
The Quail project:
A Current Overview

R.W. Oldford
Department of Statistics & Actuarial Science

University of Waterloo

Abstract

Every software project has reasons for its existence and con-
tinued development. Quail extends the ANSI standard lan-
guage COMMON LISP to facilitate data analysis and statis-
tical modelling. Important extensions include a rich object-
oriented statistical graphics and general interface building
system, multi-way array manipulation, in addition to a suite
of mathematical, probabilistic, and statistical capabilities.
The primary motivation for this extension is to provide an
open-ended computing research environment where quantita-
tive researchers can freely mix symbolic and numerical com-
putation, and rapidly prototype ideas. Fundamental to Quail’s
design is the close modelling of statistical concepts in soft-
ware.

An overview of the Quail project is given emphasizing the
integration of its design concepts.

1 Why free software?

Given that this session is devoted to “free software”, it might
be worth asking the question as to why it exists in the first
place? Or, more specifically, what motivates people to create
and distribute free software?

I think that most developers (of non-commercial software
at least) will admit that an important personal reason is sim-
ply that it is fun. Building software systems offers a technical
challenge, a creative opportunity, and a sense of accomplish-
ment when a piece is finished. It can be very much like doing
mathematics, but with maintenance.

The reasons that the software is free can be quite varied.
For some it is strictly a political viewpoint, to prevent the
power concentrating in too few hands. Related is the notion
that, as in science and other intellectual endeavours, all ben-
efit from a free exchange of information. Free availability
of software disseminates the ideas to a larger potential audi-
ence and if you are first, the impact can be enormous (e.g.
X-windows for Unix systems). Having successfully tested
the waters, free software has often been a stepping stone to
commercialization.

However, the most important reason is that free software
permits and even encourages unfettered innovation. The soft-
ware is free to be experimental and innovative.

In statistics there seem to be two broad categories of com-
putational innovation. The first is methodological. The pur-
pose here is to exploit the computational resource to develop
new methodological tools. One thinks of the various compu-
tationally intensive methods that have been developed such as
nonparametric function fitting, automatic classifiers, neural
networks, model search and averaging programs, and so on.
The code exists to implement and disseminate the methodol-
ogy. The new methodology is the interest, less so the code.
These programs naturally figure importantly in repositories
of statistical software.

The other broad category of innovation is essentially tech-
nological. Here innovation lies not so much in the exploita-
tion of the technology as it does in its exploration. As tech-
nological opportunities arise, they are explored to see how
they might be made useful. Familiar examples include the
development of command-line programming languages for
statistics, dynamic statistical graphics, small memory algo-
rithms for early microcomputers, whole statistical systems for
pcs, use of windows, icons, and mice for interface develop-
ment, and new programming paradigms such as rule-based
and object-oriented programming. Oftentimes, these inno-
vations further develop the resource and indeed occasionally
becomethe resource for others. Though strictly speaking not
methodological in nature they can have a profound impact on
the nature of the discipline (e.g. statistical analysis and pro-
gramming systems).

Like any generalization this categorization is necessarily
fairly coarse. Yet, I think it has some use. For example, all
of the software described in this session appears to fall under
the second category while most of the computational statistics
research appearing in statistical journals seems to fall under
the first category.

Why then, would one pursue free software whose raison
d’être is technological innovation? Turning to another, this
one famous, over-generalization might help shed some light.

On May 7 1959, C.P. Snow delivered the Rede lecture at
Cambridge, entitled “The Two Cultures and the scientific rev-



olution” (see Snow 1964) and began what was to become a
famous and controversial debate. In his lecture, Snow identi-
fied what he considered to be two distinct cultures, that of
the ‘literary intellectual’ and that of the ‘natural scientist’.
Snow publicly worried that these two separate cultures rarely
interacted or even understood one another. Moreover, nei-
ther much valued the ‘intellectual’ contribution of the other.
Statistics, for example, is more naturally identified within the
science culture than within the arts and traditional statistical
education requires little or nothing from the arts. By 1964,
Snow’s hope was that a ‘third culture’ would develop to fill
the gap between the two.

This year, in one of the AAAS’s sesquicentennial cele-
bratory essays inScience, Kelly (1998) of ‘Wired’ magazine
identifies a now emergent third culture. But it is not the one
Snow had hoped for. Rather than reconciling them, this ‘third
culture’ could very well rival the two original cultures draw-
ing off the best and the brightest young minds. Grown from
a computer saturated popular culture, Kelly calls this third
culture the ‘technology culture’, or the ‘nerd culture’. He
distinguishes it from Snow’s two cultures by its purpose:

The purpose of science is to pursue the truth of the
universe. Likewise, the aim of the arts is to express
the human condition. (Yes, there’s plenty of over-
lap.) Nerd culture strays from both of these. While
nerd culture deeply honors the rigor of the scientific
method, its thrust is not pursuing truth, but pursuing
novelty. ”New,” ”improved,” ”different” are key at-
tributes for this technological culture. At the same
time, while nerd culture acknowledges the starting
point of the human condition, its hope is not ex-
pression, but experience.
. . . Creation, rather than creativity, is the preferred
mode of action.

Drawing from the now easy accessibility of novel computer
technology, this culture is based “in technology, for technol-
ogy”. Novel tools are more easily created than theory and
so we find that “[i]n the emerging nerd culture a question is
framed so that the answer will usually be a new technology.”

Hyperbole or not, there is truth in Kelly’s conviction that
some technological innovation is had for its own sake and that
this innovation can quickly lead down research paths (good
and bad) which might not otherwise have been taken.

In statistical software, it seems to me that the best work
draws successfully and simultaneously from our ‘two cul-
tures’ – scientific and technological. The first without the
second can be good science, the second without the first good
fun, but it is together that they offer the possibility of produc-
ing novel scientific tools.

2 Why Quail?

As do others, Quail draws from both cultures with the inten-
tion to develop new scientific tools for statistics. As Sheil
(1983) promoted for programmers, the intent is to develop
and to promote ‘power tools’ for statistical analysts.

Quail is intended to provide the applied statistician an inte-
grated statistical environment. By ‘environment’ I mean that
it is a self-contained system within which the analysis can be
completely conducted. ‘Statistical’ means only that the en-
vironment is tailored towards the tools of data analysis and
empirical modelling. And ‘integrated’ suggests that the com-
ponents of the environment somehow fit well, both one with
another and each with the analysis task. The research effort is
to identify and to implement appropriate constituents of this
environment.

Statistical analysis is tentative and exploratory by nature.
An integrated environment must be flexible so as to allow the
analyst to pursue new lines of attack whenever appropriate. A
computational support environment needs to be built around
abstractions which are suitable for the intended activity.

In Quail, then, part of the research is directed at determin-
ing the structures, functionality, activities, moves, and navi-
gational tools appropriate for statistical analysis. That is, one
needs to identify and implement these strategically important
elements and herein lies an essential scientific aspect of the
research.

The nature of statistical science suggests that these struc-
tures be incremental, the activities flexible, and any statistical
strategy decentralized. All are to be naturally integrated as
appropriate. If done right, such an environment should serve
well as both a research and teaching device.

For research purposes, the environment should allow one
to rapidly prototype new ideas in order to arrive more quickly
at the good ones. These could then be transferred to pro-
duction code if warranted. Going farther, the environment it-
self should be considered perennially experimental – its very
design part of the ongoing research effort and so subject to
change.

Training purposes would include encouraging technolog-
ical innovation and training in statistical analysis. Indeed, it
has for a few years formed the base of a statistical computing
course at Waterloo (see Oldford, 1997).

3 The shoulders of giants

The technology key to Quail’s design includes a large work-
ing memory (currently≈ 20 MB), high resolution colour dis-
plays, and the multi-method, multi-parent class-instance ob-
ject oriented programming style as available inCLOS (see
Steele, 1991). The large memory assumption means that we
feel free in Quail to maintain pointers to objects which might



reasonably revisited by the analyst. This is valuable for inte-
grating software components.

Because design interest lies in determining the statistical
components and features which would be important to the
environment, Quail is designed to run on top of an existing
fully supported Common Lisp environment (described in the
Appendix). These are powerful modern programming envi-
ronments that provide their users with programming tools un-
equalled by any existing statistical system. They should be
part of any integrated statistical environment. It did not seem
in the best interest of the statistical/scientific component of
the research to re-develop these piecemeal for Quail.

This decision has two consequences. First, although Quail
itself is free the base environment will typically not be. Sec-
ond, Quail users will have full, and integrated, access to these
powerful tools including the possibility to build their own
specialized applications which employ Quail functionality.

4 Quail

In this section, I describe in rather broad strokes how the goals
for Quail have influenced large scale issues of its design. An
appendix at the end of the paper provides a brief sketch of the
present base functionality of Quail.

1. Software should model statistical concepts. This is prob-
ably a distinguishing feature of Quail. The user is most
comfortable manipulating statistically meaningful con-
cepts. Consequently, the software environment should
foster the illusion that the user is working directly with
these familiar concepts. Because the environment is to
be integrated to support this activity, we choose to rep-
resent these concepts, and their relations one to another,
in the software (e.g. through object classes, class inher-
itance and generic functions) to match their statistical
meaning. The identification and analysis of the appro-
priate concepts for integration can be an exciting sci-
entific research problem in itself, the implementation a
technological one.

2. Interactive and Dynamic Visual Displays. Key to sta-
tistical analysis, key to evoking the abovesaid illusion,
and key to an integrated support environment, the im-
portance of a good quantitative display model and im-
plementation cannot be overstated. See the appendix
for some of the features of theViews model used in
Quail. Here we will note only that display components
are typically modelled individually with highly local-
ized behaviour and connected directly to an underlying
‘viewed-object’. These components can be combined in
nearly arbitrary ways.

3. Robust design and low cost changes. The possibil-
ity of making substantive conceptual design changes
while minimizing painful consequences is highly desir-
able. The nature of object-oriented programming itself
encourages this – multiple parents (or mixins) for the
separation of conceptual ‘orthogonal’ structure, multi-
ple generations of ancestors for incremental specializa-
tion, generic functions and methods for specialized be-
haviours.
To this Quail adds automatic documentation constructed
from stylized documentation strings defined at source,
and topic generation from the hierarchical directory
structure of source files.

4. Focus by selection. The context for analysis support is
largely determined by direct mouse selection. What is
the visual focus is taken to be the user’s conceptual fo-
cus. This means, for example, that if the user has se-
lected (highlighted) a collection of points in a scatter-
plot then any subsequent action (where sensible) is to
be taken on that subset of the display, or that subset of
the data as appropriate (recall that each view maintains a
pointer to an underlying viewed-object). Programmatic
means are also provided for the user to determine the
selected focus.

5. Managing variety in user action. It may be simplest to
confine user interaction to only one or two types – say
command language interaction only, or only menu se-
lection, or some combination of the two. In a support
environment for statistical analysis, this seemed overly
restrictive and arguably unnatural. Instead, a wide va-
riety interactions are supported in Quail. To minimize
confusion, both for the analyst and the system designer
(ideally the same person), the interaction is stylized as
follows:

• Full programming language interface provided by
the base Common Lisp system, extended by Quail
functions and classes.

• A global pull-down Quail menubar provides ac-
tions to be taken on the current focus, typically a
window.

• Pop-up menus appear in response to selecting com-
ponents in any display. The menu is peculiar to the
class of the selected view and the nature of the se-
lection gesture.
Middle-button pops a menu to change display style
characteristics (e.g. colours, variates, ranges, as
appropriate), right button pops one to make more
fundamental changes to the display (e.g. cut,
move, paste, link).



• Mouse selections with the CTRL key depressed ac-
cess menus which act on the viewed object under-
lying the display component.

• Activity centres can be built up from any display
components including a variety of control-buttons,
sliders, etc. to build in any specially designed in-
teraction.

• Display is a Quail generic function which when in-
voked on a Quail object, produces a display (pos-
sibly a full-blown activity centre) appropriate for
that object.

• Special control buttons called signposts (of that
shape) are reserved in Quail to capture an action
from some object to a new visual display relevant
to that object.

An example of the manageable but uncontrolled nature
of interaction possible is the following. From the com-
mand line interface, the user has constructed a scatter-
plot. A subset of the points is selected and coloured
green. From the global menubar the user chooses ‘scat-
terplot by’ from the plot menu. The focus being the se-
lected window (assuming no display components within
the window are selected), the dataset of the scatterplot
is taken by Quail to be the data of interest. The user
is prompted to select the ‘by’ variate(s) from a list of
all known variates of the dataset plus the new variate
‘colour’ which refers to the categorical variate inferred
from the different colours of points in the initial scat-
terplot. Suppose the user selects ‘colour’ as the single
‘by’ variate. Then the user is prompted for two more
variates for the scatterplot. Having selected these the re-
sult is two scatterplots of the data, one for each coloured
set of points. Both scatterplots appear in a single (new)
window. Via a right mouse menu selection over the scat-
terplot of green points, the user might choose to paste a
fitted least-squares line on this scatterplot. Then select-
ing the displayed line via a CTRL mouse selection, the
user could choose to display the line’s viewed-object,
in this case a ‘fit-object’, possibly with signposts. The
display might be of coefficients and t-statistics and the
signposts would appear as ‘signpost’ shaped buttons to
the side of the display. When pressed with the mouse, a
‘diagnostics’ sign might lead to a whole activity centre
for regression diagnostics on a least-squares fitted lin-
ear model. Selected results from this diagnostic centre
could be used in a programmatic fashion via user defined
functions at the command language level.

5 Growing from here

Quail is already a considerable extension of Common Lisp
for quantitative analysis. With no further research, the Quail
environment is now well suited for exploratory data analysis
with a complete, integrated, and easily extended interactive
statistical graphics system.

Besides data analysts, researchers on statistical graphics
would find Quail an ideal environment for developing new
graphical methodology. Quail’s graphical design coupled to
the rapid prototyping capabilities of commercial Common
Lisp environments provides a unique opportunity for such re-
search.

Quail now provides a programming environment for de-
veloping technological support tools for statistical analysis.
Following the broad strokes outlined above, there are a num-
ber of exciting research possibilities.

A promising approach in this regard is that of developing
a technological ‘workbench’ for an applied area of statistics
with which one is familiar. Narrowing further to a particular
subject matter area might provide an even better focus.

Once within a comfortable domain, a variety of projects
can be undertaken:

• Basic conceptual structures need to be abstracted and
implemented.

• Useful displays for objects associated with these con-
cepts need careful and specialized attention.

• Given the user is displaying one of the new statistical ob-
jects, and one has programmatic access to the instance,
what would be useful activity centres to associate with
signposts for each new class of objects? These need de-
sign and implementation. Each signpost leads to a new
display but many signposts (from different objects) can
point to the same display.

• What other activity centres would be useful? How would
the user move from one another?

The approach taken is uniform, incremental. In this way, the
expertise can be decentralized across many researchers, yet
ultimately connected together in a simple uniform way.

Research of this kind requires individual persons, or
teams, whose cultures are both scientific and technological
to really pay off. It seems to me to be well worth undertaking
and growing the results by making them freely available to
others.

Acknowledgements

Quail has been developed, and continues to be developed
by many individuals including R.W. Oldford, C.B. Hurley,



D.G. Anglin, M.E. Lewis, and G.W. Bennett. Quail runs
on Macintosh and on Windows operating systems via differ-
ent commercial vendors (see references). Research has been
supported by the Natural Science and Engineering Research
Council of Canada.

Appendix:
Sketch of present functionality

• theCommon Lisp programming language including its
powerful object system allowing multiple class inheri-
tance and generic functions which can type on any num-
ber of arguments.

• a baseprogramming environment supplied by the
Macintosh Common Lisp vendor (Digitool, 1997) which
is quite modern providing lisp file editors, incremental
compilation, program steppers, process backtrace, struc-
ture inspectors, and some program analysis tools (who
calls, etc.).
Similar features are available for the PC from Franz Lisp
for their Allegro Common Lisp (1997).

• Quail’s multidimensional arrays including
— array mapping operators, too numerous to mention.
— usual matrix operators including solution of linear
systems. As an example of the implementation strategy,
matrix inverse is by default postponed until needed for
example in matrix multiplication at which point solve is
called original matrix and the matrix it is being multi-
plied by.
— matrix decomposition objects (e.g. QR, LU, SVD,
. . .)
— complete LINPACK collection of subroutines imple-
mented for Quail matrices.

• Quail’s statistical functionality including
Summary statistics— mean, median, percentiles, sd,. . .
Data objects— array objects containing some meta-data
information.
Model objects— Extended Wilkinson-Rogers specifi-
cation of generalized additive models. Includes link-
objects, etc.
Fit objects— contains pointers to the model, the data,
and results of fitting one to the other.
Probability objects— classes representing a standard
suite of univariate discrete and continuous distributions,
including classes for a general continuous distribution, a
general discrete distribution and an arbitrary finite mix-
ture of either. All instances respond to density, distri-
bution, and quantile calculations as well as requests for
random values. Datasets are treated as empirical dis-

tributions for these purposes, making bootstrap calcula-
tions transparent as any other simulation.
Random number generators— collection of linear con-
gruential generators.

• Quail’s graphic objects.
Views and viewed-objects— A graphic in Quail is a data
structure called aviewwhich can be displayed simulta-
neously in any number of viewports. The metaphor is
that each graphic is a “view” of some other object, its
viewed-object. Hence everyview data structure retains
a pointer to the viewed object. See Hurley & Oldford
(1991) for further detail.
Compound views— views which contain subviews.
Compound views position their subviews in a display.
The compound view and every subview may have its
own viewed-object; subviews can themselves be com-
pound views.
Stock statistical graphics— dotplots, boxplots, his-
tograms, stem and leaf, 2 & 3D scatterplots, 2 & 3D
line-segment plots, 2 & 3D function plots, scatterplot
matrices, brushing, linking,. . .
Controls— needle-sliders, bar-sliders, push-buttons, ed-
itable text-input, dialogs, pop-up menus. These could
operate on anything.
View layouts— compound views which layout subviews
in row, column, or grid fashion, or at arbitrary user spec-
ified positions.
Interactive display— every view responds to three
mouse buttons (left, middle, right) alone or in combi-
nation with two modifier keys (shift and ctrl). Unmodi-
fied mouse buttons typically produce menus which refer
to the physical display of the selected view; ctrl-mouse
buttons refer to theviewed-objectof the selected view.
Postscript output of any possible Quail display— wysi-
wyg, colour encapsulated postscript.

• Miscellaneous mathematical functionality:
symbolic and numerical differentiation, numerical in-
tegration methods, root-finding procedures, continued
fraction expansion approximation, beta, gamma, and
log-gamma functions, basic combinatorial functions.

• Automatic Documentation:
constructed from specially structured documentation
strings
constructed from file organization

• Interactive help system.
every newly defined function, class, method, etc. can
have help displayed and or written out as a latex or
postscript file.

• Two strategic functionshaving methods for any object
(Signposts object . . .) — returns a list of “signposts”



particular to the given object; each signpost is a kind
of control button view which if displayed and mouse se-
lected would lead to some other relevant display peculiar
to that signpost from that object.
(Display object. . .) — returns a view, which if drawn
would produce a reasonable display of the given object.
Display always accepts a boolean argument :signposts?
which if true will return a view augmented by signposts.

Ctrl-middle-mouse on any view pops a menu offering
the user the opportunity to call display on the viewed-
object, with or without signposts. This means from a
display, any viewed-object could be interacted with di-
rectly.

References

Allegro Common Lisp (1997), PC and Unix based Common
Lisp from Franz Lisp Inc, Berkeley California.

Hurley, C.B. and R.W. Oldford (1991). “A software model
for statistical graphics” pp 77-94 ofComputing and Graphics
in Statisticsedited by Andreas Buja and Paul A. Tukey IMA
Series on Mathematics and its Applications, Volume 36.

Kelly, K. (1998). “The Third Culture”,ScienceVol. 279, #
5353, Issue of 13 Feb 1998, pp. 992 - 993.

Oldford, R.W. (1997). “ Computational thinking for statisti-
cians: Training by implementing statistical strategy”,Proc.
Comp. Sci. & Stat.: Interface, Houston, TX

Oldford, R.W., C.B. Hurley, D.G. Anglin, M.E. Lewis, and
G.W. Bennett (1988-1997)Quail: Quantitative Analysis in
Lisp. A statistical programming environment available free
of charge from R.W. Oldford at the University of Waterloo.

Macintosh Common Lisp (1997), Digitool Inc., Cambridge
Massachusetts.

Sheil, B.A. (1983). “Power Tools for Programmers”,Data-
mation, Feb., pp. 131-144.

Snow, C.P. (1964).The Two Cultures and the Scientific Rev-
olution (2nd Edition), Cambridge Univ. Press, Cambridge
U.K.

Steele, G. (1991),Common Lisp: The Language, 2nd Edition
Digital Press.


