
Statistical Models in S
edited by

John M. Chambers and Trevor J. Hastie
1992

608 pages
ISBN 0-534-16765-9

Wadsworth and Brooks/Cole Advanced Books and Software

Contents:

1. An Appetizer (by J.M. Chambers, T.J. Hastie)

2. Statistical Models (by J.M. Chambers, T.J. Hastie)

3. Data for Models (by J.M. Chambers)

4. Linear Models (by J.M. Chambers)

5. Analysis of Variance; Designed Experiments (by J.M. Chambers, A.E.
Freeny, R.M. Heiberger)

6. Generalized Linear Models (by T.J. Hastie, D. Pregibon)

7. Generalized Additive Models (by T.J. Hastie)

8. Local Regression Models (by W.S. Cleveland, E. Grosse, W.M. Shyu)

9. Tree-Based Models (by L.A. Clark, D. Pregibon)

10. Nonlinear Models (by D.M. Bates, J.M. Chambers)

• Appendix A. Classes and Methods: Object-Oriented Programming in
S (by J.M. Chambers)

• Appendix B. S Functions and Classes (Formal documentation.)

New programming functionality has been added to the New S language
since the publication of the New S manual in 1988 (The New S language: A
programming environment for data analysis and graphics, by R.A. Becker,
J.M. Chambers, and A.R. Wilks). By using this extension to the New S
language, the ten authors of this manual are able to develop a unified ap-
proach to the fitting and analysis of a fairly complete collection of response
models (traditional and recent). The book represents the first major effort

1



in this area. I highly recommended it to anyone interested in using New
S, or in applying more recent response models, or in research in statistical
computing.

The book is well organized and reads more like a single treatise than a
collection of papers. The editors and the authors are to be congratulated
for a remarkable job. Each chapter is organized into four primary sections.
The first describes the statistical methodology, the second how to use the
S functions and data structures, the third how to extend or specialize the
given software, and the fourth contains more detail on the computations.
Consequently, by reading only the first two primary sections of each chapter
one comes away well equipped to use the software in a host of applications.
For most readers this will be enough. As interest and circumstance demand,
the remaining sections of any chapter can be read with profit. Although early
chapters are required reading for later chapters, chapters 7 through 10 can
be read independently of one another.

The language extension has moved New S in the direction of object-
oriented programming. For S users this is an important and exciting devel-
opment and will expose many of them to some of the ideas of object-oriented
programming for the first time. Because of this it is a pity that the exten-
sions of the language take New S such a small step towards realizing the
power of object-oriented programming.

As it stands, New S is quite different from what is generally understood to
be an object-oriented programming language. As is pointed out in Appendix
A of the book, New S has much in common with object-oriented languages
but differs in a number of respects related to the nature of S (p. 457).
Chief among these differences is that while New S purports to be a class
based object-oriented programming language, it falls short of satisfying any
definition of one. Despite the impression given to the casual reader, there
is no such thing as a class in this New S; there is merely an attribute called
class which can appear on any S data structure.

Specifically, New S’s functional programming style has been extended so
that the user can write functions which dispatch to other functions (called
methods) depending only on the value of the class attribute of one of its
arguments. True, this makes it possible to write functions which are generic
but in my opinion it is not quite object-oriented programming. Instead,
the function dispatching (method lookup) in the New S model has been
confounded with the definition of a class.

By contrast, in a class-based object-oriented programming language,
classes are data structures which can themselves be manipulated. Mini-

2



mally, they can be related one to another through the notion of inheritance.
No such data structures exist in New S. Because New S’s class attribute only
determines the method lookup to be used for a particular instance it might
be better understood by the reader had it been named the method-precedence
attribute.

Why should the reader care about the absence of classes? There are
many technical software engineering reasons but the statistical reasons are
that classes can be used to directly represent statistical concepts and the re-
lationships between them. For example, consider implementing generalized
linear models (glm) and standard linear models (lm) with genuine classes.
Because a linear model is really a special kind of generalized linear model
one might naturally define two classes, say lm and glm and assert that lm
is a specialized subclass of glm. As a consequence, whatever property one
expects of a glm would also be found on an lm through inheritance since it
is simply a special kind of glm. The two models have statistical meaning
and conceptually are interrelated; having related class structures preserves
and enforces this meaning.

By contrast, in the extended New S system, the class attribute of a
generalized-additive-model object or gam is defined to be (gam, glm, lm).
If this were a true class hierarchy list one would read this as follows: the
primary class of the object is gam which inherits from glm and failing that
inherits from lm. This seems completely backwards to me. I would place
(as we have in the Quail system) gam at the top of the class hierarchy and
lm at the bottom. Thus the class attribute of a gam would be simply (gam)
while that of a linear model would be (lm, glm, gam). This seems to me to
better capture the statistical meaning of these models.

No class data structures means no precise definition of a class. Two New
S objects can have completely contradictory class information, yet share the
same class as their primary class. For example one object could be defined
with class attribute (A, B, C) while another has class attribute (A, X, Y).
Can either represent the class hierarchy of A? One is reluctant to attach too
much meaning to a New S class.

In summary, the book and the attendant software are interesting, valu-
able, and important. The book should be of interest to a wide audience. The
authors are to be congratulated for an excellent well organized book that
represents the first major effort towards a unified presentation of statistical
response models and which takes New S an important first step towards
object-oriented programming. My only caveat to the consumer is that as
an object oriented programming system the extended New S system is un-

3



usual and in my opinion falls short of fulfilling the promise of object-oriented
programming.

R.W. Oldford
Department of Statistics and Actuarial Science

University of Waterloo
Waterloo, Ontario

N2L 3G1
Canada

4


