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Abstract

Through motivating examples, we introduce the Euclidean distance matrix completion problem,
and explore its use in various fields in the literature. We then introduce edmc, a function avail-
able in the R package edmcr, which solves the Euclidean distance matrix completion problem,
and the related sensor network localization problem, using a variety of algorithms.

Working through examples using both real and simulated data, we show how each of the algo-
rithms implemented in edmc can be used to effectively complete a Euclidean distance matrix,
the pros and cons of each algorithm, and their use in various types of completion problems. We
end with a brief introduction to the theoretical background of the algorithms, outlining some
of the more technical details implemented in each.

Keywords: R, matriz completion problems, point configurations, high dimensional data analysis,
dimension reduction, guided random search

1 Introduction

Consider a set of n points in arbitrary dimension p, X1, ...,X, € RP. Let X = [x1,...,x,]|’ denote
the matrix such that X[i,] = xlT. Without loss of generality, assume the x; are centered so that
Z?:l x; = 0. The Euclidean distance between x; and x; is denoted

dij = [[x; = x| (1)

and let D = [d;;] be the Euclidean distance matriz. Next, let D* = [d?j] be the square Euclidean
distance matrix, which can be used to derive the Gram matriz, G = XX”T. Note that the Gram
matrix can be written as

G =XxxT
= X00Tx"

for any orthogonal matrix O. The Gram matrix G provides a point configuration from its eigende-
composition that is unique up to an orthogonal rotation.

In practice, situations may arise where only some of the d;;s are unknown - for instance, in the
case of sensor network localization (see for example Alfakih et al. [2011] and Ding et al. [2010])
where distances between sensors are only known if they are within a distance R, known as the radio
range, of one another. This would result in what is known as a partial distance matriz. Another
such example can be found in molecular biology, and more specifically the problem of molecular
conformation (see for example Hendrickson [1995]), where given a set of unknown distances and
other restrictions, the goal is to determine the underlying configuration of a (protein) molecule.



Given a partial distance matrix, the goal is completing it, a problem known as the FEuclidean
distance matrix completion problem (edmcp). There are many methods for solving the edmcp, see
for example Alfakih et al. [1999], Fang and O’Leary [2012], & Trosset [2000] for an introduction to
the problem area and an in depth look into the methods we will consider in later sections. None of
these tools, however, are available in the programming language R (R Core Team [2013]).

To bridge this gap, we introduce the edmcr package, publicly available on the Comprehensive R
Archive Network (CRAN). We introduce several useful algorithms included in edmcr which allow
the user to complete a partial distance matrix, and solve related problems. Each of these algorithms
have their own advantages and disadvantages, which we will explore.

This paper is structured as follows. In Section 2, a number motivating examples are introduced
that are closely related to the Euclidean distance matrix completion problem. These examples in-
clude problems in distance-based dimension reduction, sensor tracking, and molecular conformation.

In Section 3, the function edmc, the main function for Euclidean distance matrix completion in
edmcr, is introduced. The algorithms which can be called from edmc include Alfakih et al. [1999],
Fang and O’Leary [2012], Trosset [2000], Krislock and Wolkowicz [2010], and Rahman and Oldford
[2016] will also be introduced. The function sprosr, used for solving the problem of molecular
conformation, is also introduced. sprosr is an implementation of the semidefinite programming-
based protein structure determination algorithm of Ramandi [2011].

In Section 4, a number of examples are introduced using both real and simulated data to demon-
strate the syntax and functionality of the algorithms in edmcr. In Section 5, the mathematical details
of the Euclidean distance matrix completion aglorithms are presented, providing the background
necessary to better understand the more advanced functionality available in the algorithms. Section
6 offers some closing remarks.

2 Motivating examples

Three related, yet distinctly different problems illustrate the Euclidean distance matrix completion
problem. Their ordering ranges from cases with little inherent structure to cases involving significant
structure in the underlying configuration.

2.1 Distance-based dimension reduction

We begin with the simplest example of distance matrix completion by considering the link be-
tween dimension reduction techniques and Euclidean distance matrix completion. In many cases,
dimension reduction is done by first considering a partial distance matrix (such as one created by a
neighbourhood graph), typically resulting in a sparse matrix containing a small number of known
distances. For instance, the Isomap algorithm of Tenenbaum et al. [2000] first creates a partial
distance matrix using the distances in a k-nearest neighbour graph, requiring only that the resulting
graph be connected. The remaining distances are then filled using the shortest paths between nodes
along the graph. A point configuration is then constructed using multidimensional scaling. Other
examples of distance-based dimension reduction algorithms include Laplacian Eigenmaps (Belkin
and Niyogi [2001]) and Locally Linear Embedding (Roweis and Saul [2000]).

Consider instead the following approach. Given a high dimensional point configuration, and
the corresponding k-nearest neighbour graph, suppose we treated these as known distances in a
Euclidean distance matrix. Then, instead of using the shortest path distances to fill in the unknown
distances, we instead make use of a Euclidean distance matrix completion algorithm to complete
the distance matrix, and embed it in a lower dimension. The lower dimensional point configuration
could then be extracted via simple eigendecomposition.



A similar idea would be to use the minimum spanning tree of the high dimensional point config-
uration instead of the k-nearest neighbour graph. The minimum spanning tree is a graph in which
every node is visited once, with no cycles, and minimum edge weight of any such graph, and is
known to carry important clustering information (Gower and Ross [1969], Friedman and Rafsky
[1981], Friedman and Rafsky [1979]). We explore this idea using the statue manifold data set used
in Tenenbaum et al. [2000].

In the case of either a k-nearest neighbour graph or a minimum spanning tree graph, we end up
with partial distance matrix D that is relatively sparse. This allows for alternative methods (such
as that in Rahman and Oldford [2016]) to be used to complete the matrix.

2.2 Sensor network localization

In sensor network localization, the goal is to determine the positions of a set of sensors. Unlike
typical edmc problems however, additional information in the form of a set of anchors with known
positions are available for reference. Distances between sensors, as well as between sensors and
anchors, are known only if they are within some (Euclidean) distance of one another, known as the
radio range, denoted by R.

An example of such a problem is described in Rangarajan et al. [2008], where access points (i.e.
anchors) use received signal strength from wireless users (emitters, i.e. sensors) to attempt to locate
the positions of access points with unknown locations. Figure 1 illustrates the problem.
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Figure 1: A map of the 200 known access point locations (in blue). Also shown are access points
sampled by a single user (in red) at a certain moment in time, along with the strength of the received
signal strength in black. Rangarajan et al. [2008]

To model this problem as a sensor network localization problem, the received signal strength is
first converted to a distance. For emitter 7 and access point j, let s;; represent the received signal
strength at the access point. Then,

dij = do * 10(s0=si3)/(10np)

where sq is the received signal strength at the access point at a reference distance of dy, and o3 is
the standard deviation of received signal strength. n, is known as the “path-loss exponent”, and is
environment dependent. It can be viewed as a noise term, as it is generally unknown.



With these individual distances, the distance matrix D has the following form

Dyr Die Dpy
D= Dek Dee Deu
Duk Due Duu

where subscript k denotes the known access points, u the unknown access points, and e the emitters.
Dy represents the distance matrix containing the distances between the known access points, Dy,
the distance matrix between the known access points and the emitters, etc.

Since each emitter will only be within range of a subset of the known and unknown access points,
both D,y and D, will be a partial distance matrix (denoted with a superscript x). Also, since there
are access points with unknown locations, the distance matrices Dy, and D, are both completely
unknown. The result is the following partial distance matrix D* to be completed, with the end goal
being to reconstruct the complete matrix D from D*.

Dkk Dze *
D*= |D;. =+ D},
*
~ Dy, *

As a practical application, Rangarajan et al. [2008| consider data collected at the University of
California, San Diego (McNett and Voelker [2005]). The data represents received signal strength
data for personal data assistants (PDAs) given to 275 freshman students. Over the course of the
experiment, 300 unique access points were sensed, however only 200 had known locations.

The goal of the analysis was to locate the approximately 100 access points with unknown loca-
tions. Figure 2(a) demonstrates the accuracy of the algorithm by first finding the position of three
access points whose positions were hidden from the algorithm. Figure 2(b) shows the 200 known
access points in blue, as well as the estimated positions of the 100 unknown access points in red.
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Figure 2: (a): The proposed positions (in red) of three access points (of known location) whose
locations were hidden from the algorithm. Actual locations are show in blue. (b) The proposed
positions of the 100 unknown access points (in red), and the positions of the 200 known access
points (in blue). Rangarajan et al. [2008]

Figure 3 illustrates the general problem. Here, blue circles represent access points with known po-
sitions, red triangles access points with unknown positions, and grey squares emitters with unknown



positions. Solid lines represent known distances, while dotted lines represent unknown distances,
forming a partial distance matrix. The goal of the analysis is to find the positions of the emitters
and access points with unknown locations.

Figure 3: The general problem addressed by Rangarajan et al. [2008].

In addition to geo-tracking problems such as this, sensor networks have a large range of ap-
plications, such as military/security applications (Lawlor [2005]), environmental habitat monitor-
ing (Mainwaring et al. [2002]), and wildlife monitoring (Szewczyk et al. [2004]), amongst others.
There are many proposed methods for solving these problems, ranging from relaxations of semi-
definite programming algorithms to iterative multi-dimensional scaling (see for example Krislock
and Wolkowicz [2011], Ding et al. [2010], Rangarajan et al. [2008]).

2.3 Molecular conformation

The molecule problem looks to reconstruct a three-dimensional molecule (most often a protein
structure) using the incomplete interatomic distances measured via nuclear magnetic resonance
(nmr) spectroscopy. While some interatomic distances may be unknown, there is a vast amount of
structure that exists in a molecule that can be exploited, as nature gives insights into the angles and
distances at which certain atoms must bond. Having a priori knowledge of the atomic structure of a
molecule will allow for the determination of bounds on the possible distances that can theoretically
exist between atoms. Other phenomena such as natural repulsion/attraction forces, and known
atomic structure enforce natural bounds on the possible distances that can exist between pairs of
atoms.

Given all these restrictions, the problem is to then (as accurately as possible) propose a series
of plausible configurations for the molecule - as a set of bounds rarely can completely specify a
distance matrix, there are likely many valid solutions to a single conformation problem. There is a
large volume of research done in this area, including Havel and Wiithrich [1985], Wiithrich [1990],
Glunt et al. [1993|, Hendrickson [1995|, Trosset [1998], and Moré and Wu [1999].

One of the first attempts to solve this problem was presented in Havel and Wiithrich [1985].
Using nuclear magnetic resonance imaging, they extracted intramolecular, interproton distances
from the molecular backbone of various protein structures. As they had the exact measurements
(in Angstroms, A), the data were modified such that each known distance was placed in an appro-
priate range (i.e. distances shorter than 2A were instead treated as an unknown distance in the
range [2,2.5)/01). In total, 10 data sets were considered, each with varying levels of restrictions on



Figure 4: A stereographic image of three attempts to replicate the crystal structure of a BPTI
protein. The actual crystal structure is superimposed in darker black. This example shows a protein
reconstruction with the least known structure of all considered in Havel and Wiithrich [1985].

bonding angles and distances placed on them. Figures 4 and 5 illustrate the results from two of the
experiments.

Figure 5: A stereographic image of three attempts to replicate the crystal structure of a BPTI
protein. The actual crystal structure is superimposed in darker black. This example shows a protein
reconstruction with the most known structure of all considered in Havel and Wiithrich [1985].

3 Solving edmc problems with R

Currently, there is no way to solve Euclidean distance matrix completion problems using R. To
fill this void, we introduce edmcr, an R package containing many algorithms to perform Euclidean
distance matrix completion, and its various applications, including molecular reconstruction and
sensor network localization.



3.1 edmc

To streamline the implementation of several functions which can be used to complete Euclidean dis-
tance matrices, we introduce edmc, the main function through which all of the completion algorithms
can be accessed. There are currently five different methods implemented in edmc:

1. Semidefinite Programming (Alfakih et al. [1999])

2. Non-convex Position Formulation (Fang and O’Leary [2012])
3. Dissimilarity Parameterization Formulation (Trosset [2000])
4. Guided Random Search (Rahman and Oldford [2016])

5. Sensor Network Localization (Krislock and Wolkowicz [2010])

The R implementation of each is discussed in the remainder of this section, and the mathematical
details and formulation for each can be found in Section 5.
The edmc function takes the following input variables

D An n x n Euclidean distance matrix to be completed, with unknown entries set to
NA

method The completion algorithm to be used. One of “sdp”, “npf”, “dpf”, “snl”, “grs”
Additional input variables specific to the method used

Of practical importance in the implementation of edmc is to note that only two inputs are
specified - a partial Euclidean distance matrix D, and the desired completion algorithm method.
All other input variables are specific to the algorithm specified in method, and are not specified in
the edmc input list. The user should specify the required input variables (outlined for each method
below) by naming them directly during the call to edmc.

The output of edmc is also specific to the method used. The one output common to all is the
completed distance matrix D. The specific output of each method will be discussed below.

3.1.1 method = “sdp”

The Semidefinite Programming algorithm of Alfakih et al. [1999], denoted sdp, and coded in the
subroutine sdp, requires the following input variables to be specified in edmc

D An n x n Euclidean distance matrix to be completed, with unknown entries set to
NA
A A weight matrix, with a;; = 0 implying d;; is unknown. Generally, if d;; is known,

a;; = 1 although any non-negative weight is allowed
toler convergence tolerance for the algorithm. Default is set to le — 8.

resulting in the following list of output variables

D The completed n x n Euclidean distance matrix
optval The minimum value of the target function achieved during minimization

The sdp algorithm is appropriate for smaller completion problems, as it is computationally quite
expensive (O(n?)). However, the convexity of the search space generally results in a global solution.



3.1.2 method = “npf”

The non-convex position formulation algorithm of Fang and O’Leary [2012], denoted npf, and coded
in the subroutine npf, requires the following input variables to be specified in edmc

D An n x n Euclidean distance matrix to be completed, with unknown entries set
to NA.

A A weight matrix, with a;; = 0 implying d;; is unknown. Generally, if d;; is
known, a;; = 1, although any non-negative weight is allowed

d The dimension of the resulting completion

dmax The maximum dimension to consider during dimension relaxation

decreaseDim During dimension reduction, the number of dimensions to decrease at each step

stretch The stretching factor applied to the distance matrix (see Section 5). The default

is set to 1 (i.e. no stretching is applied).

dimMethod One of “Linear” or “NLP” corresponding to the desired method of dimension
reduction (see Section 5).

toler convergence tolerance for the algorithm. Default is set to 1le — 8.

Many of these input variables have default values (illustrated in the examples provided in Section
4) that are sufficient for most minimization problems. As such, these input values need not be
specified during the call to edmc - only D, A, and d are required. The advanced user may be
interested in changing these defaults in the event that the algorithm fails to converge on a global
solution. Section 5 outlines the technical background required to understand how these optional
input variables can be used.

In the case of utilizing the npf subroutine, edmc produces the following list of outputs:

D The completed n x n Euclidean distance matrix
optval The minimum value of the target function achieved during minimization

The npf algorithm is appropriate for any completion problem, as it is substantially faster than
sdp. This increase in speed unfortunately comes at the cost of convexity, so care must be taken to
ensure that algorithm arrives on a global solution, and not a local solution.

3.1.3 method = “dpf”’

The dissimilarity parameterization formulation algorithm of Trosset [2000], denoted dpf, and coded
in the subroutine dpf, requires the following input variables to be specified in edmc

D An n x n Euclidean distance matrix to be completed, with unknown entries set
to NA

d The dimension for the resulting completion

lower An n x n matrix containing the lower bounds for the unknown entries in D. If
NULL (default), lower is set to be a matrix of Os

upper An n X n matrix containing the upper bounds of the unknown entries in D. If

NULL, upperl|i,j| is set to be the shortest path between node i and node j.
retainMST A logical input indicating if the current minimum spanning tree structure in D
should be retained. If TRUE, an mst-preserving lower bound is calculated.

For dpf, both D and d must be specified by the user. The remaining inputs are optional and have



set defaults. Their use will be described via example in Section 4. The dpf subroutine produces
the following list of outputs

D An n x n Euclidean distance matrix with embedding dimension d
optval The minimum function value achieved during minimization

The default values of both lower and upper are set to NULL, internally setting the lower bounds
for all unknown values to 0, and setting the upper bounds using the triangle inequality. However,
there may be situations where tighter bounds may be imposed. For example, in the case of molecular
conformation, physical properties, such as the angle of the formed bond between elements, may force
the unknown distance to lie within some boundary, d;, < d;; < dy. In this case, upper can be used
to specify these tighter bounds.

The minimum spanning tree is known to contain important information about a point configu-
ration, especially clustering information (Gower and Ross [1969]). The minimum spanning tree of a
partial distance matrix can be preserved by imposing an appropriate lower bound on the unknown
distances. This can be done simply using the retainMST variable in edmc; setting it to TRUE will
preserve the minimum spanning tree in the partial distance matrix by calculating the appropriate
lower bound in lower for each unknown distance.

3.1.4 method = “grs”

When the method variable is set to "grs", edmc executes the guided random search algorithm of

Rahman and Oldford [2016] by calling the subroutine grs. The grs algorithm is used to solve

Euclidean distance matrix completion problems where only the minimum spanning tree is known.
When grs is the specified method, two input variables are required

D An n x n partial Euclidean distance matrix to be completed containing only the dis-
tances in the minimum spanning tree
d The desired embedding dimension

Completion of the matrix D results in two output variables

P An n X d matrix containing the positions of the n nodes in d dimensions.
D An n x n Euclidean distance matrix with embedding dimension d

In Section 4, we will address the ability of this algorithm to create point configurations in a
lower embedding dimension than the original partial Euclidean distance matrix.

3.1.5 method = “snl”

The sensor network localization algorithm of Krislock and Wolkowicz [2010], denoted snl, and coded
in the subroutine snl, requires the following input variables to be specified in edmc

D The partial distance matrix specifying the known distances between nodes. If
anchors is specified (and is a p X d matrix), the p final columns and p final rows of
D specify the distances between the anchors specified in anchors.

d The dimension for the resulting completion

anchors A p X d matrix specifying the d dimensional locations of the p anchors. If the
anchorless problem (i.e. a general edmcep) is to be solved, anchors = NULL



The snl algorithm requires that both D and d be specified as input variables. Unlike the
other algorithms the main purpose of the snl algorithm is to solve the sensor network localization
problem, however, it can also solve the Fuclidean distance matrix completion problem by specifying
the anchors input as NULL. As such, it takes an additional argument anchors, which specifies d-
dimensional positions of the anchors. The main target is to then locate (in d-dimensional space) as
many of the sensors as possible, resulting in the following output

X the d-dimensional positions of the localized sensors. Note that it may be the case
that not all sensors could be localized, in which case X contains the positions of only
the localized sensors.

The m x d matrix X contains the positions of the localized sensors. It is not necessarily the case
that all sensors can be localized, in which case they are not included in X, and therefore we have
m < n, where n is the total number of sensors.

3.2 sprosr

Determining the structure of a molecule requires a specialized algorithm that can handle the ad-
ditional angle constraints often found in molecular conformation problems. In edmcr, the pro-
tein problem can be solved using the sprosr function, an R implementation of the semidefinite
programming-based protein structure determination algorithm of Ramandi [2011].

sprosr has three required and four optional input variables

seq A table containing the amino acid sequence of the protein in CYANA
.seq format

aco A table containing the angle constraint information in CYANA .aco
format

upl A table containing the distance constraint information in CYANA .upl
format

hydrogen_omission Should side-chain hydrogen atoms be omitted? TRUE/FALSE. De-
fault is FALSE

in_min_res User overwrite of the minimum residue number.

in_max_res User overwrite of the maximum residue number.

Each of seq, aco, and upl require a table following the form set out by CYANA (Giintert
[2004]). For seq, the sequence file (.seq) is a table of two columns - column one is the abbreviated
name of the amino acid, and column two is the corresponding residue number. Table 3.2 provides
an example.

MET
GLN
ILE
PHE
VAL

U W N =

Table 1: The first 5 rows of a sequence (seq) file.

The aco input table contains angular constraints on the phi and psi angles for the amino acid
residues, and follows the format of the .aco CYANA file. It contains five columns - the residue
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number of the amino acid corresponding to the seq input variable, the name of the amino acid
residue, the name of the angle being constrained (either PHI or PSI), the lower limit of the angle,
and the upper limit of the angle, in degrees. Table 3.2 provides an example.

GLN PHI -95.0 -85.0
ILE PHI -149.0 -139.0
PHE PHI -129.0 -119.0
LYS PHI -117.0 -107.0
THR PHI -110.0 -100.0

~N O = W N

Table 2: The first 5 rows of an angle constraint (aco) file.

Finally, the upl input table contains the distance constraints (in Angstréms) between amino
acid residues. It contains seven columns - the residue number, amino acid name, and atom name
of the first (columns 1-3) and second (columns 4-6) residues, and the constrained distance between
them. Table 3.2 provides an example.

MET HA 2 GLN H 293
MET HB2 2 GLN H 3.86
MET HB2 63 LYS HA 5.50
MET HB3 2 GLN H 3.86
MET HB3 63 LYS HA 5.50

—_ = =

Table 3: The first 5 rows of an distant constraint (upl) file.

sprosr provides two output variables upon completion

X The three dimensional point configuration of the completed protein molecule
report A list detailing the total violations in the protein molecule

The X output is straight forward, it contains the three dimensional positions of the amino acid
residues in the completed protein molecule. The report output is a list detailing the total violations
in the protein, including the number (and total size) of the violations in the equality constraints
($eq_err), the number of violations in both the lower ($lo_err) and upper bounds ($up_err), the
number of chiral violations ($chiral), the number of angle violations in both phi ($phi) and psi
($psi), and the number of dihedral ($dihed) and hydrogen bonds ($hbond) that violate their upper
bounds.

3.3 getConfig

Each of the completion algorithms above return a Euclidean distance matrix, where in many appli-
cations a point configuration is ultimately desired. Given a FEuclidean distance matrix D, we seek
the corresponding point configuration matrix X such that d;; = ||z; — ;]|

In Section 1, the squared Euclidean distance matrix D* and the Gram matrix were defined. To
obtain a Gram matrix G from a squared Euclidean distance matrix D*, first note that dj; can be
written as:
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* . 112
dij = ||xi — x|
= xiTxi + ijxj — 2Xiij
= gii + 955 — 29i;

Thus, given a Gram matrix G, the corresponding squared Euclidean distance matrix is

D* = K(G) = 1g" + g1’ - 2G (2)

where 1 is the column matrix of ones, and g is the column vector containing the diagonal elements
of G, i.e. g =[g11,922, .., gnn)’ . This function has been implemented in edmcr as gram2edm, and
takes a Gram matrix and returns the corresponding squared Euclidean distance matrix.

Inverting this equation, we arrive at a function which takes a squared Euclidean distance matrix
D* and returns the corresponding Gram matrix G

G=T(D) = %PD*P (3)

where P =1 — %11T is an orthogonal projection matrix. This function is available in edmcr as the
function edm2gram.

From the Gram matrix, a simple eigendecomposition can be used to obtain a point configuration
matrix X. Recall that this point configuration is unique only up to an orthogonal rotation. Note
also that a p < n dimensional point configuration X, is obtained by keeping only the p largest
eigenvalues, and setting all others to 0.

This entire process has been implemented in edmcr in the function getConfig, which takes the
input variables

D An n x n Euclidean distance matrix
d The desired embedding dimension

and returns
X An n x d point configuration matrix

d
Zi:1 Ai
n

Accuracy The accuracy of the eigendecomposition, measured as S
i=1""

4 Examples

In this section, we show some simple examples to demonstrate the syntax of each of the methods
described in Section 3.

4.1 A simple Euclidean distance matrix completion problem

Consider the following partial Euclidean distance matrix (from Trosset [2000])
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034343
301757
410575
375017
457105

3 2 5 7 5 0]

with the following known completion in three dimensional space:

0 3 4 3 4 37
3 0 1 VI8 5 V18
4 1 0 5 V32 5
3 VI8 5 0 1 V18
4 5 V32 1 0 5
13 V18 5 V18 5 0 |

For comparative purposes, note that /18 ~ 4.243 and /32 = 5.657.
To solve the problem using edmcr, first define the Euclidean distance matrix in R as follows:

R> #Define the partial distance matrix
R> D <- matrix(c(0,3,4,3,4,3,
3,0,1,NA,5,NA,
4,1,0,5,NA,5,
3,NA,5,0,1,NA,
4,5,NA,1,0,5,
3,NA,5,NA,5,0), byrow=TRUE, nrow=6)

For solving standard Euclidean distance matrix completion problems such as this, the sdp, npf,
and dpf algorithms should be considered. Beginning with the sdp algorithm

R> #Define the adjacency matrix A
R> A <- matrix(c(1,1,1,1,1,1,

1,1,1,0,1,0,
1,1,1,1,0,1,
1,0,1,1,1,0,
1,1,0,1,1,1

1,0,1,0,1

,1), byrow=TRUE, nrow=6)

3

R> edmc(D=D, method = "sdp", A=A, toler=1e-8)

$D

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.000000 3.000020 3.999993 3.000020 3.999993 3.000011
[2,] 3.000020 0.000000 1.000051 4.321144 5.000003 4.453067
[3,] 3.999993 1.000051 0.000000 5.000003 5.656642 5.000002
[4,] 3.000020 4.321144 5.000003 0.000000 1.000051 4.453067
[5,] 3.999993 5.000003 5.656642 1.000051 0.000000 5.000002
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[6,]1 3.000011 4.453067 5.000002 4.453067 5.000002 0.000000

$optval
[1] 5.406998e-10

Note that while a solution to the problem was found (since the optimal function value is near
zero), this matrix differs slightly from the known completion. The main reason for this difference
is the rank of the completed distance matrix. The corresponding Gram matrix has five non-zero
eigenvalues, meaning the completed squared distance matrix has rank five, where the original solu-
tion had an embedding dimension of three. The inability to specify an embedding dimension is one
of the major drawbacks of the sdp algorithm, a problem that is remedied by the other algorithms
we consider, at the cost of convexity.

Next, consider the solution given by the npf algorithm

R> set.seed(48)

R> #Define the adjacency matrix A
R> A <- matrix(c(1,1,1,1,1,1,

1,1,1,0,1,0,
1,1,1,1,0,1,
1,0,1,1,1,0,
1,1,0,1,1,1

1,0,1,0,1

,1,1), byrow=TRUE, nrow=6)

R> #Default settings for some inputs (not required as input to edmc())
R> dmax =n - 1

R> decreaseDim = 1

R> stretch = 1

R> method = "Linear"

R> toler = 1le-8

R> edmc(D=D, method="npf", A=A, d=3)

$D

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 3.000000 4.000000 3.000000 4.000000 3.000000
[2,] 3 0.000000 1.000001 4.242615 5.000000 4.241516
[3,] 4 1.000001 0.000000 5.000000 5.656888 5.000000
[4,] 3 4.242615 5.000000 0.000000 1.000001 4.241561
(5,1 4 5.000000 5.656888 1.000001 0.000000 5.000000
[6,] 3 4.241516 5.000000 4.241561 5.000000 0.000000

$optval
[1] 3.894878e-11

The resulting solution, unlike in the sdp subroutine, converges very nearly to the known solution.
This is due to the ability to specify the embedding dimension. This, however, comes with its own
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set of difficulties. Suppose the embedding dimension of the example matrix is unknown, and is
instead specified as d = 2, resulting in the following completion

R> set.seed(48)
R> edmc(D=D, method="npf", A=A, d=2)

$D

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.000000 2.957321 3.711975 2.957320 3.711976 2.104172
[2,] 2.957321 0.000000 1.423176 3.660281 5.036896 4.790540
[3,] 3.711975 1.423176 0.000000 5.036896 6.377897 5.118735
[4,] 2.957320 3.660281 5.036896 0.000000 1.423176 4.790539
[5,] 3.711976 5.036896 6.377897 1.423176 0.000000 5.118735
[6,] 2.104172 4.790540 5.118735 4.790539 5.118735 0.000000
$optval

[1] 72.33753

Clearly, the algorithm is forced to settle on a local solution, reaching an optimal value of 72.34
- recall a solution exists only if a global minimum of zero is achieved. If it is believed a solution
actually exists in two dimensions, it may be worthwhile to attempt stretching, or possibly increasing
the number of dimensions considered during relaxation. However, a more likely solution is to change
the completion dimension.

Finally, consider the solution provided using the dpf algorithm

R> set.seed(98)

R> edmc(D=D, method="dpf", d=3)

$D

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 3.000000 4.000000 3.000000 4.000000 3.000000
[2,] 3 0.000000 1.000000 4.240979 5.000000 4.245210
(3,] 4 1.000000 0.000000 5.000000 5.659058 5.000000
(4,] 3 4.240979 5.000000 0.000000 1.000000 4.248187
(5,] 4 5.000000 5.659058 1.000000 0.000000 5.000000
(6,] 3 4.245210 5.000000 4.248187 5.000000 0.000000
$optval

[1] 1.878904e-09

Again, with the ability to specify a an embedding dimension, the dpf algorithm is able to
converge very nearly to the global minimum. However, similar to the npf algorithm, consider what
happens if the embedding dimension is unknown, and attempting to complete the matrix with an
embedding dimension of d = 2:
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R> set.seed(98)

R> edmc(D=D, method="dpf", d=2)

$D

[,1] (,21 [,3] (,4] [,5] [,6]
[1,] 0 3.000000 4 3.000000 4 3.000000
[2,] 3 0.000000 1 3.967597 5 4.349922
[3,] 4 1.000000 0 5.000000 6 5.000000
(4,] 3 3.967597 5 0.000000 1 4.349923
(5,] 4 5.000000 6 1.000000 0 5.000000
(6,] 3 4.349922 5 4.349923 5 0.000000
$optval

[1] 8.456663

With an achieved minimum value of 8.46, the algorithm has again failed to converge near the
required global minimum of 0, indicating that the proposed solution is not a distance matrix.

4.2 Analyzing the Anderson/Fisher Iris Data

Consider completing the famous Iris data set, originally collected in Anderson [1935] and analyzed in
Fisher [1936]. To investigate the relative performance of the Euclidean distance matrix completion
methods considered so far, take D to be constructed from the distances between flowers in the
Iris data. Each completion method produces D for the case of knowing only the distances in the
minimum spanning tree.

4.2.1 Completion accuracy

To measure the accuracy of each completion, the relative difference in dissimilarities

_|D-D|}

RDD 4
DI @

is calculated.

The top plot of Figure 6 shows the effect of percentage missing has on the computational time.
For each percentage, every method but SDP was applied to the same five different incomplete missing
at random matrices; the SDP method took so long that it was applied to only the first of the five
matrices. Not surprisingly computational time increases with the percentage missing. Comparing
methods, we see that the DPF method of Trosset [2000] is consistently faster than the NPF method of
Fang and O’Leary [2012], which in turn is consistently faster than the SDP method of Alfakih et al.
[1999]. Computational times are given on a logarithmic scale so these differences are substantial.
Some variation in the times taken can also be seen, especially for the larger percentages.

The minimal spanning tree case has the greatest percentage missing possible and appears at
the far right of each plot. All times to completion here appear to have dropped, with NPF and DPF
switching positions to make it fastest of the three methods. Since this is the minimal spanning
tree case, the two methods of Section 7?7 can be added. Not surprisingly, DPFLB which differs from
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Figure 6: Effect of increasing the percentage of missing distances on each method. Methods are coded
by colour and symbol shape. For each percentage, several different matrices with different patterns of
randomly selected missing data were used. In the top plot, each point symbol represents the result of
one such matriz with one method; alpha blending of colour is used so that places where the values are
essentially the same will appear more saturated due to over-plotting and the blending of the colours.
In the bottom plot, only the average values are shown.

DPF only in having precomputed nonzero lower bounds for every missing distance takes essentially
the same time to complete as does DPF. More interestingly, the constructive method C is orders of
magnitude faster than all other methods.

The lower plot of Figure 6 shows the average accuracy with which the various methods recon-
struct D. On this logarithmic scale lower values indicate greater accuracy so the accuracy of every
method decreases as the percentage missing increases — largely because the numerator in (4) has
more non-zero entries while the denominator remains unchanged. For every percentage up to and
including 85% missing, each method was applied to 50 different missing at random matrices, the
exception being SDP which, because of the time required, was only applied to a single matrix each
time. Beyond 85% only 10 different random matrices were used for each of NPF and DPF. Again
the methods can be ordered: NPF is consistently most accurate and SDP consistently least accurate
across all percentages missing.
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4.2.2 Distances as a function of percentage missing

~ ~

Here we compare the reconstructed distances D = [d;;] with the actual distances D = [d;;]. Figure
7 plots the pairs (d;;, LZ]) for all ¢ < j for a few of the missing percentages. Perfect reconstruction
would be all points on the y = z line; the box in each plot is the range of the original distances and
is identical in size across all plots; scales are identical for the same percentage of missing distances.

For each case, NPF outperforms the other two — all distances appear within the box, appear
on either side of the y = z line and is nearer to this line in all cases. As the percentage missing
increases, the reconstruction of all three methods degrades. Both DPF and SDP tend to produce
ever larger distances in their reconstructions as the percentage increases. DPF does produce some
distances that are smaller than the original too. In contrast, SDP has a tendency to consistently
produce distances that are too large for every percentage, and produces much larger distances than
does DPF. Overall NPF provides the best reconstructed distances and SDP the worst.

Turning to minimal spanning tree completions, Figure 8 shows the pairs (d;j, d;;) for all i < j for
a single reconstruction for all five methods. The shapes of the first four (SDP, NPF, DPF, and DPFLB)
are surprisingly similar, each showing three different branches. All four have almost all distances
d;j > d;; and many larger than max;; d;;, with SDP producing the largest distances, followed by
NPF, then DPFLB. The last of these has larger distances than those of DPF likely because of the lower
bounds which ensure that DPFLB is MST-preserving.

In marked contrast, the constructive method C produces a completion whose distances c/l\ij are
all within the range of the true distances d;; and are much more nearly concentrated around the
y = x line. If anything, C seems more inclined to produce smaller distances than are necessary. This
might be corrected by having the vectors generated in Algorithm 2 not be generated on a sphere
uniformly but to favour directions that would increase distances to other points already in the tree.

4.2.3 Point reconstruction

Next, consider reconstructing the Iris point configuration using only the distances known in the
minimum spanning tree. To standardize the comparisons between algorithms, the Iris data is first
transformed to its principal directions from a singular value decomposition of X = UAVT as XV.
This projects each point x; onto a new coordinate system given by the new variates V1, V2, V3,
and V4. This is done by using the getConfig function on the completed distance matrices.

First, create the partial distance matrix containing only the minimum spanning tree of the
Anderson Iris dataset, as well as the related adjacency matrix (for those algorithms who require it)

R> set.seed(99)
R> #Read in the Data
R> Iris <- iris[,c(1:4)]

R> Iris <- Iris[-143,] #Iris row 143 and 102 are identical

R> #Compute a Distance Matrix
R> IrisDistance <- as.matrix(dist(Iris))

R> #Compute the minimum spanning tree
R> IrisMST <- mst(IrisDistance)

R> #Create a new Distance Matrix Containing only the mst distances
R> n <- nrow(Iris)
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Figure 7: Plots of the pairs of (dij,czl\ij) for all i < j for a single reconstruction of the Iris distance
matriz; red values are the original minimal spanning tree distances. Perfect reconstruction would
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Figure 8: Plots of (d;;, (ij) for all i < j for a single reconstruction when the matriz to be completed
contained only minimal spanning tree distances (shown in red); the y = x line indicates perfect
matching; the box in each plot shows the extent of the original distances.

R> D <- matrix(rep(NA,n~2), nrow=n)
R> diag(D) <- 0

R> #Fill in the entries in D with the Iris MST distances

R> for(i in 1:n){

R> D[IrisMST[i,1],IrisMST[i,2]] <- IrisMST[i,3]
R> D[IrisMST[i,2],IrisMST[i,1]] <- IrisMST[i,3]
R> }

R> #Create Adjacency Matrix
R> A <- matrix(rep(0,n"2),nrow=n)
R> A[which(!is.na(D))] <- 1

Now, with a partial distance matrix in hand, use each of the algorithms to complete the matrix.
Where possible, specify the embedding dimension to be four:

R> #Complete the Distance Matrix with each of the three completion methods
R> #NB: Long Run Time

R> IrisSDP <- edmc(D, method="sdp", A=A)

R> IrisNPF <- edmc(D, method="npf", A=A, d=4)

R> IrisDPF <- edmc(D, method="dpf", d=4)

R> IrisDPFLB <- edmc(D, method="dpf", d=4, retainMST = TRUE)
R> IrisC <- edmc(D, method="grs", d=4)

Finally, use the completed distance matrices to obtain a four dimensional point configuration
for each completion method using getConfig

R> IrisSDPConfig <- getConfig(IrisSDP$D, 4)

R> IrisNPFConfig <- getConfig(IrisNPF$D, 4)

R> IrisDPFConfig <- getConfig(IrisDPF$D, 4)

R> IrisDPFLBConfig <- getConfig(IrisDPFLB$D, 4)
R> IrisCConfig <- getConfig(IrisC$D, 4)
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Figure 9 shows the results of this experiment.

Of the methods considered, the point configuration produced by the guided random search algo-
rithm most closely matches the original Iris data set. The other algorithms produce a star-shaped
configuration which provide a good separation between species, but do a poor job reconstructing the
original point configuration. Of these, it seems as though the configuration that was produced using
the DPF algorithm with a specified mst-preserving lower bound provides a slightly noisier shape that
most closely resembles the original configuration. This lends credibility to the concept of retaining
the minimum spanning tree.

4.3 Distance-based dimension reduction

The statue dataset is a well known data set in dimension reduction due to the belief that it represents
a three dimensional manifold, gaining popularity due to its use in the original Isomap manuscript
(Tenenbaum et al. [2000]). It consists of 698 images in 64x64 greyscale of a bust at various angles
and lighting conditions. Viewing each pixel as a point in a given dimension, we can view this data
set as 698 point in 4096 dimensional space.

As discussed previously, some of the Euclidean distance matrix completion algorithms can also
be used for dimension reduction. In particular, the algorithms that are capable of preserving the
minimum spanning tree are most compelling, due to the clustering information contained in the
mst. To explore this idea, consider using the grs algorithm to reduce the dimension of the statue
data set from 4096 dimensions to three using only the minimum spanning tree. For comparison, we
will also use the isomap algorithm of Tenenbaum et al. [2000] using a 6-nearest neighbour graph
to be consistent with the original work. For this purpose the Isomap function in the RDRToolbox
Bartenhagen [2014] is used. The statue data is available in edmcr. Figure 10, created using Loon
(Waddell [2016]) illustrates the results.

R> library(RDRToolbox)
R> data(statue)

R> #Create partial distance matrix
R> out <- spantree(statue.dist)

R> statue.mst <- matrix(NA,nrow(statue) ,nrow(statue))
R> diag(statue.mst) <- O

R> for(i in 2:nrow(statue)){

R> statue.mst[i,out$kid[i-1]] <- out$dist[i-1]
R> statue.mst[out$kid[i-1],i] <- out$dist[i-1]
R> }

R> #Dimension Reduction by isomap
R> out.isomap <- Isomap(statue.dist,3,6)

R> #Dimension Reduction by grs
R> out.grs <- grs(statue.mst,3)
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Figure 9: Iris data point configurations reconstructed in the four dimensions given by each config-
uration’s principal coordinates. The three species of flower are distinguished both by colour and by
shape of the point symbols.
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Figure 10: The result of dimension reduction to three dimensions by running isomap & grs on the
statue manifold data set in 4096 dimension.
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There is no reason to expect these images to be “matching” in any way - and they don’t -
especially since Isomap is making use of far more information than grs. However, there are certainly
similarities in the way that the faces were grouped. We can see in both, that darker faces tend to
be grouped together - in isomap, these are placed on the far right of the image, while in grs, they
are placed in the center. There is also an obvious fade from these dark faces, to lighter faces - in
isomap, this occurs from the right of the image to the left of the image along the top, while in grs
this occurs from the center of the image in both the right and left directions. There is also clear
grouping in the orientation of the bust in both images.

Also, note that while isomap is capable of producing only a single configuration, grs is capable
of producing many such configurations, allowing for the complete exploration of the mst-preserving
solution space.

4.4 A simple sensor network localization problem

Consider a network containing four anchors, with known positions, and six sensors, where distances
between sensors (and sensors and anchors) are known only they are within a radio range of 0.25 to
each other. Since the anchors have known position, the distances between anchors are also known.

R>#Anchor Positions
R> anchors

[,1] [,2]
[1,] 0.5131 0.9326
[2,] 0.3183 0.3742
[3,] 0.5392 0.7524
[4,] 0.2213 0.7631

R>#Radio Range
R> R
[1] 0.25

R>#Distance Matrix

R> D
(,11 (.21 [,3] [,4] [,8] [,6] [,71 [,8] [,9] [,10]
[1,] 0.00 NA 0.20 NA 0.06 NA 0.02 0.23 0.00 0.09
[2,] NA 0.00 0.05 NA NA 0.05 NA 0.21 0.22 NA
[3,] 0.20 0.05 0.00 NA NA O0.12 NA NA O0.16 NA

[4,] NA NA NA O.00 NA NA NA 0.23 NA NA
[5,] 0.06 NA NA NA 0.00 NA 0.11 0.09 0.06 0.02
[6,] NA 0.05 0.12 NA NA O.00 NA NA NA NA

o

[7,] 0.02 NA NA NA O0.11 NA 0.00 0.35 0.03 0.11
[8,] 0.23 0.21 NA 0.23 0.09 NA 0.35 0.00 0.19 0.16
[9,] 0.00 0.22 0.16 NA 0.06 NA 0.03 0.19 0.00 0.10
[10,] 0.09 NA NA NA 0.02 NA 0.11 0.16 0.10 0.00

Note the form of the distance matrix D. Rows/columns 7-10 correspond to the distances between
the anchors and the sensors (in rows/columns 1-6), and the other anchors (rows/columns 7-10).
Since the anchors have known positions, the distances between anchors is always known - there are
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no unknown entries in the lower right 4 x 4 corner. Distances between anchors and sensors, on the
other hand, are known only if the sensors are within the radio range of R. This problem can be
solved using edmc as follows

R> edmc(D, method="snl", d=2, anchors=anchors)
\end{CodeInput}
\begin{CodeQutput}
[,1] [,2]
[1,] 0.4359152 0.7483225
[2,] 0.3870077 0.6819505

Of the six sensors to be placed, the algorithm was only able to localize the positions of two
sensors. For a relatively sparse matrix, this is to be expected. This problem can also be run
as an “anchorless” problem, in which case it is treated similarly to the edmc problems considered
previously. Unlike the other algorithms however, snl returns the positions of only those sensors that
were localized, resulting in the potential of only a partially-completed distance matrix. Running
the example above as an anchorless problem results in the following

R> edmc(D, method="snl", d=2,anchors=NULL)

[,1] [,2]
[1,] 0.016934663 0.048956965
[2,] -0.004757603 -0.030583106
[3,]1 -0.007601688 0.156167720
[4,] 0.007282167 -0.193730966
[5,1 0.041458581 0.027923602
[6,] -0.053316120 -0.008734216

In this case, of the ten sensors, the algorithm was able to localize six, and their positions are
given in the returned matrix X.

4.5 Reconstructing a protein molecule

To demonstrate the syntax and illustrate the output variables of sprosr, consider reconstructing a
demo protein molecule from CYANA (Giintert [2004]. The data has been made available in edmcr.
As the protein molecule is relatively large, only the first five positions are shown as output.

R> data(sprosr_upl)
R> data(sprosr_aco)
R> data(sprosr_seq)

R> out <- sprosr(sprosr_seq, sprosr_aco, sprosr_upl)

out$X
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The individual elements of the report output variable can be accessed by appending the $
operator to the element desired. The first five rows (where appropriate) of each element are displayed
below.

out$report$eq_err
out$report$lo_error
out$report$up_error
out$report$chiral
out$report$hbond

out$report$dihed

5 Methodology

As before, D* represents a squared Euclidean distance matrix, now with some entries possibly
unknown. Let A be an adjacency matrix such that a;; = 1 if d;; is known, and 0 otherwise. In this
way, we can make use of the Hadamard (element-wise) product D* o A whose only non-zero values
will be the known entries in D*. This allows the completion problem to be stated as follows:

Aj = argmin ||A o (D* — A)||% (5)
A€D,

where the norm taken is the Frobenius Norm, defined as |||M||r = \/trace(MTM). With a solution
A representing a completed (square) Euclidean distance matrix, we need only find a Gram matrix
G = XX which can be done using the linear operator K defined previously. With a Gram matrix,
a simple eigendecomposition allows us to obtain a point configuration.

5.1 Semidefinite programming algorithm

One of the classic algorithms in the Euclidean distance matrix completion literature is that of
Alfakih et al. [1999], who propose a semidefinite programming approach to solving the problem. To
do so, they modify equation 5 to work with a positive semi-definite matrix S instead of a squared
distance matrix D*.

Alfakih et al. [1999] show that a squared Euclidean distance matrix D* can be transformed to
a positive semidefinite matrix S (and vice-versa), using the following operators:

To(D*) = VIT(D")V = —%VTD*V
Ko(S) = K(VSVT)
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where P = VV7 | where V € R"*("~1 whose columns form an orthonormal basis for the subspace
{z € R" : zTe = 0}, satisfying the following two properties:

vi1i=0
viv=1,_,

These operators have been implemented in edmcr as the edm2psd and psd2edm functions. In
each, a default value of V has been provided which satisfies the conditions specified above. However,
the user is free to provide their own V as input as well.

Equation 5 can be written in terms of a positive semi-definite matrix S as follows:

S = argmin ||A o (D* — K,(S))||% (6)
Ses

The solution for this problem is a squared distance matrix, Ay = K, (Sp). This formulation is
the basis of the implementation of Alfakih et al. [1999], who show that the search space S, ; can
be expanded to the less restrictive set P |, the set of real (n — 1) x (n — 1) positive semi-definite
matrices, allowing the problem to be solved using well known methods in semi-definite programming.
Thus, the problem can be formulated as

Minimize f(S) = ||A o (D* — Ky (8S))|/%
subject to:  a(S) =c
S =

)

where the constraint a(S) = c allows for the constraint that the known entries in S be preserved
to be enforced during completion. This formulation results in a convex search space (Alfakih et al.
[1999]), thus the minimum achieved is by definition the global minimum. The convexity of this
algorithm does come at a price, as the run time for the algorithm is on the order of O(n?), which
makes it very slow for even moderately sized problems. The embedding dimension can also not be
specified, resulting in completions with large embedding dimension.

5.2 Non-convex position formulation

Fang and O’Leary [2012| propose an algorithm which works with the point configuration X instead
of the squared distance matrix D*, allowing for the embedding dimension of the completion to
be specified. In doing so, the run time of the algorithm is on the order O(np), where p is the
dimensionality of the point configuration, which comes at the cost of convexity of the algorithm. In
considering the point matrix X, Fang and O’Leary [2012] solve a modified completion problem

Minimize [|A o (D* — K(G))||% (7)
Gegt

subject to: rank(G) = p.

Recall that a Gram matrix G can be transformed to the space of squared distance matrices using
the IC operator. Also note that the rank of the Gram matrix has been fixed in the formulation,
allowing for the desired completion dimension to be specified (which was an issue with the SDP
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formulation). Fixing the embedding dimension p allows the problem to be written in terms of a
point configuration X

Minimize fap(X) =||A o (D* - £(XX"))||% (8)
XeRnxp

Due to the lack of convexity of the search space, Fang and O’Leary [2012] introduce a number
of techniques in an attempt to give the algorithm a higher chance of reaching the global minimum.
First, a random start is employed for each run. Through empirical evidence, Fang and O’Leary
[2012] randomly start their algorithm by creating a pre-Euclidean distance matrix F= [ﬁ-j], where

= fij

where f;; is the shortest path between node i and j using the known distances, and s;; ~ T'N(1.5,.3),
TN being a truncated normal distribution with domain [1,k;;|, where k;; is the number of segments
in the shortest path between nodes ¢ and j. Note that a pre-distance matrix is a matrix F that is
both symmetric and hollow.

Also through empirical observation, Fang and O’Leary [2012| implement stretching, which is a
numerical scaling of the point configuration X generated from the spectral decomposition of F. For
a vector s, stretching would result in the matrix sX. While it is noted that there is no theoretical
basis for stretching in this context, Fang and O’Leary [2012] did observe an increased chance of
landing on the global minimum in some instances where it was employed.

Finally, and perhaps most importantly, is the implementation of dimension relaxation. By
artificially inflating the dimension of the point configuration, the NPF algorithm may be able to
reach the global minimum with a higher probability. For instance, in the higher dimensional space,
there may be a way to pass between local minima that would have been converged on in lower
dimensional space on our way to the global minimum. Fang and O’Leary [2012] address three issues
in implementing their dimension relaxation scheme. We present those issues here, and illustrate
how they are handled in edmcr.

1. What is the largest dimension that should be considered? This is handled by the input variable
dmax in edmcr. The default value of the highest dimension is set to be n — 1, where n is the
number of nodes in X. For instances where this is very large, a smaller dimension can be
chosen.

2. How fast should the dimension be reduced? This is handled using the input variable decreaseDim
in edmcr. Generally, a slower rate of reduction is preferable, however this results in a longer
computation time. The largest jump allowable is to go directly from the higher dimensional
space to the lower dimensional space, but Fang and O’Leary [2012] show that this results in
inaccurate completions. The default is set to be 1.

3. How should the dimension be reduced? Fang and O’Leary [2012] provide two solutions:

e Principal Component Analysis

e Nonlinear Dimension Reduction

This is handled using the input variable dimMethod, which takes one of “Linear” or “NLP”, with
the default set to “Linear”.

While the first method is well known - simple multidimensional scaling - the second dimension
reduction technique requires some discussion. To decrease from dimension d’ to d, the nonlinear
dimension reduction is done through optimization, where the following program is solved:
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Min&vmize || Wl |3
subject to:  fa,p(W) <0

where W = [Wy, Ws] € R™ 4" is a configuration in d’-dimensional space and W; has dimension d,
where d < d'.

5.3 Dissimilarity parameterization formulation

The problem in Trosset [2000]is formulated by focusing on the set:

ColAo A ) ={A€Cr:AoA=AocA*"} 9)

which contains all of the completions of the partial dissimilarity matrix A o A*, and where C,, is the
set of n x n dissimilarity matrices. Next, let D, (p) denote the n x n Euclidean distance matrices
from p dimensional point configurations.

Then, a solution to the p dimensional embedding problem exists only if C,(AoD*)ND,, (p) # .
This intersection is shown to be non-empty in Trosset [2000] if and only if the following minimization
has a global minimum of zero

Migimize |G - T(A)|} (10)

subject to: G € S and rank(G) <p
A €C,(AoD")

Note that while this formulation is similar to the others we have considered, there is a large
distinction in that that the masking matrix A and the known distances A o D* now appear as part
of the constraints given by the set of allowed dissimilarity matrices Cp, (A o D*). This will allow us
to impose restrictions on the unknown values.

Letting

Co(A", AY) ={A €Cp: 0f; <0y < 6

where AL = [5{3] and AV = [55} are both in C,, we see that formulation (10) is a special case of
C e . )
Migigize |G — T(A)|} (11)

subject to: G €S, and rank(G) <p
A cC, (Al AY)

where A" and AY are fixed matrices chosen such that A o A¥ = A o AV. That is, when di; is
known, the upper and lower bounds are set equal to d;;. Whenever a;; = 0, then the default value
of the bounds are 6iLj =0 and (5% = +o00. An advantage of this formulation is that tighter bounds
can be imposed on the unknown d;;, restricting the space of possible solutions. For example using
the structure of the graph given by A, upper bounds 55 can be determined for all unknown 4;; by
simply invoking the triangle inequality.

Trosset [2000] use the L-BFG-S (Zhu et al. [1994]) optimization algorithm to efficiently solve
problem (11), which we will denote by DPF to emphasize its dissimilarity parameterized formulation.
Again, this formulation is non-convex. Similar to Fang and O’Leary [2012], Trosset [2000] introduces
a random start algorithm to increase the probability of convergence to the global minimum.
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5.3.1 Retaining the minimum spanning tree

As mentioned previously, it may be desirable to retain the minimum spanning tree during the
completion of a Euclidean distance matrix. Since the dissimilarity parameterization formulation
allows for a non-zero lower bound to be implemented for all known d;‘j, if a lower bound D7 can
be found such that for any unknown djj;, having di; > dj = results in the preservation of the
underlying minimum spanning tree. Such an algorithm is presented in Algorithm 1. This algorithm
is implemented in edmcr in the mstLB function, which takes a (partial) Euclidean distance matrix D
and returns a matrix containing the mst-preserving lower bounds for each d;;, regardless of whether
d;; is known.

Algorithm 1 MST lower bounds algorithm
Structures
tree: T = (V, E) is a spanning tree with vertex set V = {v} and edge set F = {e};
edges: e will be a set of two indices {4, j} = nodes(e) and have a weight wt(e) = d;; > 0;
Al = [55] is the matrix of dissimilarity lower bounds to be determined;

procedure SPLITTREE(T, split Edge)
restEdges < edges(T) — {splitEdge}
(v1,v2) « nodes(splitEdge)
Vi« {v1}; E1 < {e € restEdges : v1 € nodes(e)}
Vo < {v2}; E2 < {e € restEdges : va € nodes(e)}
while restEdges # @ do
e + restEdges|[1]
restEdges < restEdges — {e}
if nodes(e) Nnodes(E1) then
i+ FE1 U {6}
else
Es +— Esy U {6}
end if
end while
Vi < Vi Unodes(E1); Va < Vo Unodes(E2)

> T is a spanning tree
> Remove splitEdge from the edge set of T'

> F1 could be empty
> Fa could be empty

return {11 := (V1, E1), Ts = (V2,E2)}
end procedure

procedure MSTLowerRBounDs(T, A%)
if edges(T) # @ then
mazEdge  argmaX, ¢ qges() Wi(€)
Trees < SPLITTREE(T, max Edge)
for v, € nodes(Trees[T1]) do
for vy € nodes(Trees[Ts]) do
Alvr,v2] < AF[vg, v1] < wt(mazEdge)
end for
end for
for T'ree € Trees do
Al « MSTLowrrBouUNDS(Tree, A¥)
end for
end if
return A"
end procedure

> Return the two trees

> Recursively determines the lower bounds
> Ensure there are edges left in T’
> Split on the biggest edge

> Set the lower bound

> Recursively get lower bounds

> Return the matrix of lower bounds

5.4 Guided random search

In the guided random search algorithm, since only distances of the minimum spanning tree are
known, the search space of possible completions is quite large. To exploit this, we simply construct
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a completion by locating points x; € RP (p being the embedding dimension) one at a time, while
checking that the (partial) minimal spanning tree is preserved as each point is added.

More formally, we define X, = [xy,... ,xk]T to be a k x p matrix whose rows are point locations
X1,...,Xir € RP. The locations are chosen so that the minimal spanning tree from the Euclidean
distances of these k locations in RP? is identical to that of k& connected nodes from the minimal
spanning tree A oD. The matrices X1, Xo,...,X,, are constricted by growing (and preserving) the
minimal spanning tree one node at a time. The distance matrix from X,, provides an mst-preserving
completion.

The construction begins by choosing the node of maximal degree from the minimal spanning
tree of A o D and locating it at x; = 0. The second node to locate will be that of maximal degree
amongst those connected to the first. If the dissimilarity between these two nodes is, say, d12, then
the location of x5 is chosen at random from a uniform distribution on the surface of a sphere SP~!
in R? of radius /12 centered at x; (assuming squared distances for the completion matrix). The
two points x1 and x5 are trivially a subtree of the minimal spanning tree. The remaining nodes
with connections to x; are then added in similar fashion.

As each location is proposed, its (squared) distance to all other placed points is calculated and
the resulting distance matrix checked to see whether the minimal spanning tree (so far) is preserved.
If it is, the point is accepted; if not, points are generated until one is acceptable. When new nodes
are added, they are chosen amongst those without locations that share an edge in the minimal
spanning tree with nodes already located. At each step, available nodes of highest degrees are
added before nodes of low degree in A o D; since these are harder to place, they appear earlier.

Algorithm 2 describes the method in detail, which we denote by C. More technical details of this
algorithm can be found in Rahman and Oldford [2016].

6 Concluding remarks

Through a series of motivating examples, we introduced the problem of Euclidean distance matrix
completion, and its use in a number of fields. The R package edmcr, and the main function edmc
containing several well known edmc algorithms, were the introduced to solve these problems in R.

First, the generic Euclidean distance matrix completion problem was considered in which a given
distance matrix with some unknown distances is given. The target solution is to then complete the
matrix, while retaining a proper Euclidean distance matrix. For this purpose, three algorithms
were introduced, the sdp algorithm of Alfakih et al. [1999], the npf algorithm of Fang and O’Leary
[2012], and the dpf algorithm of Trosset [2000]. Each of these algorithms were shown to have their
own strengths and weaknesses through simple examples.

Next, the sensor network localization problem was considered, where the goal was to to localize
the positions of sensors with unknown positions. There is two major differences between this problem
and general Euclidean distance matrix completion problem - there is a number of anchor points with
known positions, and distances are only known between sensors and between sensors and anchors if
they are within some radio range R in Fuclidean distance. To solve this problem, the sensor network
localization algorithm of Krislock and Wolkowicz [2010] was implemented in the snl function.

Next, the potential role of Euclidean distance matrix completion in dimension reduction was
considered, drawing comparisons to the popular Isomap algorithm. Instead of filling in unknown
distances with shortest paths, these distances were instead treated as being unknown, resulting in
a partial Euclidean distance matrix. Euclidean distance matrix completion algorithms were used to
complete the partial distance matrix. It was shown that the guided random search algorithm of Rah-
man and Oldford [2016] and the mst-preserving alteration of Trosset [2000] performed adequately
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Algorithm 2 Constructive Completion Algorithm
Structures
Tv = (V, E) is a tree spanning the vertex set V = {1,...,n} with edge set E;
A = [ai;] and A" = [a];] are n X n symmetric adjacency matrices;
A = [d;;], is an n X n symmetric squared dissimilarity matrix;
X is an n X p point configuration matrix to be constructed.

procedure MSTCONFIGURE(A, A, maxIn = 100, maxOut = 100)
nTries < 0; Converged? < FALSE; Ty < (V, E) < tree(A);

repeat
nTries < nTries + 1
X+ 0; A<+ 0 > Initialization
i <+ arg max;cy degree(node(j)) > Start at any maximal degree node ¢ in Ty
P+ {i} > Initial vertex set
Tp < (P, ) > Root the tree
Grow? < TRUE > Keep growing flag

while Grow? do

(g, B) < GETBUDS(TP,Tv) >grow BCV,BNP=0 fromgeTp
for b € B do
(Tp, A, A, X, Converged?, Grow?) < GROWTREE(g,b, Tp,Tv, A, A, X, maxIn)
end for
end while
until nTries > max0Out or Converged? == TRUE
return (X, Converged?) > Return the point configuration

end procedure

procedure GROWTREE(%, j, Tp, Tv, A, A, X, maxTries = 100)

Placed? < Converged? <— FALSE; nTries <— 0; A" < A; A"+ A; > Initialization
repeat
nTries <~ nTries + 1
z ~ Uniform(SP™ 1) > Generate a random direction vector
X; < X; +2 X \/E > Propose the point
for k£ € P do > Try values for all placed nodes

8k 4= Oy < |1xn — x|
aj <+ ajp; <1

end for
if MST(A* 0 A™) C Ty then Placed? < TRUE > Preserves the MST?
end if

until Placed? or nTries > maxTries

if Placed? then > Accept the point

X[j,] < x;7; A+ A%, A« A%
nodes(Tp) + PU{j}; edges(Tp) + edges(Tr) U{(i,7), (j,%)}
if Tp =Ty then Converged? < TRUE
end if
end if
return (Tp, A, A, X, Converged?,Placed?)
end procedure

procedure GETBUDS(Tp,Tv)

B+V-P

E.={(i,j):i1€ P,j € B,(i,5) € edges(Tv)} > edges in Ty connecting P and B
g < argmax,.p#{e:e€ E, and i€e} > g € P having most connections to B
B+« {b:(g,b) € E.} > reduce B to nodes connected to g

return (g, B)
end procedure
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in this regard using both the Iris and statue data sets.

Finally, the problem of molecular conformation was considered. To solve this problem, the
function sprosr was introduced, an R implementation of algorithm developed by Ramandi [2011].
Through the use of a simple demo molecule provided by CYANA, the specialized input syntax and
the information provided as output were demonstrated.

edmcr represents the first attempt at Euclidean distance matrix completion, sensor network
localization, and molecular conformation in R, significantly broadening the range of problems that
can be solved.
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