f+g(’;)<—u>’f—@<x4>
SIS M (A [STED SETRIIND DRI
—1 m=1 {i1y0nsim }CNn

Of course, whenever the Y;s are also independently distributed, the above moment
expressions (and those which follow) simplify by replacing E(Y;, ---Y; ) by ps, - - - pi,,, where
each Y; ~ Bernoulli(p;).

3.1 Moments of an infinite sequence

Consider now an infinite sequence
(Yi)iz1 = Y1, Y2, ...

of Bernoulli random variables and their sum

X:iYi
=1

being such that Pr(X < oo) = 1. (This condition is satisfied, for example, whenever the
first moment of X is bounded, that is, whenever E(X) = >""  E(Y;) = > o, pi = p < 0.
From this it follows (e.g., by the Borel-Cantelli lemma) that Pr(limsup,_,. Y, = 1) = 0,
and, so, that the probability is zero that infinitely many of the Y;s will be 1.)

In this case, Proposition 2.3 gives the kth moment for this sum of countably infinite
Bernoulli random variables (whenever all relevant sums converge).



Proposition 3.3. Let X =Y °, Y; be the sum of the sequence of Bernoulli random variables
(Yi)i>1, with p; = Pr(Y; =1) =1 — Pr(Y; = 0), then we may write

E(X*)=>"S(k,m) Y, 6  E(Yy--Yi,)

In the special case where the Y;s are also independent, then Proposition 3.3 allows us
to draw the interesting conclusion that a bounded first moment of X implies that all higher
order moments are also bounded. This result is formally given in Proposition 3.4:

Proposition 3.4. Let (Y;);>1 be a sequence of independent Bernoulli(p;) random variables
with Y o, pi = p < 0o. For the Bernoulli (infinite) sum random variable X = .., Y;, and
for any k > 1, -

E(X") < oo0.

Proof. By Proposition 3.3 and independence of the Y,

O

In this special case of an infinite sequence of independent Bernoulli random variables,
an expression for the moments involving only the first moments of the Y;s and of X can be
easily had as well.

Proposition 3.5. Let (Y;);>1 be a sequence of independent Bernoulli(p;) random variables
with ;-1 pi = p < 00. For the Bernoulli (infinite) sum random variable X =3 .., Y;, and
for any k > 2, the kth moment of X is

k
B(X*) =" S(k,m Zu m—1-s) > pi(pu i)

m=1 {11---7im7175}CN



Proof. Fix an integer r > 2 and note that

2. 2.

{il,...,iT}CN {’i1,...,i7n_1}CN

2.

{i1,0e0yir—1}CN

2.

{i1,eyir—1}CN

Diy - Pi,. = Piy

Piy

=4

DPiy = Dip_q — (7” - 2)

2.

1Z{i1,eeyir—1}

2.

i€{it,eyir_1}

2.

{i1,eeryir—1}CN

© o Piey bi

Py | BT Di

2
Diy v Dipy

where the last equality follows from the fact that

2. 2.

{i1,ee0sir—1}CN {#1,..sir—1}CN

2.

{1,587 —1}CN

pilpiz t 'pz?,.,l‘

pzzlpiz t 'piT,1 - pilpi o 'pz'T,1 =

Recursively rewriting » | (ir,.irycn Pir -+ - Pi, I terms of sums over one fewer index (viz., r—1

indices) each time gives the desired result via Proposition 3.1. O

3.2 Factorial moments
The kth falling factorial of = is the kth degree polynomial in x

k—1

[y =a(@ =)z —=2)-(z—(k=1) = [[(x—m),

m=0

where £ € N and x € R. Replacing z by a random variable X, the corresponding kth
factorial moment is defined to be E ([X];). Like E(X¥) this is the expected value of the
product of k terms. Note this is different from FE(X!), the expected factorial of X, where
the number of products in X! is itself be a random variable (viz., X).

The kth power of x can be expressed (Stanley, 2011, p. 74) in terms of falling factorials
as

2 =" Sk, m)[]m,

where Sy(k,m) is the Stirling number of the second kind, typically defined as the number of
ways to partition a set of k£ labelled objects into m nonempty unlabelled subsets. It follows,
then, that these are directly related to the number of surjections from a k—set onto an m—set
as

S(k,m) =m! Sy(k,m)

and hence that
S(k,m)

m)!

2l = 37 S(k,m)

1

k
=2

()

m=



Similarly, the falling factorial is written as a sum of powers as

M~

(], = S1(k,m)z™

m=1

where S;(k,m) is the Stirling number of the first kind. Similar expressions may now be
found involving a Bernoulli sum X in place of x.
First, we relate (i ) to the Bernoullis that define X.

Proposition 3.6. If X is a Bernoulli sum X =
then for m > 1,

se1 Yi for some countable indexing set T,

@),

Proof. Let J = {i € Z :Y; = 1} denote the subset of the indices in Z for which Y; = 1.
Then

{i1,0sim }CT {i1,im}C T
- 21
{i1ysim}C I

An earlier, inductive, proof of this result for the case of finite Z is given by ( ).
A similar approach yields a general result relating X! to its Bernoulli constituents.

Proposition 3.7. Let X = )., Y; be a Bernoulli sum, where I is a countable indexing
set. Then we may write X! in terms of the (Y;) as follows

XI=>"|H| (Hm []a —3@-)) .

HCT i€H  igH

Proof. Consider the set J := {i € Z :Y; = 1}. In this case, |J| = X and |J|! = X!. For
any other set H C Z, either H = 7, or H # J.

If H=J, then
IIv T - =T [T0-0=1
i€H  igH i€H  igH

If H # J, then there exists j for which j € J but j &€ H. Then,

[Ty [[1-v)=][vix0=0

i€H igH =



Together these give

Z‘H" HYz‘ H(l ) \J|‘HYH = |7 = X!

HCT (ie?—t igH ieg  igd

Taking expectations yields the following expressions for a Bernoulli sum X =3, ;Y]

e the kth factorial moment in terms of the Bernoulli random variables

E(X])=k )  B(Y,-Y,)

or, in terms of the moments of X as

e the kth moment in terms of the factorial moments of X
k
=3 Salk,m) E((X]n)
m=1

e the kth central moment
k

B ) = 3 (3 s () o)
e and the expected factorial in terms of the Bernoulli random variables

=Sl < E|]]Y: T[]0 -

HCT ie”  igH

Central moments for small k£ can always be written in terms of the moments or in terms of
the factorial moments. When k = 2, a nice symmetry appears in either expression for the

variance of X:
Var(X) = B(X?) — (B(X))* = E((X]2) — [E(X)].

3.3 A statistical interpretation

Central moments are statistically meaningful for any random variable X where available.
However, when X is a Bernoulli sum a few more meaningful interpretations are available.

Imagine a collection of individuals ¢ € Z, from which a random number X provides
a population J of size X. Samples of fixed size k are to be drawn from the resulting
population J. Here, X = > . ;Y and J = {i € Z : Y; = 1} with (possibly dependent)
random variables Y; ~ Bernoulli(p;) (indicating inclusion in the population J when Y; = 1
and exclusion when Y; = 0).

In this case, the expected number of samples of size k

9



e is the kth factorial moment E([X];) when sampling without replacement and

e is the kth moment E(X*) when sampling with replacement.

The expected factorial F(X!) is the expected number of permutations one would have in the
indices found by forming a population in this way.

3.4 Generating functions

Various generating functions for a Bernoulli sum X are now easily had by substitution of

e E(X*)in the moment generating function

o0 k
. s
Mx(s) = E(e™*) =1+ ZE(X’“)E
k=1
e E([X].) in the factorial moment generating function (e.g., see Johnson, Kemp, & Kotz,

2005, p. 59)

o0 k
s
Hx(s) =1+ E([X]k)y
k=1 '
e and, from Fréchet (1943),

Pr(X =) = 3 (~1)* (J) B

jzx

or, after substitution for the factorial moments,

Prix =) =0 (1) S By,

>z (i1, }C T

the probability Pr(X = x) into the probability generating function

Gx(s) = E(s") = ZskPr(X = k).

The factorial moment generating function, Hx(s), can be related (again, see Johnson et al.,
2005, p. 59) to the probability generating function, Gx(s), as

Hx(s) = Gx(1+5) = B((1 + s)%).

It follows that whenever factorial moments are such that Hy(s) has a tidy closed form, the
probability generating function of X might be easily obtained through the reverse relation

GX(S>:Hx(8—1). (3)

This approach will be illustrated for the binomial distribution in Section 4.1, and for the clas-
sic matching problem of Section 4.5, to determine expressions for the probability generating
function of X in each of these classic cases.

10



4 Classic examples

Bernoulli sums naturally arise in many classic problems and lead to well known distributions.
In this section, the results of Section 3 are applied to several of these where the Bernoulli
sum is over a finite index set (of size n), namely

=3y
i=1
where Y; ~ Bernoulli(p;) with p; = Pr(Y;=1)=1—-Pr(Y;=0) fori=1,...,n.

4.1 Binomial X

The simplest case where the Y;s are independent and identically distributed (i.i.d.) with
pi =p Vi, X ~ binomial(n,p). The kth moment of X can be written as

WE

B(XY =3 Stk,m) Y p"

1 {i1,eim }CNR
S(k,m>(") o
1 m

[Knoblauch (2008) found an equivalent expression through a recursive argument. Here the
result is easily had from the simple application of the more general Proposition 3.1. Central
moments follow from Proposition 3.2:

3
Il

k

m=

B((X — ) = (—np)* + 3" ()t 3 S(6,m) (”)pm

m
(=1 m=1
The kth factorial moment has a appealingly simple expression F([X];) = [n]; p* derived as
n
E(XI) =k Y pu-py = k!(k)p’“ = [n]x p",
{i17-~-7ik}gNn

the familiar F(X) = np being the special case when k = 1.

Note that whenever £ > n, many terms disappear in the above moment expressions since
S(n,m) vanishes whenever m > n and the sum Z{il,...,ik}g/\/n is over the empty set.

The moment generating function of a binomial X also has a new expression following
application of Equation 4 namely

tF b n
Mx(t) = 1+ZH Z S(k,m) (m)pm (4)

k>1

compared to Mx(t) = (1 — p + pe")™.

11



Recall that the probability generating function of X ~ binomial(n,p) is
Gx(s) = ((1—p)+ps)".

By Equation 3, we find that the factorial moment generating function for X is

Hx(s) = (1—p)+p(1+s))"

S (SE() ().

by applying the binomial theorem and changing the order of summation. This provides us
an additional expression for the k—th factorial moment of X:

£ 5 () (Y-

4.1.1 Poisson binomial X

If Y; ~ Bernoulli(p;) independently for all ¢ but p; # p; for (at least one) i # j, the
distribution of X is called a Poisson binomial distribution (e.g., see Shah, 1973). The various
moments of X are exactly as given by the relevant results of Section 3 with E(Y;, ---Y;,,)
everywhere replaced by p;, - - - p;,,. So too for its moment generating function.

4.2 Hypergeometric X

Consider a sample of size n randomly drawn without replacement from a population of N

individuals where g of them have some trait which is absent from the remaining N — g.

The indicator random variable, Y;, records if the 7th individual selected has the desired trait

(Y; =1) or not (Y; =0) and X =" | ¥; counts the number in the sample having the trait.
The ith draw will be a Bernoulli random variable Y; with probability

g—V

PN

where ¢ is the number of previous (¢ — 1) draws having the trait. A sample of m of these
Bernoullis will have

glg—1)---(g—m+1) [9]m

provided m < g and will be zero whenever m > g (since at least one Y; must be zero).
The kth moment of X, following Proposition 3.1, is now

BN =Y Sthm) Y %
m=1 {i1,5im }CNp m
_mln g n [g]m
=2, Sk >(m>m’



where the last equality followed from m—symmetry. Similarly, the central moments are

E(X — ) = <—n%>lC +§ (IZ) mi:lg(g’ m) (:;) % (_n%>k—e

where M = mink, g.
The factorial moments again have a pleasingly simple expression when k£ < g (zero
whenever k£ > g), namely,

E([X]x) = k‘(:)% = [n %

Where the binomial E([X];) = [n]xp*, the hypergeometric now has % in place of p*, as
one might expect.

4.3 CMP-binomial X

For n € N;p € [0,1],v € R, a random variable X has a Conway-Mazwell-Poisson (CMP)
binomial distribution with parameters (n,p, v) if its probability mass at X = j (7 € N,,) is
given by

where (), ,,,, is the normalizing constant

Cn,p,u = Z (;L) p](l - p)n—j'

J=0

The distribution is formed from a Conway-Maxwell-Poisson (CMP) random variable condi-
tional on the sum of that variable and another one independently generated from a different
CMP-distribution.

Just as the CMP-distribution generalizes a Poisson random variable to model count data
having variability larger (over dispersed) or smaller (under dispersed) than that of a Poisson,
the CMP-binomial generalizes the binomial distribution. A CMP-binomial distribution is
binomial when v = 1 and has larger (smaller) variance than a binomial when v < 1 (v > 1).
When v = 0, the most extreme values of 0 and n are favoured; when v — oo the count X
achieves the middle value of n/2 when n is even and (n £ 1)/2 when n is odd. See Shmueli,
Minka, Kadane, Borle, and Boatwright (2005) for details.

Shmueli et al. (2005) remark that the random variable X can also be viewed as a sum of
exchangeable, Bernoulli random variables Y; with joint probability

1 n b e
PT(Yi :yl,...,Yn :yn) = C—(Zn y) pZi:lyZ(l _p)” Zi:lyl,
n,p,v i=1 Y1

13



where v > 1 in the case of negatively correlated trials and v < 1 for positively correlated
trials. This observation allows an expression to be written for the moments of X from an
expression Pr(Y;, =1,...,Y; =1) for an arbitrary m—set {iy,... i} C N,.

im

Pr(Y,,....Y;)= Y  Pr(Y,=1...Y, =1 andY; =y, Vj & {i1,...,in})

-----

- Y Slst )
'y O \M Dt i,

% pm‘f‘ng{il ,,,,, im} yj(l _ p)n_(m+2j€{i1 ..... im} Yi)

The kth moment of X ~ CM P — binomial(n,p,v) is then

E(X*) =Y Skm) >  EY,--Y,)

m=1 {il ..... Zm}g./\[n
1 k n minn,k n m n v—1
g 28 (1) > (=M(5) va-»
k minn,k v
1 e n
_ S(k 14 1— n—~{
Chpp = (k,m) P (m) <€> riy

Similarly, the kth central moment is

(=) + 5 () oo Ssem S () () pa-nr

(=1 m=1 {=m

14



and the kth factorial moment

A= (1) () o -

4

4.4 The empty urns problem

Consider the problem of assigning ¢ indistinguishable balls uniformly at random into n
distinguishable urns. Let Y; be 1 if urn 7 is empty and 0 otherwise, and X = > | Y; be the
Bernoulli sum counting the total number of empty urns.

Through a straightforward counting argument, it can be shown that there are (Hzfl)
ways to distribute ¢ indistinguishable balls into n distinguishable urns and therefore

# ways to distribute m balls into n — 1 urns

Pr(Y;=1) = — .
( ) # ways to distribute m balls into n urns

(n+€—2)

_ ‘
n+4—1
(")

. on—1

A+ n-—1

By the same argument, for a subset {iy,...,%,} of A},
—Dn=2)--(n— —1,,
PrYi = 1Y =1, Y, =1) = (n—1)n—=2)---(n—m) _ n—1]

l+n—1)l+n-=2)---l+n—m) [(+n—1],

The kth moment of X is

the kth central moment (from Proposition 3.2)

B — ") = (- + Z () e stem (1) o e

m=1

where = n efril' The kth factorial moment has a particularly simple representation as
[Pkl — 1]
E([X]y) = 77—,
(1XT) [0+ n—1]x

Matching moments shows X of the urn problem to have a Hypergeometric distribution with
parameters (n,n — 1,0 +n —1).

15



4.5 The matching problem

The matching problem dates back to Montmort (de Montmort, 1713) and is the problem of
taking n paired elements, randomly permuting the first elements over all pairs, then letting
X be the number of correctly matched pairs after the random permutation. Examples are
n letters matched correctly to n envelopes, couples separated at a dance and dance partners
formed by randomly assigning one of each sex to the pair, and so on. The random variable
X can be expressed as a sum of Bernoulli random variables taking value 1 when a correct
match occurs and zero otherwise.

More abstractly, let f : N,, — N, be a permutation on N,, and let X denote the number
of fixed points of f (i.e., the number of ¢ € N, for which f(i) = ). If f is picked uniformly
at random from the set of all permutations on N,,, denoted Sym(n), then the distribution
of X can be shown to tend to Poisson(1) as n — co. We do that by expressing X as a sum
of Bernoullis and then examining and comparing moments.

Let Y; be the Bernoulli random variable recording if f(i) = i. As f is chosen uniformly
at random from Sym(n),

foralli=1,...,n.

Fix m < n and consider an m—subset {i1,...,i,} C N,. The probability that all
{i1,...,im} are fixed points of f is (n —m)!/nl. This is because if f(i;) = ¢; for all j €
{1,...,m}, one must only consider how to assign the other (n — m) points so that f is a
bijection. There are (n —m)! ways to do this as |Sym(n —m)| = (n — m)!. Therefore,

B (n —m)!
n!

By Proposition 3.1, for k£ <n

k
E(X*) =Y S(km) > = Pr(Y,=1,..Y, =1
m=1 {i1,sim }CNn
b (n—m)!
= S(k,m) Z Y
m=1 {i1,eesim }C N '
k
—m)!
— S Sk m) (") o= m)
— m n!
_ Z S(k,m)
m=1 m'
k
= Z Sg(k', m)
m=1
= Dy,

where By, is the k—th Bell number, the number of ways to partition a set of size k into a
family of nonempty, unlabelled, pairwise disjoint subsets. On the other hand, for k£ > n, the
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inner sum vanishes whenever m > n and hence

k
B(X*) = Zs(k’m) Z Pr(Y, =1,...,Y;, =1)
m=1 {i1,+rim } CNn,
=Y S(k,m) Y Pr(Y,=1,..Y, =1)
m=1 {21,,1m}g./\/’n
B z": S(k,m)
— m!
= Z Sg(k', m)
m=1
k
= By — Z SQ(k7m>7
m=n+1

which can be interpreted as the number of ways to partition a set of size k into at most n
classes.
For k < n, the k—th factorial moments of X is given by

E(Xl) =k Y Pr(Y,=1,..Y =1
{i1,ix }CNn,

SuEy

=1.

Therefore, the factorial moment generating function of X is given by

n_o ok
s
Hx(s) =)+
k=0
which by Equation 3 gives us that the probability generating function of X is
Gx(s) = Hx<8 — 1)

()

which provides us with another method for deriving the probability distribution of X without
using Principle of Inclusion/Exclusion or counting derangements in permutations.
Now, the exponential generating function for By, given by (e.g., see Stanley, 2011, p. 74)

k
Z Bk% = BEt_l

k>0
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is a special case (viz., A = 1) of the moment generating function for a Poisson()) random
variable W/

tk ot
M (1) =Y BE(WH) 35 = X0,
k>0
For k < n, the moments of X match those of W ~ Poisson(1); as n — oo, the moment
generating functions agree and X converges to a Poisson(1) random variable.

4.6 The Poisson limit of a binomial

Proposition 3.1 can also be used to provide a novel proof that a binomial(n,p) random
variable approaches a Poisson(\) with np — X as n — 0.

For X = ) " | Y;, each Y; is independent, identically distributed Bernoulli(p) random
variable and, as seen earlier, the kth moment

k
n
B = S sthom) (") o
m=1
=St (1) ()
— ’ m n
k
S(k,m) ([n]m m
= >0 S (2 )
m=1
As n — oo, the ratio (%Z?) — 1, np — A\, and
t L S(k,m) i
EWESY AT = > Sa(k,m)A™
m=1 ) m=1

which is the kth moment of a Poisson(\) random variable expressed as a Touchard polynomial
in A (e.g., see Riordan, 1937). It follows that as n — oo, X ~ binomial(n,p) converges to a
Poisson(A) with A = lim,, o, np.

When p = £, then binomial X converges to Poisson(1) and its kth moment is the Bell
number By, as in the matching problem of Section 4.5.

5 Counts more generally

Focus has been on Bernoulli sums that rise naturally as counts of events. In this section,
we consider any “count random variable” N to be that having support on any subset of the
extended natural numbers Ny (e.g., counts n would be impossible whenever Pr(N = n) = 0).
Previous results are extended to N by matching it to a Bernoulli sum X constructed from
the upper tail probabilities of V.
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Proposition 5.1. Let N denote any discrete random variable on Ny. Consider the Bernoulli
random variable Y; indicating whether N > i or not; that is

1 if N >,
Y, =
0 otherwise.

Then the Bernoulli sum X =% _.°,Y; has the same distribution as N.

Proof.

Pr(X =x)=Pr (ilﬂ :x>
— PM}%,: 1,Vi:i <a]N[Y;=0,Yi:i> 1))
= Pr(N = z).
]

The moments of N are identified with those of X and the Bernoullis Y; defined above.
The results for the moments and factorial moments now follow.

Proposition 5.2. For any discrete random variable N on Ny, the kth moment of N is
- M—1
E(N*) =Y "S(k;m) ) ( >Pr(N > M),
m=1 M>m

and the kth factorial moments is

m=1 {i150eey im CN
Now,
Z PT(Kl = 17 7}/;7,1 - 1) - Z P?“(max(il, 7Zm) S N)
{21 ..... lm}CN {il ,,,,, im}CN



Therefore,

For the factorial moment,

w3 (7 ) erevz a0 < 2 5 pr -0 (7))

- ml;nPr(N :ﬁ); (%: )
“m 3 priv= o)
13 By =g
= Eﬁprw =)
= sz[e]mpr(zv =)

]

Note that an expression for E(N*) has also recently been derived by Chalkraborti, Jardim,
and Epprecht (2019, eq. (10)), namely

o0

E(N*) = ((i+ 1)} —i*)Pr(N > ).

=0

Chakraborti et al. (2019) claim their formulation to be the first for E(N*) expressed in terms
of the upper tail probability of N; if so, then Proposition 5.2 may provide the second for
E(N¥) and the first for E([N];.). These results are best appreciated whenever the cumulative
distribution function of N has form allowing simplification, especially when multiplied by
binomial coefficients.

The remainder of this section explores application of Proposition 5.2 to several familiar
cases.

5.1 Geometric distribution

Suppose interest lay in the number X of tosses of a coin at which the first head occurs; X
is a geometric(p) distribution with p being the probability of heads (p = 0.5 for a fair coin).
Surprisingly, the random variable X can be written as a Bernoulli sum X = Y °° ¥ for
suitably defined Bernoulli Y;s, allowing the previous results to be applied.
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The representation is as follows. Take (Z;);>1 to be the sequence of independent Bernoulli(p)
random variables representing the sequence of potential coin tosses (Z; = 1 for heads and
zero otherwise). Let N be the index of the first Z; = 1 in the sequence, that is

N =minz¢: Z; = 1.
Consider now the Bernoulli random variables formed from the upper tail of the distribution
of the index N:
v — 1 if N>
10 otherwise

The Bernoulli sum X = )"°, Y; is the number of coin tosses (Z;s) that have occurred when
the first head (Z; = 1) appears in the sequence. While X = N, each provides a different
way of looking at the same random variable.
Given the Bernoulli sequence (Y;);>; and any m—set of indices {i1,...,in} C N, the
joint probability of m Y;s can be written as
Pr(y;, =1,...)Y;

1 7;m

=1)=Pr(N >iy,...,N >ip)
= Pr(N > maxiy,...,iy).

Then by Proposition 3.3

B(X") =) Stkm) 3, B(Yiy--Y,)

{#1,..,im }CN
k
= Z S(k,m) Z Pr(N > maxiy, ..., i,)
m=1 {i1eeesim }CN
k
= S(k,m) Z Z Pr(N > M) (M being the max index)
m=1 M2>1{i1,.im—1YCNa -1

= mi:l S(k;,m)A;l Gj: 11> [(1=p)" + (1 =p)"'p]
- m; S(k,m) MZ:I <%: 11> (1—p)Mt
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from which it follows that

M>1

giving the expression for the kth moment to be

=Y S(k

Similarly, the kth factorial moment has the simpler expression

Bl = S

We note that since the probability generating function of X has the closed form expression

p
Gx(s) = ——,
=1z s(1—p)
by Equation 3, the factorial moment generating function is given by
p
Hx(s) =

1= (1+s)(1-p)
=py [(1+s)1-p)"

>0

5.2 Poisson distribution

In Section 4.6 the tidy expression

E(N*) =" Sy(k,m)A™

for the kth moment of N ~ Poisson(\) appeared. The proof of this result given by Riordan
(1937) is recursive. It can also be proved by direct application of Proposition 5.2 as follows:

E(N*) =Y " S(k;m) ) (M _D Pr(N > M)

m=1 l=m M=1
= Sa(k,m)m! —( )



()

2

n
(]
EN
’l

Il

- : m - )\(f—m)
=c Z Sg(k, m))\ Z m
m=1 l=m '

k
= Z Sy (k, m)A™e
m=1

k
= Sy(k,m)A™.
m=1

Following the same route as for F(N¥), the kth factorial moment of N ~ Poisson(\)
has the even simpler expression:

E([N]y) = A",

5.3 1Ideal soliton distribution

For an integer r with r > 2, we say that N follows the ideal soliton distribution, soliton(r),
when

1
Pr(N=1)=-,
,
Pr(N =) =
T = 1) =
i(i—1)
for i € {2,...,r} and is zero otherwise. It can be shown by induction that
ze: 1 -1
—i(i—1) 14
From this it follows that
1 (-1
Pr(N</l)=-+4+—— forl=12,...r
r
and
1 when ¢ =1
Pr(N >1() =
%—g:—? 0=23,....r1.

To derive the moments and factorial moments, we need the following lemma.

Lemma 5.3. For any m,r € N,

MiZOM[M]m = (m+ 1)!(r_7";1_ 1> +mm‘(;j;)
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Proof. First, an expression for the ordinary generating function f(z) = Y ;o0 @[i]m—2 27
corresponding to the sequence (i[i];—2)i>0 is determined. Multiplying by then gives the
generating series for (3 ), [i]m—2)r>0-

Since Y. 2" = ﬁ, differentiating with respect to x and then multiplying by = gives

Zixz = TSER

>0

Differentiating with respect to x, (m — 2) times, the left hand side becomes

Y ixi(i=1) - (i—m—1) 2= i 2

i>0 i>0

Applying the general Leibniz rule, the same derivative of right hand side is

x(m —1)! (m — 2)!
_ —2)—
- T
m-+2
Multiplying both sides by gives

(1—x)

= (1 _ $)m+1 (1 _ a:)m
Since . _—
n+kKk— n
o~ ( n )x |
n>0
the claim immediately follows. ]

Proposition 5.4. Let N follow the soliton(r) distribution with r > 2. For k > 1, the
moments of N are given by

E(N*) = H, + zk: S(k,m) {r — 1 (7;) - (7«7;3) —(m= 2)2(7:1_—31”

m=2

For k > 2, the k—th factorial moment of N is

sov=a [ 72(0)- (7))

Proof. Once more, by Proposition 3.1 and Proposition 3.6, we need to evaluate sums of the
form

T

> Gﬁ:ll)Pr(N > M).
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If m = 1, this becomes

T M o 1 '
> (m_ 1>Pr(N >M)=>Y Pr(N>1)
M=m M=1
= Pr(N =1)
M=1¢(=M
r V4
= Pr(N =1Y)
/=1 M=1
=> (Pr(N=1{)
/=1
ro5ilG-1)

Otherwise, for m > 2,

S (M Deeezan= 3 (M) -2

M=m

By straightforward algebraic manipulation,

- M—-—1I\M -2 1 r
Z (m—1>M_1:(m_l)!MZ(M—m[M_g]m2.

M=m

By replacing m and r by m —2 and r — 2, respectively, in Lemma 5.3 and dividing by (m—1)!
it follows that

r r—2
1 1
D EE——— M — 2 M - 2 m—2 — 7 -, M M m—
M=m M=m
r—1 r—1
- —2)? :
<T—m—1)+(m )<r—m>
The result now follows from a straightforward application of Propositions 3.6 and 3.1. [

5.4 Benford distribution

Benford’s distribution encapsulates the notion that in many real world settings, the leading
digits in a numerical data set are more likely to be small. In particular, we say that D follows
Benford’s distribution if for a digit d € {1,...,9},

Pr(D =d) = logy(d + 1) — logy(d).
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Due to its telescoping nature, the complementary CDF of D is given by
Pr(D >d) =1—log,,(d).

Therefore, by Proposition 5.2, the k—th moment of D is

E(DY =3 Skm) 3 (M - 1) (1 = logyy(M))

m—1
M=m

:;S(k’m) [(Tgn) - (]\nf:ll) 1og10(M)] :

M=m

and factorial moments with the form

B(D)) = 1 [(2) () 1ogm<M>] ,

M=k

for £ < 9. Of course, the results above extend to any general base b by noting that D, ~
Benford(b) satisfies

> (M) pronzn - [(b;f) S 1ogb<M>] .

M=m =k

6 Concluding remarks

A novel multinomial theorem for commutative idempotents (Proposition 2.2) led to new
general expressions for the moments (including central and factorial) of a Bernoulli sum
(e.g., Propositions 3.1 to 3.3) as well as corresponding generating functions. The general
expressions depend on the determination of the expected product of subsets of the Bernoulli
random variables. By evaluating these in particular cases a number of new expressions for
moments and generating functions of many common distributions and classic problems.

The success of the approach in these examples mark it as potentially fruitful in more
novel distributions and problems where this expectation might be more readily available. To
that end, the representation of (i) for random count X and fixed m (Proposition 3.6), and
of X! (Proposition 3.7 ), as the product of Bernoullis may also be more generally useful.

In other instances, the general representation of the various moments for a count variable
N expressed in terms of the upper probability of that N (Proposition 5.2) may be valuable
in yet other problems, as shown in the examples of Section 5.

The framework of Bernoulli sum random variables appears a viable tool for problems
involving count data.
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