
Mental Models and Interactive Statistics:

Design Principles

R.W. Oldford

Department of Statistics & Actuarial Science

University of Waterloo

Abstract

The debate about the appropriate computer human in-
terface { direct manipulation versus command line { is
an old one and a false one. That it regularly arises is a
consequence of inappropriate software design. An ideally
designed system would freely mix the two.

D.A. Norman's (1988) Design of Everyday Things is
condensed to �ve essential principles which are applica-
ble to the design of interactive statistical systems. These
are described and illustrated by the design of the exper-
imental statistical software system called Quail. While
the principles apply types of interface they are illustrated
primarily for a direct manipulation one.

Examination of these principles continually points to
the value of modelling statistical concepts directly in the
base software system. It is argued that such a system
would be well positioned to freely mix interface styles to
best suit the analysis.

1 A non-debate

Like most debates, that purported to exist between com-
mand language and direct manipulation interface propo-
nents is an arti�cial one, constructed only to provoke dis-
cussion about the merits and scope of each position. The
position at either extreme is untenable; so the challenge
becomes to determine the lay of the middle ground.

Collectively, we have been exploring this middle
ground since the invention of the �rst digital computer.
The history of programming languages is the history of
increasingly powerful computational abstraction. Where
once we manipulated binary digits in registers, we now
manipulate objects, procedures, and graphics which,
while ultimately still only stored binary digits, are taken
to represent all manner of things from architectural de-
signs, to mathematical theory, to small virtual worlds.

The challenge to statistical computing is to determine
the appropriate abstractions for statistical design and
analysis, to �gure out how to implement them computa-

tionally, and to develop interactive tools which facilitate
their use.

Meeting this challenge requires careful design, both of
appropriate programming abstractions and of graphical
user interface. The goal is to seamlessly integrate the
two approaches.

2 A di�cult game

The following rather di�cult two person game is based
on combinatorics but neatly illustrates a number of use-
ful design principles:

1. Begin with the set of non-zero digits, f1, . . . , 9g.

2. The two players take turns selecting a digit from the
set.

3. Once selected, a digit is removed from the set of
available digits making it unavailable for future se-
lections by either player.

4. The �rst player to have three digits which sum to
15 is the winner.

5. The game ends in a draw if all of the digits have been
selected and neither player has three digits summing
to 15.

Imagine playing the game. The goal of the game is
simply de�ned. The moves are relatively straightfor-
ward. Yet the game is di�cult to play. Why?

Several factors contribute to the di�culty. To begin
with, the game is introduced and described in such a way
that one has the perception that it is di�cult even before
playing it. The gratuitous mathematical1 description es-
pecially heightens this impression for non-mathematical
readers.

Playing the game reinforces this perception. At each
turn at least three sets of information need to be man-
aged: your set of selected digits, your opponent's, and

1This is the principal distinction from the game as described in
Norman (1988, pp. 126-7)



those remaining. Each turn requires a choice between
several competing options. Each option needs to be ex-
plored one or two moves further out in order to assess
its merits.

The slow, serial nature of conscious thought and the
known limitations of short term memory make manage-
ment of this complexity di�cult for most people. We
need to introduce some tricks to help us out.

The �rst thing most people will do is write the set of
numbers down and record the selections of both players.
Next, writing down all possible triples of digits summing
to 15 helps in determining the possible outcomes of dif-
ferent moves.

Further analysis of the possible triples suggests the
following remarkable tabular arrangement (from Nor-
man, 1988, page 126):

8 1 6

3 5 7

4 9 2

Not only do the three rows, three columns, and two
diagonals each sum to 15 but they actually exhaust the
set of triples which do! Moves can be identi�ed directly
on the display by, say, circling our selections and crossing
out those of our opponent. The digits are now super
u-
ous and the object of the game is to get three circles (or
crosses) in a straight line { tic-tac-toe!

By building the structure of the game into the display,
the complexity is substantially reduced and the players
are free to concentrate more on the play and on devel-
oping winning strategies.

Tic-tac-toe is an example of a wide and deep structure
{ many choices at each turn, many turns in sequence.
Figure 1 shows the essential structure of the game when
the �rst player (O) selects the middle square on the �rst
turn. From this initial move, player one can now follow
a strategy which ensures that the game ends in either a
draw or a win.

3 Interactive statistical analysis

If we imagine that the equivalent of a player's turn in an
interactive statistical analysis consists of a single inter-
action with the computer (a command, a mouse click, or
any other communication with the underlying program),
then the structure of an interactive statistical analysis is
certainly a wide and deep one. Even so, it is a structure
which di�ers fundamentally from that of tic-tac-toe.

Figure 1: Tic-tac-toe: A wide and deep structure.

The typically exploratory and experimental nature of
interactive statistical analysis ensures that its structure
is far wider and deeper. It is di�cult to imagine that we
could a priori determine the length of the longest possi-
ble path in an analysis let alone identify all conceivable
actions an analyst might wish to take at any given step.
This open-ended nature means that any computational
environment which presupposes a closed structure (like
that of tic-tac-toe) will eventually overly constrain the
analyst.

Designers of statistical software often make the er-
ror that the closed world approach is su�cient. Exam-
ination of the Interface proceedings from the 1970s will
reveal that command line systems began this way but
soon had statisticians hitting the edges of the system's
possibilities. To quote but one source:

\Even the statistician's operating language,
context and syntax, became formed from the
names of available programs and functions. In
order to regain his individuality, it became nec-
essary for the thinking statistician to teach
computers to do his wishes . . . That is, he had
to learn to program or hire a programmer."
. . . Guthrie (1975, pp 8-9)

In fairly short order, `macro' capabilities which permit-
ted programming were added to most command lan-
guage systems.

Similarly, direct manipulation interfaces are often �rst
built for either wide and shallow structures or narrow
and deep ones. A simple example of the former would



be a pop-up menu from which to choose a singe item.
A more complex example would be a stand-alone inter-
active graphic { such as a brushable scatterplot matrix
or a grand tour type dynamic scatterplot. An example
of a narrow and deep structure would be the sequential
prompting for information preparatory to proper execu-
tion of some task.

Direct manipulation interfaces can be made to work
very well for either kind of structure (wide and shallow
or narrow and deep). But, as with the early command
line interfaces, if this is all that the user can do then the
software soon becomes overly restrictive.

When it becomes apparent that the interface does not
meet perceived needs, or perhaps in response to users re-
quests for certain functionality, designers often give into
creeping featurism, the �rst of D.A. Norman's (1988)
\two deadly temptations". The result is that `features'
are added to the existing design which, if not carefully
done, quickly add to its complexity (Norman, 1988, be-
lieves that the complexity grows with the square of the
number of features). The resulting more complicated de-
sign can be rendered less useful than the original simpler
design.

Creeping featurism is to be avoided. If it cannot, the
only solution is in a careful organization of the design: to
modularize, to divide and conquer. Gratuitous addition
of features adds unneeded complexity.

Sometimes complexity is introduced intentionally {
as if it were desirable itself. This is Norman's second
deadly temptation { the worshipping of false images. In
a graphical user interface we might see all features made
available at once with gratuitous use of multiple colours,
buttons, knobs, etc. The false image is that a complex
interface implies technical sophistication, when the real-
ity is that complexity leads to confusion. Again the best
advice is avoidance { keep things as simple as possible.

Interactive statistical analysis is substantively more
di�cult than the game presented at the beginning of
Section 2. Yet it is hoped that software can be designed
which, like the tic-tac-toe representation of Section 2,
will considerably simplify the interaction between user
and system. Complexity is to be managed by the system
so that the user is freed to concentrate on the analysis.
Achieving this is no easy task.

A mixed strategy of direct manipulationand keyboard
commands is desirable. Moreover, because some tasks
will always be outside the existing design, programmatic
control needs to be available to the user. Programmatic
control can come from either the keyboard or from di-
rect manipulation { an early statistical example of some
programming functionality in a graphical user interface
can be seen in Desvignes and Oldford (1988) { although

the keyboard is likely to remain the programming input
device of choice.

Having the user able to concentrate on the analysis
implies that interaction with the system needs to be in
terms which are familiar to an analyst as opposed to
a programmer. Statistical analysis concepts must form
the fabric by which direct manipulation interfaces and
text-based programming are seamlessly integrated. This
is the fundamental design challenge for interactive sta-
tistical systems.

4 Design Principles

Good design follows identi�able principles { whether it
is the design of a door handle, a video cassette player,
or a teapot. These principles apply no less to the design
of interactive statistical analysis systems.

In his book, The Design of Everyday Things, D.A.
Norman (1988) develops several principles of good (and
bad) design which he illustrates using objects from ev-
ery day life. These can be reduced to the following �ve
principles of design:

M. Match mental models

S. Simplify structure

C. Constrain

E. Expect error

F. Failure? Fix on a standard.

The principles are discussed in turn below and illus-
trated with the design choices of the interactive statisti-
cal system called Quail (see Oldford et al below to access
the software, and Oldford, 1998, for some further detail
on Quail). Figure 3 shows the screen of a typical session
in Quail.

M. Match mental models

The designer has a certain model for interactive statis-
tical analysis in mind which he/she tries to capture in
the design. This design is then implemented as a work-
ing system (see Figure 2). The user too has a model
for an interactive statistical analysis in mind. Working
with a particular system forces the user to construct a
working model of that system, which can be quite dif-
ferent from both his/her general mental model and that
of the designer. The only communication between the
mental models of the user and the designer is through
the implemented system.

Ideally these two models should match and the system
implementation should follow them closely. The system



Figure 2: Matching mental models.

would then be more immediately useful to the analyst.
Moreover, it would be more easily extended to new areas
by the user; the step from user to designer would be
small.

To better match models, Norman (1988) recommends
the designer:

1. Use existing common knowledge,

2. Communicate the model,

3. Use the model, and

4. Reinforce the model.

There are two types of existing knowledge common
between the designer and the user of a statistical analysis
system. The �rst is the everyday sort such as switches,
push-buttons, dials, and gauges which can be mimicked
to good e�ect in a visual display. The familiarity of the
visual representation makes its use obvious to the user.

The second is the knowledge about statistical analysis
which, although specialized, is shared by both user and
designer. In the early command line systems this was
evident primarily in the names of commands. In early
direct manipulation interfaces, it is �rst evident through
common interactive statistical graphics.

Strictly speaking, it is not necessary to make maximal
use of the existing common knowledge. If the designer
is successful in communicating, using, and reinforcing
the model then the user can be trained to adopt it. In
the extreme, a user who learned about statistical analy-
sis solely by interacting with a single statistical system
might very well have a mental model essentially coin-
cident with that of the designer. When computational
resources are scarce this is particularly desirable.

Ever faster processors and cheaper memory means
that we can now a�ord to devote more resources to
system software which better models existing statisti-
cal knowledge. Matching fundamental system compo-
nents directly to the basic structures of statistical analy-
sis maximizes use of the specialized knowledge common
between designer and user.

This approach has important consequences. First,
communicating the system model to a statistically
trained user should be straightforward. Second, the de-
signer writing code in terms of these fundamental compo-
nents is actively exercising the model and providing the
user with easily understood means to tailor the system
to his/her needs. Third, such use reinforces the model.

Not surprisingly, there is abundant structure in sta-
tistical knowledge relevant to interactive analysis. Many
statistical concepts are quite naturally represented as
data structures, for example:

� Datasets, variates, cases, . . .

� Random variates, parameters, likelihoods, . . .

� Response models, linear models, smooths, . . .

� Fitted models, estimates, . . .

� Borel Sets, measures, probability measures, . . .

� Mathematical functions, survivor functions, state
transition intensity functions . . .

Object-oriented programming seems to be particularly
well-suited to modelling these concepts. Classes are used
for each of these structures with inheritance hierarchies
which follow the so-called `IS-A' relations as in a cauchy
distribution IS A student distribution with one degree of
freedom and hence the class cauchy-distribution appears
as a sub-class of the student-distribution class. The rea-
soning is that a user who has an instance of a cauchy-
distribution should expect the same functionality from
it as any other instance of a student-distribution with
some behaviour specialized (e.g. moment calculations).
In this way the known relations between statistical con-
cepts is modelled by the de�nition of the classes and class
hierarchies.

Generic functions and specialized methods are also
useful in modelling statistical concepts which might not
be represented in a hierarchy. In Quail for example, the
generic function random-value applies equally to any in-
stance of a distribution and to any dataset. This is so
that the user may regard the dataset as an empirical dis-
tribution, as in resampling procedures, without changing
its class to some kind of distribution.

Nothing about matchingmental models is directed ex-
clusively at either programming language interfaces or at
direct manipulation interfaces but rather is directed at
both. The fact that so many statistical concepts can be
directly modelled as data structures has an important
consequence for this approach. Namely, graphical user
interfaces can be built by laying out visual displays of
the statistical objects themselves { direct manipulation



Figure 3: A typical screen shot from Quail.

and programmatic or command line interfaces use the
same structures as arguments. The information relevant
to both is stored within the object so that the transition
between the two interface styles is relatively straightfor-
ward.

In Quail this is accomplished by having every graphic
component maintain a pointer to the relevant statistical
object being displayed { this is its viewed object (e.g. see
Hurley and Oldford, 1991). A �tted line, for example,
would have a pointer to the �t-object which it visually
represents in a plot. Conversely, every statistical object
in Quail returns a graphics object when asked for its
display (see Oldford, 1998, 1997 for more discussion).

S. Simplify structure

The second principle is to simplify structure wherever
possible. Here Norman (1988) recommends that we

1. Hide complexity,

2. Provide appropriate feedback,

3. Automate where possible; where not, change the
nature of the task, and

4. Allow the user to add complexity.

It is the nature of interactive statistical analysis that
it be complicated and the typical screen-shot from Quail
(see Figure 3) seems to reinforce the point. There we
see �ve separate windows. Four of these windows are
graphic windows { a 2d scatterplot, a 3d rotating scatter-
plot, a scatterplot matrix, and an interactive list of cases.
Each of these provides some facility for direct manipula-
tion. The �fth window (in the bottom left corner of the
display) is a type-in command line compiler/interpreter
where arbitrarily complex programs can be written and
subsequently used (the question mark is the prompt).
The commands which produced the remaining four win-
dows could, for example, have been typed in at this win-
dow and executed (although the plots for this session



were produced entirely without typed input).
The complexity seen here is, in a certain respect,

unavoidable, as it represents complexity that the user
chooses to see simultaneously. Otherwise some of the
windows could have been closed by the user.

Even so, much complexity is hidden away. The
dataset being examined, for example has 15 di�erent
variates measured on each of 100 observations. Each
plot maintains a pointer to the entire dataset. More-
over, each plot is itself made up of several pieces { axes,
labels, point-clouds, titles { each one of which maintains
a pointer to its own appropriate viewed-object. This
complexity is hidden until accessed by the user.

At the top of the screen in Figure 3 is the Quail
menubar. Each word in the bar (`File', `Edit', etc.) is
the title a pull-down hierarchical menu. Figure 4 shows
part of the `Quail' pull-down menu which provides gen-

Figure 4: The pull down Quail menu.

eral access to information { help, tutorial examples, etc.
The `Plots' menu illustrates the use of both recom-

mendations 2 and 3. If, for example, the `Scatterplot'
menu item was selected as shown in Figure 5 then one of
three things would automatically occur depending upon
the display context.

The top-most window is always displayed slightly dif-
ferently than the other windows; in Figure 3 the top-
most window is titled `2D-PLOT-0'. If the top-most win-
dow is the type-in window (as would be the case at the
beginning of any session) then the user is �rst prompted
for the dataset to be displayed in the scatterplot and
then asked to select two variates from those associated
with that dataset. If on the other hand, the top-most
window is already a plot of some sort, then it is assumed
that the user intends the new scatterplot to be of the
same data and so he/she is prompted only for the vari-
ates to be used. Finally if, as is the case in Figure 3,
the top-most window is a plot with a subset of the data
selected (shown as gray square boxes near the cursor in

Figure 5: The pull down `Plots' menu.

Figure 3), then after the user is prompted to select vari-
ates a scatterplot is produced for the selected subset of
the data.

Highlit points in a scatterplot mean the user has fo-
cused attention on them and this is assumed to be the
case for the automated functionality. When the new
scatterplot of the subset comes up, all points will be
highlighted since they were the ones selected in the orig-
inal plot. This clear and immediate feedback to the user
should help them understand the system model which
the automation has presupposed. A considerable pay
o� occurs for example, when scatterplots of a subset of
the data are desired separated and properly arranged
according to the value of one or more categorical vari-
ates (including point colour). Simply highlighting the
desired subset and selecting `Scatterplot by' from the
`Plots' menu produces the desired result.

Considerable complexity can be added by the user ei-
ther programmatically (using the fairly general program
structures available in Quail) or interactively via direct
manipulation. For the latter case, the variety of point
symbol shapes in the displays of Figure 3 were deter-
mined by direct interaction with the displays. Besides
changing styles (e.g. colour, shape) of the graphics on
display, it is also possible to re-arrange their positioning,
add other display components and so on.

A good deal of this simpli�cation has been made easy
to handle by having the underlying system code match
the statistical concepts shared by designer and user alike.
The models are reinforced directly by the display orga-
nization and by interaction with the display (e.g. point-
symbols represent cases, so selected point-symbols rep-
resent selected cases).



C. Constrain

We saw the power of this principle at work in the game
introduced in the second section. The general admo-
nition here is to exploit all known constraints whether
natural or arti�cial. This will often lead to considerable
simpli�cation in the user's model.

A simple natural mapping which is promoted in the
display is that between the push-button and speed bar
controls of the 3d rotating scatterplot and the 3d point-
cloud. The spatial proximity of the controls to the point-
cloud strongly suggests that the cloud is indeed the tar-
get of the controls. This is preferable to placing the
controls at a spatially distant location such as the Quail
menubar. Items appear there principally because they
apply generally to all statistical graphics at any point
in the analysis. More complex examples of controls laid
out near their targets are given in Oldford (1997).

Action items appearing on the menubar are typically
spatially distant from their target and so something like
the selection constraint described in the last section be-
comes necessary. This constraint is made less arti�cial
by consistently applying it. Graphics which represent
the same viewed object show themselves highlighted in
all displays when they are highlighted in one. For exam-
ple, all point-symbols representing the cases selected in
the scatterplot show themselves highlighted in all other
visible displays in Figure 3. Similarly, they share other
display style properties such as size and shape. This
linking between graphics also occurs between graphics
of di�erent types provided they have the same viewed
object (e.g. point-symbols and the case-labels of the
case-list appearing on the right in Figure 3).

Another means of reinforcing the rule that user se-
lection determines the focus or target is through pop-up
menus associated with each graphical component in a
display. This is achieved by employing a `three-button'
mouse. Here left-button mouse click over a component
selects that graphic and consequently all information
(viewed-object, etc.) attached to it. Middle-button se-
lection pops a menu up directly at the mouse position
thus associating it spatially with the underlying selected
graphic. Figure 6 shows the menu which pops up over a
2D point cloud such as that found in the scatterplot of
Figure 3.

The imposed constraints make it clear that selec-
tions from Figure 6 apply to the point-cloud beneath
the menu. Consequently, specialized menus can be con-
structed to correspond with each type of graphical com-
ponent in any display. Middle-button selection over an
axis for example produces the pop-up menu of Figure 7.
Here actions that are appropriate to be taken only on an
axis are gathered for direct application to the selected

Figure 6: The middle button menu for point clouds.

axis.
In Quail, pop-up menus exist which are tailored to

each kind of graphical component provided by the sys-
tem. These are always available allowing the user to
interact with every display as suits their fancy.

This kind of specialization is feasible because the soft-
ware components of the graphic directly model the cor-
responding statistical graphical concepts. As with sta-
tistical concepts more generally, those constraints which
naturally exist between concepts are encoded within the
software representing those concepts typically, though
not always, through a class inheritance hierarchy and
method de�nition.

E. Expect error

This obvious principle is often forgotten, perhaps be-
cause it is so di�cult to handle well. To the best of their
ability, designers need to anticipate the inevitable errors
that a user will make. Of these, those that can be pre-
vented by design should be. Those that remain should
be handled gracefully with feedback to the user so that
they are at least aware of the error and have some chance
for recovery.

In Quail, the previous principles have been applied to
the design with the hope that error is minimized. Com-
monly used functions (e.g. scatterplot) will prompt the
user for missing arguments. Example �les providing tu-
torial instruction and an interactive help system help ed-
ucate the user on proper use of at least the programmatic
interface to Quail. When all else fails, errors at execu-



Figure 7: The middle button menu for an axis.

tion time bail out to the default error handling facility
of the underlying Common Lisp system { not always the
most helpful place to leave a user.

F. Failure? Fix on a standard.

If after exploring all of the above design principles, no
good natural design emerges, it may be time to �x on
a standard. Even if the standard appears arbitrary, de-
ciding on one and sticking to it will at least result in a
clear and consistent model that can be learned.

Examples of such arbitrary but exceedingly useful
standards abound in everyday life: the QWERTY key-
board, stop on red go on green, the arrangement of the
digits on a calculator (which for some strange reason are
di�erent from their arrangement on a telephone), and so
on.

In the above discussion, we have seen at least one com-
pletely arbitrary choice in the interface design of Quail,
namely associating selection with a left mouse button
click over the display and a pop-up menu with a middle-
button click. Beyond associating the common gesture
(left-button mouse) with the most common interest (se-
lecting or highlighting points), the assignment of actions
to gestures is arbitrary.

Largely because of design considerations (hiding com-
plexity and constraining actions to be spatially associ-
ated with their target), it was clear early in the design
of Quail (ca. 1988) that a three button mouse with two
modi�er keys (Shift and CTRL) be taken to be part of
the standard design. This provides us with nine mouse
`gestures' potentially applicable to any display.

To be at all useful, some rather arbitrary organization
had to be applied ot these gestures. We took them to
naturally be laid out in a grid as in

Mouse button
Modi�er Left Middle Right

None select change style change type

Shift multiple - -

CTRL viewed-object viewed-object viewed-object

This shows the present arrangement where the two cells
with only a dash are unassigned and the last row does
the same thing for all three mouse buttons. The hope
is to provide roughly orthogonal behaviours associated
with button choice that can be crossed in a meaningful
way with modi�er key choice. So, for example, no mod-
i�er key means that the target of all operations will be
the selected graphic while the CTRL key modi�er means
that the target of all operations will be the viewed ob-
ject of the graphic. Similarly, left should mean selection,
middle changing features of the target, and right making
fundamental changes in type to the target. While these
behaviours have not yet been worked out for viewed-
objects, they are held in reserve for that possibility.

At present, any CTRL mouse-button selection pops
the menu of Figure 8 at the current mouse position. This

Figure 8: The ctrl middle button menu for a point-
symbol.

importantmenu allows the user to produce an interactive
graphic display tailored to the particular viewed-object.
For more discussion of these displays and the strategic
importance of signposts see Oldford (1997).

5 Concluding remarks

Recall the game with which we began and its ultimate
representation as the more familiar tic-tac-toe. This de-
sign of the game was successful because it followed good
design principles. It coded the constraints into the rep-
resentation following a natural mapping of constraints to
layouts which took advantage of our natural perceptual
abilities. It considerably reduced the mental burden on



the players and forced a reduction in the errors a player
could make. The players were now free to focus on the
essence of the game.

Interactive statistical analysis is also hard, consider-
ably harder than the game of tic-tac-toe (whatever the
representation). It is desirable to develop and to imple-
ment a representation which, like the game, allowed the
user more time to concentrate on achieving the objec-
tives of the analysis.

This requires attention to the design and implementa-
tion of software models of the statistical concepts which
form our common knowledge. Both direct manipulation
and programmatic interfaces would bene�t substantially
from such modelling and the common modelling would
allow graphical user interfaces and text-based interfaces
to be freely mixed.

To some degree, Quail is designed to provide a pro-
gramming environment where ideas on modelling statis-
tical concepts and direct manipulation interfaces can be
explored. It provides one common foundation for this
exploration and has been used with some success by se-
nior undergraduate and graduate students in the devel-
opment of models and interfaces (e.g. see Oldford, 1997).

So the debate is not one between command language
and direct manipulation interfaces, but rather one of ap-
propriate design of the underlying software. The seeming
gulf between the two approaches is there because of the
lack of a common foundation.

The goal should now be to determine the best mod-
els for the selected statistical concepts. Because design
is evolutionary this will likely require much debate over
the relative merits of di�erent models. The more re-
searchers there are involved in this, the more likely that
good models will result.

Prototyping each design will be essential and we
will need environments which permit rapid prototyp-
ing (Common Lisp and Quail provide one such environ-
ment). Nevertheless the model designs will need to be
communicated and assessed in an implementation inde-
pendent way.

The well known principles of design illustrated above
provide useful starting points by which designs can be
assessed but are not su�cient. Assessment will also need
to depend on how well the model represents the statis-
tical concept and so far there is little direct experience
in making that assessment { largely because it has not
often been a stated goal.

Acknowledgements

Quail has been developed, and continues to be developed
by many individuals including R.W. Oldford, C.B. Hur-

ley, D.G. Anglin, M.E. Lewis, and G.W. Bennett. Quail
runs on Macintosh and on Windows operating systems
via di�erent commercial vendors (see references). Re-
search has been supported by the Natural Science and
Engineering Research Council of Canada.

References

Allegro Common Lisp (1997), PC and Unix based Com-
mon Lisp from Franz Lisp Inc, Berkeley California.

Desvignes, G.D. and R.W. Oldford (1988).
\Graphical Programming" 26 minute video avail-
able from the ASA Statistical Graphics Sec-
tion's Video Lending Library presently located at
http://www.research.att.com/ dfs/videolibrary.

Guthrie, D. (1975). \Dangers in Interactive Statistical
Systems" Proc. of Comp. Sci. and Stats.: 8th Ann.
Symp. on the Interface (ed. J.W. Frane), pp. 8-10,
UCLA, USA.

Hurley, C.B. and R.W. Oldford (1991). \A software
model for statistical graphics" pp 77-94 of Computing
and Graphics in Statistics edited by Andreas Buja and
Paul A. Tukey, IMA Series on Mathematics and its Ap-
plications, Volume 36.

Oldford, R.W. (1997). \ Computational thinking for
statisticians: Training by implementing statistical strat-
egy", pp. 88-97,Proc. Comp. Sci. & Stat.: Interface,
Houston, TX

Oldford, R.W. (1998). \ The Quail Project: A Current
Overview", Proc. Comp. Sci. & Stat.: Interface, Min-
neapolis, MN.

Oldford, R.W., C.B. Hurley, D.G. Anglin, M.E.
Lewis, and G.W. Bennett (1988-1999) Quail: Quan-
titative Analysis in Lisp. A statistical program-
ming environment available free of charge from
http://www.stats.uwaterloo.ca/Quail.

Macintosh Common Lisp (1997), Digitool Inc., Cam-
bridge Massachusetts.


