
Statistical Models in S
edited by

John M. Chambers and Trevor J. Hastie
1992

608 pages
ISBN 0-534-16765-9

Wadsworth and Brooks/Cole Advanced Books and Software

Contents:

1. An Appetizer (by J.M. Chambers, T.J. Hastie)

2. Statistical Models (by J.M. Chambers, T.J. Hastie)

3. Data for Models (by J.M. Chambers)

4. Linear Models (by J.M. Chambers)

5. Analysis of Variance; Designed Experiments (by J.M. Chambers, A.E.
Freeny, R.M. Heiberger)

6. Generalized Linear Models (by T.J. Hastie, D. Pregibon)

7. Generalized Additive Models (by T.J. Hastie)

8. Local Regression Models (by W.S. Cleveland, E. Grosse, W.M. Shyu)

9. Tree-Based Models (by L.A. Clark, D. Pregibon)

10. Nonlinear Models (by D.M. Bates, J.M. Chambers)

• Appendix A. Classes and Methods: Object-Oriented Programming in
S (by J.M. Chambers)

• Appendix B. S Functions and Classes (Formal documentation.)

New programming functionality has been added to the New S language
since the publication of the New S manual in 1988 (The New S language: A
programming environment for data analysis and graphics, by R.A. Becker,
J.M. Chambers, and A.R. Wilks). By using this extension to the New S

language, the ten authors of this manual are able to develop a unified ap-
proach to the fitting and analysis of a fairly complete collection of response
models (traditional and recent). The book represents the first major effort

1



in this area. I highly recommended it to anyone interested in using New
S, or in applying more recent response models, or in research in statistical
computing.

The book is well organized and reads more like a single treatise than
it does like a collection of papers. The editors and the authors are to be
congratulated for a remarkable job. Each chapter is organized into four
primary sections. The first describes the statistical methodology, the second
how to use the S functions and data structures, the third how to extend or
specialize the given software, and the fourth contains more detail on the
computations. Consequently, by reading only the first two primary sections
of each chapter one comes away well equipped to use the software in a
host of applications. For most readers this will be enough. As interest and
circumstance demand, the remaining sections of any chapter can be read
with profit. Although early chapters are required reading for later chapters,
chapters 7 through 10 can be read independently of one another.

The standard response models of the classic linear model (lm) and the
generalized linear model (glm) (including quasi-likelihood models) provide
the basic intuition for the design of the unified approach. Newer method-
ologies like tree-based models for classification and regression, local regres-
sion models (loess), and generalized additive models (gam) are treated in
similar fashion. Here similar fashion is an understatement; any common
elements of the analysis in these response models are enforced by the design
of the software. For example, with the exception of the non-linear model,
the fitting procedure of any response model accepts an extended version of
the Wilkinson and Rogers notation for specifying the structural part of the
model (1973, Applied Statistics, 22, pp 392-399). (A non-linear model must
explicitly define its parameters.) While the commonality is emphasised, spe-
cialized treatment in specific circumstances is encouraged. For example, to
ensure the correct analysis of variance for some experimental designs the
formula specification is extended to allow identification of different error
sources for analysis of variance data structures (aov).

Common and specialized behaviour for different response models is eas-
ily specified programmatically through the two extensions to the New S
language described in this book. The first is given by the twin notions of
generic functions and specialized methods. As an example, consider the
function anova. As its first argument, it takes a fitted model data structure
and produces an anova style table summarizing the fitted model. Anova

should (and does) work for any fit produced by an aov an lm, a glm, a gam,
and a loess fit. By this it is meant that there is some sense in which we

2



would like to producing an anova-like table for any of these fits. Yet what
should be produced will depend on the kind of data structure given as its
first argument. If for example a glm fit is given, then an appropriate analysis
of deviance table is printed. This specialization is achieved by having the
anova function automatically dispatch to the function anova.glm whenever
it is presented with a glm fitted model.

The second extension allows arbitrary S data structures to be related
to one another through some kind of inheritance. This is implemented by
adding a new attribute called class on S data structures. For example, a glm
fitted model will have as its class attribute the vector (in New S terminology)
given by (glm, lm). Operationally this means that any generic function (e.g.
anova) that is called on a glm will look first for a function of the same name
but ending in .glm (e.g. anova.glm) to apply to the argument. If there is
one then it is used. If there is not, it looks again but this time for one
ending in .lm (e.g. anova.lm). If the entire vector of class attributes fails
to turn up an appropriate function, then finally the ending .default is tried
(e.g. anova.default) – there may or may not be a .default method defined.

This extension of New S in the direction of object-oriented programming
is important and exciting. The authors, and Chambers in particular, are
to be applauded for such a move. The unified approach ti fitting response
models is particularly interesting. Ordinarily, I would consider such impor-
tant work to be above criticism in a book review. But because for many
statisticians this version of New S will be their first exposure to the ideas
of object-oriented programming I think it is important to highlight some of
the weaknesses of the New S approach for the readers.

First, a little history on application of object-oriented programming as
applied in statistical computing is in order. In the 1980’s a great deal of
research work on computing environments for data analysis centred on ex-
ploiting the object-oriented paradigm. In 1985 Steve Peters and I wrote a
small statistical system called DINDE that was nearly exclusively object-
oriented (1988 SIAM journal on Stat. and Sci. Computing). Unfortunately,
it required rather specialized hardware. John McDonald at the University of
Washington has made publicly available a system called Arizona. The first
widely used object-oriented statistical system was Luke Tierney’s Lisp-Stat
(1990, Wiley and Sons). A new object-oriented statistical system system
developed at Waterloo called Quail will be publicly available in March 1992.

Thus New S, represents an important development in the trend of sta-
tistical analysis environments becoming object-oriented. One critical thing
that distinguishes it from others is that the developers have had to add

3



the object-oriented aspect to an existing statistical system. This has the
strength that the large community of S users will have access to new possi-
bilities that were previously denied them. the attendant weakness however
is that the full power of object-oriented programming is not necessarily re-
alized. As is pointed out in Appendix A of the book, New S has much in
common with object-oriented languages but differs in a number of respects

related to the nature of S (p. 457).
Indeed, to me New S is unlike any object-oriented language I know and

consequently cannot (yet?) fulfill the promise of object-oriented program-
ming. At best, New S’s functional programming style has been extended so
that the user can write functions which dispatch to other functions depend-
ing only on the value of the class attribute of one of its arguments. True,
this makes it possible to write functions which are generic but it is a far
cry from object-oriented programming. Despite the impression given to the
casual reader, there is no such thing as a class in this New S; there is merely
an attribute called class which can appear on any S data structure. The
generic functions look to this attribute to decide which one of a collection of
New S functions (called methods) to invoke. The dispatching is often called
method lookup and in the New S model is confused with the definition of a
class.

In an object-oriented programming language, classes are data structures
which can themselves be manipulated. Minimally, they can be related one
to another through the notion of inheritance. As an example consider using
classes as data structures to describe birds. We might define a general
class called bird which would be a template data structure representing the
properties held by birds in general. A second class called flightless-bird

could be introduced to represent birds which have evolved to a flightless
state (e.g. penguins and ostriches). It is clear that every element of the
class flightless-bird is also an element of the class bird. It is also clear that
the converse does not hold; an element of the class bird is not necessarily
also an element of the class flightless-bird. This distinction is reflected in the
software by asserting that flightless-bird is a subclass of bird. Consequently
any property of bird is inherited by flightless-bird. If I had a pet ostrich called
Frank, he would be represented in this system as an instance of the class
flightless-bird – a flightless-bird object. A generic function that operated on
birds might be fly which would cause the bird-object to fly from its present
position to a new specified position. If applied to the object representing
Frank however nothing should happen because Frank is a flightless-bird.
This is implemented in software by defining a generic function called fly

4



and separate fly methods for each of the classes bird and flightless-bird. The
method lookup procedure typically traverses the inheritance hierarchy of the
classes to determine which is the most specific method for a given argument
to the generic function call. In some systems, this lookup can be redefined.

In the extended New S system, Frank would be represented by making
a bird data structure and pushing the string flightless-bird onto its class at-
tribute vector. No class called flightless-bird would exist as a data structure.
A separate New S function, fly.flightless-bird, would be defined to represent
the fly method for flightless-birds. So far so good. The problem is that
because no classes exist, there is absolutely no enforcement of an inheri-
tance hierarchy. In New S style of object-oriented programming, objects can
be rooutinely created that have contradictory class information. For exam-
ple, consider two New S objects, one having class attribute (flightless-bird,
bird, animal) and another with class attribute (flightless-bird, moving-van,
telescope). As the class hierarchy is ordered from child to parent to grand-
parent and so on as one proceeds left to right, both have as their primary
class flightless-bird. The class flightless-bird, like any class in the New S ex-
tension, is completely without meaning. The class attribute only determines
the method lookup to be used for a particular instance. It would be better
named the method-precedence attribute.

The absence of the existence of classes and the consequent meaningless-
ness of a class in New S may be the reason that all of the method-precedences
defined for New S models seem completely backward to me. For example,
consider implementing generalized linear models (glm) and standard linear
models (lm) with genuine classes. Because a linear model is really a special
kind of generalized linear model one might naturally define two classes, say
lm and glm and assert that lm is a specialized subclass of glm. As a conse-
quence, whatever property one expects of a glm would also be found on an
lm since it is simply a special kind of glm. through inheritance. The two
models have statistical meaning and relationships; having class structures
preserves and enforces this meaning. By contrast, in the extended New S
system, the class attribute of a generalized-additive-model object or gam is
defined to be (gam, glm, lm). I would place (as we have in the Quail system)
gam at the top of the hierarchy and lm at the bottom. The class attribute
of a gam would be simply (gam) while that of a linear model would be (lm,
glm, gam).

I might add that as a method dispatching facility, the New S implemen-
tation can dispatch only on the basis of the type of one of its arguments.
There are many situations where this is a handicap and one would like dis-

5



patching to depend on the type of any number of the arguments to a generic
function. In many object-oriented systems this is possible, but it is difficult
to see how the New S could be extended yet again to accommodate this kind
of method-lookup.

In summary, the book and the attendant software are interesting, valu-
able, and important. The book should be of interest to a wide audience.
Again the authors are to be congratulated. As an object oriented program-
ming system the extended New S system is unusual and in this reviewers
opinion falls short of fulfilling the promise of object-oriented programming.

R.W. Oldford
Department of Statistics and Actuarial Science
University of Waterloo
Waterloo, Ontario
N2L 3G1
Canada

February 1992

6


