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Abstract. Several structural results about permutation groups of finite rank

definable in differentially closed fields of characteristic zero (and other sim-

ilar theories) are obtained. In particular, it is shown that every finite rank
definably primitive permutation group is definably isomorphic to an algebraic

permutation group living in the constants. Applications include the verifica-

tion, in differentially closed fields, of the finite Morley rank permutation group
conjectures of Borovik-Deloro and Borovik-Cherlin. Applying the results to

binding groups for internality to the constants, it is deduced that if complete

types p and q are of rank m and n, respectively, and are nonorthogonal, then
the (m + 3)rd Morley power of p is not weakly orthogonal to the (n + 3)rd

Morley power of q. An application to transcendence of generic solutions of
pairs of algebraic differential equations is given.
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1. Introduction

Classical Galois theory connects problems on polynomial equations over fields with
purely group-theoretic statements. The connection is especially fruitful because the
latter is an arena in which some of the most powerful classification results have been
obtained. In this article, we exploit an analogous connection between differential
equations and actions of differential algebraic groups, where we establish several
classification results and apply them to algebraic differential equations.

Specifically, this article is concerned with the structure of differential-algebraic
permutation groups of finite rank. Here, by a permutation group we mean a group G
acting faithfully and transitively on a set S. By differential-algebraic we mean
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that the group, the set, and the action, are all described by algebraic differential
equations over a differential field (k, δ) of characteristic zero. Equivalently, they are
definable in the first order theory of differentially closed fields (DCF0). (See [26,
Chapter II] for a detailed introduction to the model theory of algebraic differential
equations, and [27] for a quick one.) Finally, by finite rank, we mean that for any
a ∈ G, the differential field generated by a over k is of finite transcendence degree.

We are motivated to study the structure of such group actions because they
arise spontaneously in the analysis of the algebraic relations between solutions of
algebraic differential equations. An instance of such an application will be explained
at the end of this Introduction.

The field of constants in a differentially closed field is a pure algebraically closed
field, and this allows us to view finite rank differential-algebraic geometry as an
expansion of algebraic geometry. Much of the work we do here involves compar-
ing differential-algebraic permutation groups with algebraic permutation groups,
namely, algebraic groups acting on algebraic varieties in the field of constants.

What follows is a summary of our results.

1.1. Definably primitive permutation groups. A definable permutation group
(G,S) is definably primitive if S admits no definable proper nontrivial G-invariant
equivalence relations. Numerous questions in permutation group theory can be
reduced to the case of primitive group actions. We show that every such action in
finite rank differential-algebraic geometry comes from pure algebraic geometry:

Theorem A. Every connected finite rank definably primitive definable permuta-
tion group in DCF0 is definably isomorphic to the constant points of an algebraic
permutation group over the constants.

This is Theorem 2.3 below, and is proved by using the finite Morley rank O’Nan-
Scott type theorem of Macpherson and Pillay [25] to reduce to the case of simple
differential-algebraic groups, and then using Cassidy’s theorem [9] in that case.

1.2. Base size. By a base for a permutation group (G,S) we mean a subset of S
whose pointwise stabiliser is trivial. A conjecture of Borovik and Deloro [4] predicts
that in the finite Morley rank setting, where bases are always finite, the size of a
minimal base for a definably primitive permutation group grows at most linearly
with the Morley rank of S.

Again, though this problem is stated purely in terms of group theoretic aspects
of definable group actions, it has a motivation from the perspective of algebraic
differential equations. Suppose we are given an equation X of order n whose general
solution can be written as a rational function of m-many constants c1, . . . , cm and
p-many solutions a1, . . . , ap of X.1 Such an expression is the key to constructing
new solutions of X by a superposition of existing solutions, and is an extensively
studied topic in differential equations [21]. It is natural to ask if some general bound
on p can be given in terms of the order (and perhaps the degree) of the equations
defining X. No such general result seems to exist in the present literature, but the
problem can readily be seen to be equivalent to bounding the size of a base for the
action of the binding group on X. In this section, we give just such a bound, under
the additional assumption that the action is definably primitive. The following

1Equivalently, X is internal to the constants.
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theorem, which proves the conjecture of Borovik and Deloro in DCF0, appears as
Corollary 3.7 below:

Theorem B. There is a constant c such that if (G,S) is any connected finite rank
definably primitive definable permutation group in DCF0 then there is a base of size
less than cRM(S).

While the theorem is stated here for differential-algebraic permutation groups,
Theorem A immediately reduces the situation to the consideration of algebraic
permutation groups in the constants. That is, one needs only to prove the theorem
for ACF0, the theory of algebraically closed fields in characteristic zero. This is
done by again carrying out an O’Nan-Scott type analysis and reducing to the case
when G is a simple algebraic group, and then applying the results of Burness et.
al. from [6].

As binding group actions need not be definably primitive, Theorem B does not
always apply to the motivating problem about algebraic differential equations dis-
cussed above. We leave that for future work:

Question 1.1. Given an algebraic differential equation X that is internal to the
constants, can one bound the size of the base for binding group action in terms of
some invariants of X?

1.3. Multiple transitivity and the Borovik-Cherlin Conjecture. For an in-
teger µ > 1, a permutation group (G,S) is µ-transitive if the co-ordinate-wise
action on Sµ is transitive off the diagonals – that is if G takes any tuple of µ
distinct elements of S to any other tuple of µ distinct elements. One instance
of the fact that there are few µ-transitive group actions is Knop’s [22] classifica-
tion of all 2-transitive algebraic group actions: the only possibilities are PSLn+1

on Pn, or certain algebraic subgroups of the group of affine transformations on
An, for some n > 1. An immediate consequence of Theorem A, once you observe
that 2-transitivity implies primitivity, is an analogous classification of finite rank
2-transitive permutation groups in DCF0, see Theorem 4.1 below.

A more flexible notion of multiple transitivity is generic µ-transitivity. Here we
are in the context of a finite Morley rank permutation group (G,S) and we ask that
the co-ordinatewise action of G on Sµ admits an orbit that is generic in the sense
that its complement is of strictly smaller Morley rank than Sµ. The notion was
introduced and studied by Borovik and Cherlin in [3] as an abstraction of generic
transitivity for algebraic groups in the sense of Popov [33], with which it agrees if
one is working in ACF0. There are many more examples of generic µ-transitivity,
but a conjecture of Borovik and Cherlin predicts that if G acts generically (n+2)-
transitively, where n = RM(S), then (G,S) is isomorphic to the natural action
of PSLn+1(F ) on Pn(F ), for some algebraically closed field F . In ACF0 this was
verified by the first and third authors in [14], following a strategy suggested in [3].
The conjecture remains largely open otherwise, the only known case for arbitrary
theories is when RM(S) = 2, dealt with by Altınel and Wiscons in [1]. Here we
establish the conjecture for finite rank definable group actions in DCF0.

Theorem C. Suppose (G,S) is a connected definable permutation group in DCF0

with G of finite rank and n = RM(S) > 0. If the action is generically (n + 2)-
transitive then (G,S) is definably isomorphic to the natural action of the constant
points of PSLn+1 on Pn.
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This appears as Theorem 4.3 below, and is proved by reducing to the definably
primitive case and then applying Theorem A. In Section 4 we also articulate a
more geometric version of this theorem where dimension takes the place of Mor-
ley rank, and then conjecture that this geometric formulation holds without the
finite rank assumption (even in the context of several commuting derivations). See
Theorem 4.4 and Conjecture 4.5 below.

1.4. Nonorthogonality and applications. As we have already mentioned, our
motivation for the study of permutation groups in DCF0 comes from the fact that
they arise as binding groups for internality. An understanding of definable permu-
tation groups can thus contribute to the study of the fine structure of finite rank
types, which in turn has applications to algebraic differential equations. This con-
nection was made in [14] and exploited further in [12] and [20]. For example, as a
quick consequence of Theorem C, we show in Corollary 5.1 below, that if a type
p of Morley rank n is nonorthogonal to a definable set X then the Morley power
p(n+3) is not weakly orthogonal to X. See Section 5 for details, including a review
of the geometric-stability notions involved. In fact, using a more careful analysis,
we show, in Theorem 5.2 below:

Theorem D. Suppose p and q are complete stationary types in DCF0 of U -rank m
and n, respectively. If p is nonorthogonal to q then p(m+3) is not weakly orthogonal
to q(n+3).

These results accomplish, for finite rank types in DCF0, the general goals men-
tioned by Hrushovski in [17, Section 2, first paragraph].

We now explain an application of Theorem D to the transcendence of solutions of
algebraic differential equations. Fix a characteristic zero algebraically closed differ-
ential field (k, δ) and consider an order n differential equation: P (y, δy, . . . , δ(n)y) =
0, where P ∈ k[x0, . . . , xn] is irreducible. For each m ≥ 1, consider the following
condition on this equation:

(Cm) For any m distinct solutions a1, . . . , am /∈ k the sequence

(δ(i)aj : i = 0, . . . , n− 1, j = 1, . . . ,m)

is algebraically independent over k.

In [12], it was shown that (C3) implies (Cm) for all m, assuming that n ≥ 2. That
is, to detect whether there are algebraic relations between solutions of a differential
equation and its derivatives up to the order of the equation, it surprisingly suffices
to consider only triples of solutions. This result, along with a stronger form proved
in [13], has recently been applied to prove new transcendence results for functions
satisfying various differential equations [7, 10,15].

Next, consider the variant of the previous condition involving algebraic relations
between generic solutions of different equations. Consider two algebraic differential
equations of order n1 and n2, respectively:

P1(y, δy, . . . , δ
(n1)y) = 0(1)

P2(y, δy, . . . , δ
(n2)y) = 0(2)

where Pi ∈ k[x0, . . . , xni
] are irreducible, for i = 1, 2. For each m1,m2 ≥ 1, consider

the following condition:
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(Cm1,m2
) For any m1 independent generic solutions a1, . . . , am1

of (1) and m2 in-

dependent generic solutions b1, . . . , bm2
of (2), the sequence (δ(i)aj , δ

(h)bℓ)
where i = 0, . . . , n1 − 1, h = 0, . . . , n2 − 1, j = 1, . . .m1, and ℓ = 1, . . . ,m2,
is algebraically independent over k.

That is, the condition (Cm1,m2
) fails when there are nontrivial algebraic relations

between m1 generic solutions of equations (1) and m2 generic solutions of (2), along
with their derivatives up to the order of the equations. A consequence of Theorem D
is the following:

Corollary. (Cn1+3,n2+3) implies (Cm1,m2) for all m1,m2.

Proof. Let p, q ∈ S(k) be the Kolchin-generic types of (1) and (2), respectively.
There are unique such generic types by irreducibility of the Pi. The realisations
of p(ℓ) are precisely the sequences of ℓ generic independent solutions to (1), and
similarly for q. And the failure of (Cm1,m2) is precisely dependence between a

realisation of p(m1) and a realisation of q(m2), that is, p(m1) and q(m2) being not
weakly orthogonal. Let m = U(p) ≤ n1 and n = U(q) ≤ n2. Hence, if (Cm1,m2

)

fails then p(m1) and q(m2) are not weakly orthogonal, which in turn implies that p
and q are nonorthogonal, which by Theorem D implies that p(m+3) and q(n+3) are
not weakly orthogonal, so that (Cm+3,n+3) fails, and hence (Cn1+3,n2+3) fails. □

1.5. Beyond DCF0. While we prove things exclusively for DCF0, our results hold
in the case of several commuting derivations (DCF0,m), and also in the theory of
compact complex manifolds (CCM). We point this out in a final Section 6, where
we articulate abstractly the conditions on a first order theory that we require for
our proofs to go through.

2. Definably primitive permutation groups in DCF0

Recall that a definable group action (G,S) is said to be definably primitive if S
admits no definable proper nontrivial G-invariant equivalence relations. When the
action is transitive, and so S = G/H for some definable group H ≤ G with the
action being left multiplication, definable-primitivity is equivalent to H being a
maximal proper definable subgroup of G.

The purpose of this section is to show that there are no new finite rank defin-
ably primitive permutation groups in differentially closed fields; they all come from
algebraic groups in the constants. We work in a saturated model (U , δ) |= DCF0

that will serve as a universal domain for differential-algebraic geometry. We denote
by C the field of constants.

We will make use of the following structure theorem for simple differential alge-
braic groups of finite rank. The theorem is originally due to Cassidy [9] without
the finite rank assumption, with an easier proof in the finite rank case given by
Pillay in [26, Chapter III, Theorem 1.5].

Fact 2.1. Every simple finite rank definable group in DCF0 is definably isomorphic
to the C-points of a simple linear algebraic group over C.

The following is likely well known.
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Lemma 2.2. Suppose G is a definable group of finite rank in DCF0 that has no
proper nontrivial definable subgroups. Then G is definably isomorphic to the C-
points of an algebraic group over C.

Proof. Note that G is connected, and we may assume it is nontrivial. When G
is noncommutative, then, as it is definably simple, it is outright simple (see [36,
Corollary 5.9]), and the result follows from Fact 2.1 above.

So we may assume that G is commutative. In this case, we show that G is defin-
ably isomorphic to Ga(C). We can embed G as a Zariski-dense definable subgroup of
a (necessarily commutative) algebraic group E, see [26, Chapter III, Lemma 1.1].
Let E be such of minimal dimension. As G has no proper nontrivial definable
subgroups, it has trivial intersection with any proper nontrivial algebraic subgroup
of E. Modding out by any proper infinite algebraic subgroup would therefore embed
G into a smaller-dimensional algebraic group, contradicting the choice of minimal
dimension. So E has no proper infinite algebraic subgroups. The only possibility
for such is Ga,Gm, or a simple abelian variety. Now, by [18, Lemma 2.5], every
infinite definable subgroup of a simple abelian variety contains the Manin kernel,
and hence in particular has nontrivial finite subgroups coming from torsion, so G
cannot embed in a simple abelian variety. If E is Gm then the logarithmic deriva-
tive map restricts to a definable homomorphism ϕ : G → Ga. The kernel of ϕ must
either be trivial or all of G, but the latter is impossible as in that case G = Gm(C)
which again has nontrivial finite subgroups. So ϕ embeds G in Ga, and we may
assume that E = Ga. Every definable subgroup of Ga is a C-vector subspace. That
G has no proper nontrivial definable subgroups implies it is 1-dimensional. Hence,
G is definably isomorphic to Ga(C), as desired. □

Theorem 2.3. Suppose G is a connected definable group of finite rank in DCF0. If
G acts definably, faithfully, transitively, and definably primitively on some infinite
set, then G is definably isomorphic to the constant points of an algebraic group over
the constants.

Proof. The assumptions imply that there is a proper definable subgroup H < G
such that left multiplication is a faithful definably primitive action of G on G/H.2

In particular, note that H is a maximal proper definable subgroup of G. We
apply [25, Theorem 1.1], namely O’Nan-Scott for primitive permutation groups of
finite Morley rank. Actually, we sometimes use details that are given in the proof
of [25, Theorem 1.1], rather than just its statement. When necessary for clarity we
also repeat some of those arguments.

Let B be the definable socle of G, namely the subgroup generated by the minimal
normal definable subgroups of G. It is itself a normal definable subgroup. The cases
in [25, Theorem 1.1] have to do with the various possibilities for the structure of B.

Let us first consider Case 1 of [25, Theorem 1.1], namely when B is either
elementary abelian or torsion-free divisible abelian, and B acts regularly on G/H.
As no infinite elementary abelian groups are definable in DCF0, we may assume
that B is torsion-free divisible abelian. The regularity of the action of B on G/H
means that G = BH and B ∩ H = (1). That is, G = B ⋊ H is the semidirect
product of B by H. Here H acts naturally on B by conjugation.

2H can be taken to be the point stabilizer of some point in the set on which G is acting; all such
point stabilizers are maximal definable subgroups (by definable primitivity) and are conjugate.
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If H is finite then the connectedness of G, and the existence of a definable
surjective homomorphism π : G → H with B = ker(π), imply that H = (1). As
H was maximal, this means that G has no nontrivial proper definable subgroups.
Lemma 2.2 then tells us that G is definably isomorphic to the constant points of
an algebraic group over the constants, as desired.

So we may assume that H is infinite, and so Theorem 1.2 of [25] applies. That
is, there is a finite rank definable algebraically closed field K such that B has a
definable finite dimensional K-vector space structure and the action of H on B by
conjugation gives an embedding ofH into GL(B,K). As the only finite rank infinite
definable field in DCF0, up to definable isomorphism, is the field of constants, we
may assume that K = C. Fixing a basis for B over C, we obtain a definable
isomorphism ν : B → Cn and a definable embedding ρ : H → GLn(C), inducing a
definable embedding of G = B ⋊H into Cn ⋊GLn(C), as desired. This completes
the proof in Case 1.

In Cases 2 and 3 of [25, Theorem 1.1], B is the unique minimal normal definable
subgroup of G, it has trivial centraliser in G, and it is simple. In this case we
argue that G = B. As G is connected, it suffices to show that G/B is finite. By
Fact 2.1, simplicity implies that B is definably isomorphic to T := E(C) where E is
a simple linear algebraic group over C. It is easily verified that any such definable
isomorphism ϕ : B → T extends to an (abstract) isomorphism

ϕ̂ : Autdef(B) → Autdef(T )

given by ϕ̂(f) = ϕfϕ−1. Here, as B is simple, we can (and do) identify B with its
group of inner automorphisms in Autdef(B), and similarly for T . It follows that
Autdef(B)/B is isomorphic to Autdef(T )/T . Now, the definable automorphisms of
T are just the algebraic automorphisms of T viewed as an algebraic group in the
constants. As T is a simple linear algebraic group, Autdef(T )/T is finite, see [19,
§27.4]. So it remains to observe that G embeds into Autdef(B) over B via the action
by conjugation – which is true because B has trivial centraliser in G. So G/B is
finite, and hence G = B. It follows that G is definably isomorphic to the simple
linear algebraic group T in the constants, as desired.

Finally, consider Case 4. As connectedness of G rules out Cases 4(a)(i) and 4(b),
see the discussion following Theorem 1.1 in [25], we must be in Case 4(a)(ii), which
says that G has exactly two minimal definable normal subgroups T1 and T2, both
simple, both acting regularly on G/H, and B is the direct product of T1 and T2.
We will again show that G = B in this case, and this will suffice as each Ti is
definably isomorphic to the constant points of a (simple) linear algebraic group in
the constants. Again, to show that G = B we will show that G/B is finite. Now,
by maximality of H, and the fact that B is normal in G, we have that G = BH,
and hence G/B is isomorphic to H/(B ∩ H). It therefore suffices to show that
H/(B ∩H) is finite. That is what we do.

The first thing to observe is that B ∩ H ≤ T1 × T2 is the graph of a definable
isomorphism. Indeed, let π : B ∩ H → T1 be the projection. Let α denote H as
an element of the coset space G/H. If t ∈ T1, then by the regularity of the action
of T2 on G/H there is some s ∈ T2 such that s(t(α)) = α. That is, st ∈ H. So
π is surjective. Its kernel is a normal subgroup of T2, and the latter being simple
forces π to be an isomorphism. Similarly the other projection B ∩ H → T2 is an
isomorphism. So B ∩H is the graph of a a definable isomorphism σ : T1 → T2.
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Again, σ extends to an (abstract) isomorphism σ̂ : Autdef(T1) → Autdef(T2).
Define the group homomorphism H → Autdef(T1)×Autdef(T2) by:

h 7→ ([h]T1
, σ̂([h]T1

)

where [h]T1
is the definable automorphism of T1 given by conjugation by h. Let

ρ : H → Autdef(T1)/T1 ×Autdef(T2)/T2

be the composition of the above map by the natural quotient map. Note that

h ∈ B ∩H ⇐⇒ h = (t, σ(t)) for some t ∈ T1, as B ∩H = Γ(σ)

⇐⇒ ρ(h) = ([t]T1
, [σ(t)]T2

) for some t ∈ T1

⇐⇒ ρ(h) = 1.

We thus have an embedding of H/(B ∩ H) into Autdef(T1)/T1 × Autdef(T2)/T2.
The latter is finite as T1 and T2 are definably isomorphic to simple linear algebraic
groups in the constants. Hence H/(B ∩H) is finite, as desired. □

3. Base size for primitive permutation groups

Since the constants form a pure algebraically closed field, an expected use of The-
orem 2.3 would be to extend results about definably primitive permutation groups
from ACF0 to DCF0. In this section we do so for results about the size of bases.

Definition 3.1. A base for a faithful group action (G,S) is a subset B ⊆ S such
that, for any g ∈ G, if g ↾B= idB then g = 1. The minimal cardinality for a base
is denoted by b(G,S).

In [4, §2], Borovik and Deloro predict that, for definably primitive permutation
groups of finite Morley rank, there is a linear relationship between base size and
rank:

Conjecture 3.2 (Borovik-Deloro). There is an absolute constant c such that

b(G,S) < cRM(S)

for (G,S) any connected definably primitive permutation group of finite Morley
rank, with S infinite.

It does not seem that the conjecture has even been verified for algebraic group
actions, and that is our aim here. Once that is established, Theorem 2.3 will imply
that the conjecture is true of all finite rank differential-algebraic groups as well.

We will build on the fact that the base size for simple algebraic group actions
has been thoroughly investigated in [6]. First, a remark on terminology: in the
literature, what is often meant by a “simple algebraic group” is an algebraic group
that does not contain any proper closed connected normal subgroup. For clarity
we will refer to such algebraic groups as almost simple, and reserve the term simple
algebraic group for algebraic groups with no proper nontrivial normal algebraic
subgroups at all. Almost simple algebraic groups have finite center, and when
we mod out by the center they become simple algebraic groups (even simple as
abstract groups). There is a well known classification theorem stating that every
simple algebraic group is either a classical group, namely belonging to one of the
following infinite families: PSLn,PSp2n,PSO2n and SO2n+1; or is one of finitely
many exceptional groups. The first three classical groups are quotients of the almost
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simple groups SLn,Sp2n,SO2n, respectively, by their finite centers. Note also that
because we work over an algebraically closed field PSLn is the same as PGLn.

A careful inspection of the main theorems of Burness et. al. in [6] yields the
Borovik-Deloro conjecture for simple algebraic group actions. This is mentioned
in [4], but we give some explanations:

Proposition 3.3. There is a constant c such that if G is a simple algebraic group
acting algebraically on a positive-dimensional variety S, in characteristic zero,
and such that (G,S) is a definably primitive permutation group, then b(G,S) <
cdim(S).

Proof. We show how this follows from the results in [6]. The group G is either a
classical group in a subspace action (more details on this case shortly) or not. If
not, then [6, Theorem 1] gives that b(G,S) ≤ 6. Thus we can now assume that
(G,S) is a classical group in a subspace action. This means that we are in one of
the following cases (see, for example, Section 4.1 of [6]):

(1) G = PSLn and the action is the one induced by the natural transitive
action of SLn on Gr(n, d), the set of d-dimensional subspaces of An for
some d ≤ n

2 . Note that the center is in the kernel of that action, so we do
get an induced action.

(2) G = PSpn with n even, and the action is the one induced by the natural
transitive action of Spn on either TS(n, d), the set of totally singular d-
dimensional subspaces of An, or on ND(n, d), the set of non-degenerate d-
dimensional subspaces of An, for some positive d ≤ n

2 . Total singularity and
non-degeneracy, here, are with respect to a fixed non-degenerate alternating
bilinear form, see [34, Chapter 11] for the definitions. In both cases, the
center of Spn is in the kernel of the action.

(3) G is either PSOn with n even, or SOn with n odd, and the action is the
one induced by the natural transitive action of SOn on either TS(n, d) or
on ND(n, d), for some positive d ≤ n

2 . One works here with respect to a
fixed non-degenerate symmetric bilinear form. Again, the center is in the
kernel of the action.

We are using here that if G is a symplectic or orthogonal group then primitivity
implies, in characteristic 0, that the only subspace actions that appear are totally
singular or non-degenerate with respect to the relevant underlying form; see the
discussion preceding Theorem 4 in [6]. For more details on totally singular and
non-degenerate subspaces, we suggest [34, Chapter 11]. In particular, one can
deduce from the information there that we do have the above actions and that they
are transitive.

Theorem 4 of [6] tells us the base size in each of the above cases, often broken up
into further subcases, in terms of n

d . A careful inspection of the statement reveals
that, if n ≥ 7, then b(G,S) < n

d + 6 in all cases. For our purposes it is fine to
restrict to n ≥ 7 as doing so only excludes finitely many group actions.

Thus, to prove the result, it is enough to prove that

n
d + 6

dimS

is bounded by an absolute constant in each of cases (1) through (3). In case (1),
S is the grassmanian Gr(n, d) which has dimension d(n− d). Using that d ≤ n

2 , it
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is easy to compute that
n
d + 6

d(n− d)
≤ 14. The same computation works for cases (2)

and (3) if S is ND(n, d), since the latter is a Zariski open subset of Gr(n, d) and
hence is also of dimension d(n − d). Finally, we deal with cases (2) and (3) with
S = TS(n, d). The dimension of TS(n, d) is bounded from below by

2d

(
n− 1

2
− d

)
+

d(d− 1)

2

(see, for example, Section 2 of [24]). Another easy computation then gives a bound

of 16 for
n
d + 6

dim(S)
. □

To pass from simple algebraic groups to arbitrary algebraic groups we will apply
the O’Nan-Scott analysis. This will require some information about centralisers of
subsets of simple algebraic groups, that we now record:

Fact 3.4. There is a constant e such that, for any infinite simple algebraic group, G,
the length of the longest strictly descending chain of centralisers of subsets of G is
less than edimG.

Proof. The length of the longest strictly descending chain of centralisers of subsets
of G is called the c-dimension and is denoted by dimc(G). See [28] for details
on c-dimension. In particular, it isn’t hard to see that dimc(GLn) = n2 + 1 (see
the proof of Proposition 2.1 in [28], for example), and that the c-dimension of a
subgroup is at most that of the ambient group (see [28, Lemma 2.2]).

We are free to ignore the finite set of exceptional simple algebraic groups. As
the center must be in any centralizer, taking a central extension does not change
the c-dimension. So we may assume that G is either SLn, Spn with n even, or SOn.
These groups embed in GLn and hence have c-dimension bounded above by n2+1.

On the other hand, the dimension of G is n2 − 1, n(n+1)
2 , n(n−1)

2 , respectively. We
see that e = 6 works. □

With these ingredients in place, we can establish the Borovik-Deloro conjecture
for algebraic group actions:

Theorem 3.5. There is a constant c such that if (G,S) is a connected definably
primitive definable permutation group in ACF0, and S is infinite, then

b(G,S) < cRM(S).

Proof. We work in a sufficiently saturated (C, 0, 1,+,−,×) |= ACF0. Examining
the proof of Theorem 2.3 above, we see that carrying out the O’Nan-Scott type
analysis of Macpherson and Pillay, but just in ACF0 this time, leads to the following
possibilities for (G,S) up to definable isomorphism:

(a) Case 1 (with finite point stabiliser): Ga(C) acting on itself.
(b) Case 1 (with infinite point stabiliser): S is a finite dimensional C-vector

space, H ≤ GL(B, C), and G = S ⋊ H with the natural action on S by
affine transformations.

(c) Cases 2 and 3: G is a simple algebraic group,
(d) Case 4(a)(ii): G = T1 × T2 where T1 and T2 are simple algebraic groups,

and S = (T1 × T2)/H where H is the graph of a definable isomorphism
σ : T1 → T2.
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In (a) we have that b(G,S) = 1 so that c = 2 works.
In (b) we can take as a base for (G,S) any C-basis for S along with the zero

vector, so that b(G,S) is at most dimC(S) + 1 = RM(S) + 1. Hence c = 3 works.
Proposition 3.3 deals with (c), noting that RM(S) = dim(S).
Finally, consider (d). Note that the stabiliser of a coset gH in G is precisely the

conjugate Hg of H by g. But in our case, where G = T1×T2, and H = Γ(σ), every
coset of H is represented by something of the form (t, 1) where t ∈ T1. Now

H(t,1) = {(rt, σ(r)) : r ∈ T1}
and hence

H ∩H(t,1) = {(s, σ(s)) : s ∈ C(t)}
where C(t) is the centraliser of t in T1. In particular, if t1, . . . , tℓ ∈ T1 are such that⋂ℓ

i=1 C(ti) = (1) then {H, (t1, 1)H, . . . , (tℓ, 1)H} is a base for (G,S). Now, note

that if d = dimc(T1) then there exists t1, . . . , td−1 ∈ T1 such that
⋂d−1

i=1 C(ti) = (1).
It follows that b(G,S) is at most dimc(T1). By Fact 3.4, dimc(T1) < e dim(T1) for
some absolute constant e. Since RM(S) = dim(T1) in this case, we have that c = e
works here. □

Remark 3.6. It is, of course, natural to ask what the absolute constant c given by
Theorem 3.5 is. Our proof shows that, at least for algebraic groups of sufficiently
high dimension, c = 16 works. For a complete answer to this question we would need
to compute, (1) the base size for certain low-dimensional classical simple algebraic
groups actions; namely when n < 7 and G is PSLn,PSpn,PSOn, or SOn, and (2)
the maximal length of chains of centralizers in the exceptional groups.

Since there are no new finite rank definably primitive group actions in DCF0

beyond those in ACF0, by Theorem 2.3, we obtain Conjecture 3.2 for free in DCF0:

Corollary 3.7. There is a constant c such that if (G,S) is a finite rank connected
definably primitive definable permutation group in DCF0, and S is infinite, then

b(G,S) < cRM(S).

Proof. Work in a sufficiently saturated model (U , δ) |= DCF0 with field of con-
stants C. By Theorem 2.3, G is definably isomorphic to the C-points of an algebraic
group over C. Since S = G/H for some definable subgroup H ≤ G, it follows that
(G,S) is definably isomorphic to the C-points of an algebraic group action over C.
Now apply Theorem 3.5. □

3.1. An aside on genericity of minimal bases. Borovik and Deloro also con-
jectured, in [4, §2], that, for a definably primitive finite Morley rank permutation
group (G,S), the set of minimal bases is generic in Sb(G,S). Put another way, and
borrowing notation from Burness et. al. [6], if we let b1(G,S) be the smallest pos-
itive integer n such that Sn contains a generic subset U with every n-tuple in U
a base for G, then Borovik and Deloro are conjecturing that b1(G,S) = b(G,S).
However, already in the context of algebraic permutation groups, Burness et. al.
show that in many cases b1(G,S) > b(G,S), see for example Theorems 4(ii), 4(iii),
5(iii), 7(iii), and 8 of [6]. We suggest the following amendment:

Conjecture 3.8. There is a natural number d so that whenever (G,S) is a definably
primitive permutation group of finite Morley rank, b1(G,S)− b(G,S) < d.
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A close examination of the results of [6] reveals that the conjecture holds for
actions of simple algebraic groups.

4. Multiply transitive permutation groups

Recall that, for µ > 1, a definable group action (G,S) is µ-transitive if the co-
ordinatewise action of G on Sµ is transitive off the diagonal. And in the finite
rank setting, (G,S) is generically µ-transitive if (G,Sµ) is transitive off a subset of
rank strictly smaller than µRM(S). In this section we investigate consequences of
Theorem 2.3 to multiply transitive, and especially generically-multiply transitive,
permutation groups definable in DCF0.

Regarding outright multiple transitivity, there is a complete classification of
the 2-transitive algebraic group actions. As 2-transitivity implies primitivity, an
immediate consequence of Theorem 2.3 is that the same classification holds for
differential-algebraic groups:

Theorem 4.1. Suppose (G,S) is a finite rank faithful 2-transitive group action
definable in DCF0 with G connected. Then (G,S) is definably isomorphic to

(i) PSLn+1(C) acting on Pn(C), or
(ii) Gn

a(C)⋊ L acting on Cn where L = GLn(C) or L = SLn(C), or
(iii) G2n

a (C)⋊ L acting on C2n where L = Sp2n(C) or L = Sp2n(C) ·Gm(C).

Proof. Note that a 2-transitive group action is primitive (and hence definably prim-
itive). Indeed, if E is an equivalence relation on S, and x, y, z ∈ S are distinct
elements such that xEy but ¬(xEz), then, as there is an element of G taking the
pair (x, y) to (x, z), it must be that E is not G-invariant. Hence, there are no
proper nontrivial G-invariant equivalence relations.

Hence, by Theorem 2.3, we have thatG, and hence (G,S), is definably isomorphic
to a connected 2-transitive algebraic group action in the constants, and these are
classified by Knop [22] to be precisely of types (i), (ii), or (iii). □

There are many more generically 2-transitive actions, even among algebraic
group actions, than those appearing in Theorem 4.1. However, a conjecture of
Borovik and Cherlin from [3] suggests that a high degree of generic transitivity is
rare:

Conjecture 4.2 (Borovik-Cherlin). Suppose (G,S) is a connected definable permu-
tation group of finite Morley rank with RM(S) = n > 0. If the action is generically
(n + 2)-transitive then (G,S) is isomorphic to the natural action of PSLn+1(F )
on Pn(F ), for some algebraically closed field F .

In ACF0, so for algebraic group actions, this conjecture was verified in [14]. Using
our Theorem 2.3 above, we will verify the conjecture in DCF0. Note, however,
that something more has to be done as generic µ-transitivity (unlike outright 2-
transitivity) does not imply primitivity, and so Theorem 2.3 does not automatically
apply. Our proof will follow the suggestions in [3] about how to reduce to the
definably primitive case.

We work in a saturated model (U , δ) |= DCF0 with field of constants C.

Theorem 4.3 (Borovik-Cherlin in DCF0). Suppose (G,S) is a definable permu-
tation group in DCF0 with G connected and of finite rank, and n = RM(S) > 0.
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If the action is generically (n+ 2)-transitive then (G,S) is definably isomorphic to
the natural action of PSLn+1(C) on Pn(C).
Proof. In [3, page 35] an argument is sketched for how to reduce the Borovik-
Cherlin conjecture to definably primitive group actions. In what follows we fill in
some details, and implement some simplifications in the context of DCF0.

Let H ≤ G be a proper definable subgroup such that S = G/H. First of all,
notice that H must be infinite. Indeed, generic (n + 2)-transitivity implies that
RM(G) ≥ n(n+ 2), and hence RM(G) > n.

We proceed by induction on n. What the induction hypothesis gives us is that
if H ′ is any proper definable subgroup of G containing H then we must have H ′/H
finite. Indeed, consider the action of G on G/H ′ by left multiplication. Note that
it is also generically (n+2)-transitive as H ≤ H ′. If we let K ≤ H ′ be the kernel of
this action, then (G/K,G/H ′) is faithful and generically (n+2)-transitive. If H ′/H
were infinite then RM(G/H ′) =: e < n, and we can apply our induction hypothesis.
(In the case that n = 1 we know by connectedness of G that this does not happen,
which deals with the base case.) That is, we know that (G/K,G/H ′) is definably
isomorphic to the action of PSLe+1(C) on Pe(C). In particular, the action of G on
G/H ′ is not generically (e+ 3)-transitive, contradicting the fact that the action is
generically (n+ 2)-transitive and e < n. Hence, we must have that H ′/H is finite.

Let L be the normaliser of H◦ in G, where H◦ denotes the connected component
of H. We claim that L is a finite extension of H. Note that

L := {g ∈ G : gH◦g−1 = H◦}.
As such it is clearly a definable subgroup of G containing H. If L = G then H◦◁G,
and hence H◦ stabilises every point of G/H. As the action of G on G/H is assumed
to be faithful, this would imply that H◦ = (1), contradicting that H is infinite. So
L ̸= G. Hence, as explained above, the induction hypothesis forces L/H finite.

Note that L contains every proper definable subgroup of G that contains H.
Indeed, suppose H ′ is such. Then, as H ′/H must be finite, we have that H◦ =
(H ′)◦. It follows that H◦ ◁H ′, forcing H ′ ≤ L, as desired.

In particular, L is a maximal proper definable subgroup of G. So the action of G
on G/L is definably primitive. But it may no longer be faithful. Let us show that
the kernel of the action of G on G/L, say K, is finite. First note that K =

⋂
g∈G

Lg.

Similarly, because G acts faithfully on G/H, we have
⋂

g∈G

Hg = {1}. By the

descending chain condition on definable subgroups, there must be g1, · · · , gn ∈ G

such that K =
n⋂

i=1

Lgi and {1} =
n⋂

i=1

Hgi . Note that for any subgroups H1 <

L1 < G and H2 < L2 < G, we have an injective map (L1 ∩ L2)/(H1 ∩ H2) →
L1/H1 × L2/H2. Applying this fact repeatedly, we see:

|K| = [K : {1}]

=

[
n⋂

i=1

Lgi :

n⋂
i=1

Hgi

]

≤
n∏

i=1

[Lgi : Hgi ]

= [L : H]
n
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and since [L : H] is finite, so is K.
We have that (G/K,G/L) is faithful, transitive, and definably primitive. Hence,

by Theorem 2.3, (G/K,G/L) is definably isomorphic to an algebraic group action
in the constants. Note that (G/K,G/L) is still generically (n+2)-transitive. Now,
the Borovik-Cherlin conjecture for ACF0, as established in [14, Section 6], implies
that G/K is definably isomorphic to PSLn+1(C). That is, the quotient of G by a
normal finite subgroup is definably isomorphic to the C-points of an algebraic group
over C. By [31, Corollary 3.10], this forces G itself to be definably isomorphic to
the C-points of an algebraic group over C. But then, (G,S) is definably isomorphic
to an algebraic group action in the constants, and the Borovik-Cherlin conjecture
for ACF0 implies it is definably isomorphic to PSLn+1(C) on Pn(C). □

The very same proof gives a differential-algebraic-geometric variant. In this
variant we replace Morley-rank-based generic transitivity with the following natural
notion of generic transitivity coming from the Kolchin topology: we say that a
differential-algebraic group action, (G,S), is Kolchin-generically µ-transitive if the
diagonal action of G on Sµ admits a Kolchin dense orbit. At the same time, we
replace Morley rank itself with differential-algebraic-geometric dimension, which
naturally generalises algebro-geometric dimension except that it is not always finite:
if X is a differential-algebraic variety over a differential subfield k, then we say that
X is finite dimensional if, for each a ∈ X, the differential field k⟨a⟩ generated
by a over k is of finite transcendence degree over k, and in that case we call the
supremum of these transcendence degrees the dimension of X.

Theorem 4.4 (Finite dimensional geometric BC for DCF0). Suppose (G,S) is a
differential-algebraic permutation group with G connected and finite dimensional,
and d = dimS > 0. If the action is Kolchin-generically (d + 2)-transitive then
(G,S) is isomorphic to the natural action of PSLd+1(C) on Pd(C).

The precise relationship between Theorem 4.4 and Theorem 4.3 is not clear.
First of all, finite-dimensionality is equivalent to finite Morley rank (in this single
derivation case), and dimension is an upper bound for Morley rank. However,
dimension may be strictly larger than Morley rank. Moreover, it is unlikely that
the existence of a Kolchin dense orbit will coincide with that of a generic orbit
in the sense of Morley rank. For example, in his thesis [11, §9], the first named
author showed that the irreducible differential-algebraic variety V defined by the
ordinary order 3 algebraic differential equation xx′′′ − x′′ = 0 has a proper Kolchin
closed subset W (defined by x′′ = 0) whose complement has Morley rank strictly
less than that of V . So W is generic in V in the sense of Morley rank but is not
Kolchin dense, while V \W is Kolchin dense in V but not generic in the sense of
Morley rank. We do not, however, know of an example that arises as the orbit of
a definable group action.

In any case, Theorem 4.4 follows from Theorem 2.3 in exactly the same way as
Theorem 4.3 did. We leave the verification of details to the reader.

But our real purpose in raising this geometric variant is that it suggests (to
us) a more general conjecture about DCF0,m, the theory of characteristic zero
differentially closed fields in m commuting derivations, ∆ = {δ1, . . . , δm}. The idea
is that we can drop finite-dimensionality by replacing dimension with the Kolchin
polynomial, a numerical polynomial associated to a differential-algebraic variety
measuring the growth in transcendence degree as you take higher order derivatives
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of a solution. See the exposition in [8] for details. The ∆-type is the degree of the
Kolchin polynomial (which is at most m) and the typical ∆-dimension is its leading
coefficient. The finite dimensional case corresponds to when the ∆-type is zero,
and in that case the typical ∆-dimension is what we have been calling dimension.
Instead of connectedness we have to consider the following strengthening introduced
in [8]: A differential-algebraic group G is strongly connected if there is no proper
differential-algebraic subgroup H such that ∆- type(G/H) < ∆- type(G). Strongly
connected groups are connected, and the converse also holds of finite dimensional
groups. Here is what Theorem 4.4 leads us to expect:

Conjecture 4.5 (Geometric BC for DCF0,m). Suppose G is a strongly connected
differential-algebraic group of ∆-type ℓ acting differential-algebraically, faithfully
and transitively on a differential-algebraic variety S of typical ∆-dimension d > 0.
If G acts Kolchin-generically (d+2)-transitively on S then (G,S) is isomorphic to
the natural action of PSLd+1(F) on Pd(F) where F is the constant field of some
m− ℓ linearly independent derivations in spanC(∆).

Theorem 4.4 is the ∆- type(G) = 0 case of Conjecture 4.5. It is the opposite
extreme, when ∆- type(G) = m, that poses the greatest difficulty. If this case
of maximal ∆-type were settled, then an induction on the number of derivations,
using the work of León Sánchez [23] on relative D-groups and D-varieties, together
with Buium’s theorem on the isotriviality of D-variety structures on projective
varieties [5], should imply Conjecture 4.5. However, the maximal ∆-type case, even
when m = 1, remains open.

5. Bounding nonorthogonality

The permutation groups in DCF0 that we are primarily interested in are those
that arise as binding groups. The starting point of [14] was the observation that
bounding the generic transitivity degree of binding group actions leads to a bound
on the witness to nonorthogonality.

Recall that a type p ∈ S(k) is weakly orthogonal3 to a k-definable set X if every
realisation of p is independent of every finite tuple from X over k. It is outright
orthogonal if this holds of all nonforking extension of p to more parameters. It
is a general fact that if p is nonorthogonal to X then some finite Morley power
of p is not weakly orthogonal to X. A fundamental theorem of Hrushovski’s im-
plies that if p is minimal and nonorthogonal to C then p(4) is already not weakly
orthogonal to C. Indeed this is a consequence of a very special case of [17, Theo-
rem 1], which is about arbitrary stable theories and (possibly infinite rank) regular
types. One cannot expect in DCF0 an absolute bound that is independent of rank:
the construction in [14, Section 4.2] exhibits, for each n ≥ 2, a Morley rank n
type p that is nonorthogonal to C (indeed, is C-internal), and such that p(n+2) is
weakly C-orthogonal.4 However, this is as bad as it gets; applying the truth of the
Borovik-Cherlin conjecture to binding groups, the first and third authors showed
in [14] that n+3 is a bound for witnessing nonorthogonality to the constants. Using
Borovik-Cherlin in DCF0, namely Theorem 4.3 above, instead, the proof extends
to arbitrary definable sets:

3This is also called “almost orthogonal” in the literature.
4However, if we assume in addition that δ is trivial on k, then it is shown in [20] that p being

nonorthogonal to C implies p(2) is already not weakly C-orthogonal.
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Corollary 5.1. Suppose p ∈ S(k) is a type of Morley rank n over an algebraically
closed differential field k, and X is any definable set over k. If p is nonorthogonal
to X then the Morley power p(n+3) is not weakly X-orthogonal.

When X = C we can replace Morley rank with U -rank.

Proof. From nonorthogonality to X we get a definable function p → q such that q
is nonalgebraic and X-internal (see [29, 7.4.6]). So we may as well assume that p is
X-internal. Let G be the binding group of p relative to X. As we may assume that
p itself is weakly X-orthogonal, G acts transitively on S := p(U). In particular, p
is isolated and S is a definable set of Morley rank n. (Note that, as p is X-internal,
if X = C then n = U(p).) Moreover, as k is algebraically closed, G is connected. If
p(n+3) is weakly X-orthogonal then G acts transitively on p(n+3)(U), and so (G,S)
is generically (n+3)-transitive. But then it is also generically (n+2)-transitive, and
so, by our Theorem 4.3, (G,S) is (PSLn+1(C),Pn(C)). But this is a contradiction
as the latter is not generically (n+ 3)-transitive. □

The above Corollary answers, for the case of finite rank types in DCF0, a question
Hrushovski raises in [17, Section 2] as a possible refinements of his main theorem;
it is the second of the two “natural generalizations” that he mentions there.

In fact, with a little more work, we can obtain a more refined version of Corol-
lary 5.1. So far we have been talking about definable interaction between single
realisations of p and finite tuples from X. But one can ask the finer, more sym-
metric question, about nonorthogonality between two types: p and q are weakly
orthogonal, denoted p ⊥w q, if any realisation of p is independent of any realisation
of q, and they are orthogonal, denoted p ⊥ q, if this continues to hold after taking
nonforking extensions. If p and q are nonorthogonal then some finite Morley powers
of p and q will be weakly nonorthogonal. Can we bound these powers? This ques-
tion, for arbitrary stable theories but working with regular types, was also raised by
Hrushovski in [17]; it is the other of the two natural generalizations he asks about.
We show:

Theorem 5.2. Suppose k is an algebraically closed differential field and p, q ∈ S(k)
are of U -rank m and n respectively. If p ̸⊥ q then p(m+3) ̸⊥w q(n+3).

Before proving the theorem we recall two well known facts from geometric sta-
bility theory, including proofs for the sake of completeness. First, all instances of
nonorthogonality between finite rank types are witnessed by minimal types:

Lemma 5.3. Suppose p and q are complete stationary types of finite rank. Then
p ̸⊥ q if and only if there is a minimal type r such that p ̸⊥ r and r ̸⊥ q.

Proof. For the right-to-left direction (which does not use finite rank), suppose p
and q are each nonorthogonal to some minimal r. Taking nonforking extensions
we may assume that in fact all three types are over a common parameter set A,
and that p and q are in fact each non-weakly-orthogonal to r. Then there are
a |= p, b |= q, c |= r such that a ̸ |⌣A

c and c ̸ |⌣A
b. Since r is minimal, we have

c ∈
(
acl(aA) ∩ acl(bA)

)
\ acl(A) witnessing that a ̸ |⌣A

b.

For the converse, we use [29, Corollary 1.4.5.7]: for any finite rank p ∈ S(A),
there exists a model A ⊂ M |= T and minimal types p1 · · · , pn ∈ S(M) such that
pM is domination equivalent to p1 ⊗ · · · ⊗ pn. That is, a tuple forks over M with a
realisation of pM if and only if it forks over M with a realisation of p1 ⊗ · · · ⊗ pn.
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Taking nonforking extensions to a larger model if necessary, we may assume that
M contains the domain of q, and that, since p ̸⊥ q, a realisation of qM forks with a
realisation of pM over M . Forking calculus now shows that pi ̸⊥ q, for some i ≤ n.
As p ̸⊥ pi, we can take r = pi. □

Next, recall that for a stationary type p ∈ S(A) and a set of complete types
Q over arbitrary parameter sets, we say that p is Q-internal if there exist ℓ ≥ 1,

tp(bi/Bi) ∈ Q for i = 1, . . . , ℓ, C ⊇ A ∪
⋃ℓ

i=1 Bi, and a |= p with a |⌣A
C, such

that a ∈ acl(Cb1, . . . , bℓ). In particular, for q ∈ S(B), we have that p is q-internal
if it is {q}-internal. Replacing dcl with acl yields the notion of almost internality.

Our second lemma says that almost internality to a minimal type coincides with
almost internality to the set of conjugates of that minimal type:

Lemma 5.4. Suppose p ∈ S(A) and q ∈ S(B) are stationary with q minimal and
where B ⊇ A. Let Q be the set of A-conjugates of q. If p is almost Q-internal then
p is almost q-internal.

Proof. (Thanks to Anand Pillay for pointing out this argument.)
If p = tp(a/A) is almost Q-internal then there are A-conjugates of q, say

qi = tp(bi/Bi), i = 1, . . . , ℓ, and C ⊇
⋃ℓ

i=1 Bi with a |⌣A
C, such that a ∈

acl(Cb1, . . . , bℓ). Choose these so that ℓ is minimal.
If b1 ∈ acl(C) then we can just drop it and contradict minimality of ℓ. So we

may assume b1 /∈ acl(C). If b1 /∈ acl(Ca) then a |⌣C
b1 as q is of U -rank 1, and

replacing C with Cb1 we contradict the minimality of ℓ. Hence b1 ∈ acl(Ca)\acl(C).
It follows that q1 = tp(b1/B1) is nonorthogonal to p = tp(a/A). This means (by
definition) that q1 is nonorthogonal to the parameter set A. By [29, Lemma 1.4.3.3],
we get that if B′ is an A-conjugate of B that is independent from B1 over A, and
q′ is the corresponding A-conjugate of q, then q1 is nonorthogonal to q′. Of course
this holds not just for q1 but for q2, . . . , qℓ as well. So if we choose B′ to be an
A-conjugate of B that is independent of (B1, . . . , Bℓ) over A, and let q′ be the
corresponding conjugate of q, then we have that each qi is nonorthogonal to q′. As
these are minimal types we get that q1, . . . , qℓ are pairwise nonorthogonal.

So, taking a larger C and further nonforking extension if necessary, we can
assume that each bi is interalgebraic with some ci over C, where all the c1, . . . , cℓ
realise q1. Hence a ∈ acl(Cc1, . . . , cℓ) witnesses almost internality of p with q1. As
q1 is an A-conjugate of q, we have that p is almost q-internal. □

We are now ready to prove the theorem.

Proof of Theorem 5.2. By Lemma 5.3, there exists a minimal type t, potentially
over additional parameters, such that p ̸⊥ t and q ̸⊥ t. We deal separately with the
cases when t is or is not locally modular.

Suppose first that t is non-locally-modular. Then both p and q are nonorthogonal
to the constants. By Corollary 5.1 we have that p(m+3) ̸⊥w C. It follows that there
is a realisation a |= p(m+3) and a k-definable function, f , such that f(a) ∈ C is
generic over k (see, for example, Lemma 2.1 of [14].) Similarly, we have b |= q(n+3)

and a k-definable function g, such that g(a) ∈ C is generic over k. Since f(a) and
g(b) realise the same type over k, by automorphisms, we can choose b such that
f(a) = g(b). It follows that a ̸ |⌣k

b, witnessing that p(m+3) ̸⊥w q(n+3).

Now suppose that t is locally modular. We show that in this case p(2) ̸⊥w q(2).
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Let T be the set of k-conjuguates of t. Since p and q are nonorthogonal to t, we
obtain, by [29, 7.4.6], k-definable functions p → r and q → s such that r and s are
nonalgebraic and T -internal. Hence r and s are almost t-internal by Lemma 5.4.
In particular, r and s are 1-based.

We claim that there is a minimal type over k that is algebraic over r. That
is, writing r = tp(c/k), there is c̃ ∈ acl(kc) such that r̃ := tp(c̃/k) is minimal.
If U(r) = 1 then we can simply take c̃ = c. Otherwise, there is B ⊃ k with
U(c/B) = U(c/A) − 1 > 0. Let c̃ = Cb(c/B). By 1-basedness, c̃ ∈ acl(kc). We
have U(c/kc̃) = U(c/k) − 1, from which it follows that U(c̃/k) = 1, as desired.

Similarly, we have s = tp(d/k) and d̃ ∈ acl(kd) such that s̃ := tp(d̃/k) is minimal.
Note that r̃ and s̃ are locally modular nonorthogonal minimal types. Now, for

modular minimal types orthogonality and weak orthogonality coincide, see [29,
2.5.5]. It follows that r̃(2) ̸⊥w s̃(2), and hence r(2) ̸⊥w s(2). As r and s are k-
definable images of p and q, we have that p(2) ̸⊥w q(2), as desired. □

Remark 5.5. While the proof of Theorem 5.2 appealed to Corollary 5.1, it only
used the X = C case of that corollary, and hence only makes use of the truth of
Borovik-Cherlin in ACF0.

6. Other theories

So far we have worked in the theory DCF0. Here we verify that the results hold
also, for the finite rank setting, in DCF0,m and the theory of compact complex
manifolds (CCM). In fact we extract from the above proofs the required abstract
properties of the theory.

Theorem 6.1. Suppose T is a complete stable theory admitting elimination of
imaginaries, and with a pure 0-definable algebraically closed field C. Assume the
following hold in T :

(1) Every simple group of finite rank definable in T is definably isomorphic to
the C-points of a simple linear algebraic group over C.

(2) Up to definable isomorphism, the only commutative finite rank group defin-
able in T , having no proper nontrivial definable subgroups, is Ga(C).

(3) There are no infinite elementary abelian groups of finite rank definable in T .

Then Theorems A and B of the Introduction hold of T , with C playing the role of
the constants.

Suppose, moreover, that the following holds in T :

(4) Every connected commutative finite rank group definable in T is divisible.

Then the Borovik-Cherlin Conjecture, namely Theorem C, holds in T , again with
C playing the role of the constants.

In particular, Theorems A, B, C of the Introduction all hold of DCF0,m with
C the field of total constants, and of CCM with C the elementary extension of the
complex field living on the projective line.5

Proof. We leave it to the reader to verify that conditions (1) through (3) are exactly
what is needed for the proof of Theorem A (namely 2.3) to go through. Theorem B

5Note that the Borovik-Cherlin Conjecture in CCM was already established in [14].



DIFFERENTIAL-ALGEBRAIC PERMUTATION GROUPS 19

(namely 3.7) for T follows formally from Theorem A for T together with Theo-
rem 3.5 (for ACF0).

Maybe it is worth pointing out that condition (1) already implies that, up to
definable isomorphism, C is the only infinite field of finite rank definable in T . See,
for example, Pillay’s proof of Corollary 1.6 in [26, Chapter III]. Namely, if F is
an infinite definable field of finite rank in T , then PSL2(F ) is a simple group of
finite rank definable in T , and hence PSL2(F ) is definably isomorphic to a group
definable in the pure field C. But the field F itself is interpretable in the group
structure on PSL2(F ), so that F is then definably isomorphic to a field definable
in (C,+,×), and hence is definably isomorphic to C.

It is shown in [30, Corollary 3.10] that condition (4) implies that if G is a con-
nected definable group with the property that the quotient by some normal finite
subgroup is definably isomorphic to the C-points of an algebraic group over C then
this is already true of G. With this additional fact, our proof of Theorem 4.3 goes
through to establish the Borovik-Cherlin conjecture in T .

Finally, let us point out that these conditions do hold in DCF0,m and CCM.
In DCF0,m, as in the case of a single derivation, it remains true that every

definable group of finite rank embeds in an algebraic group. Conditions (3) and (4)
follow, as every commutative algebraic group in characteristic zero has finite n-
torsion for all n. From this embedding into an algebraic group it also follows that if
G is a simple definable group of finite rank, then it embeds definably in GLn (see,
for example, the proof of Corollary 1.2 in [26, Chapter III]), and hence Cassidy’s
theorem (see [8, Theorem 3.7] for a version that holds also of infinite rank) implies
that G is definably isomorphic to the C-points of a simple linear algebraic group.
So condition (1) holds. For condition (2), note that the proof of Lemma 2.2 above
goes through in the case of DCF0,m (in particular, [18] works in the context of
several commuting derivations).

Regarding CCM, there is a very good understanding of the definable groups
coming out of [2, 16, 32, 35]. In particular, there is a Chevalley-type structure
theorem for definable groups whereby every definable group is the extension of a
“nonstandard complex torus” by a linear algebraic group. Here the notion of a
nonstandard complex torus is somewhat subtle, but at the very least these are
commutative groups with nontrivial but finite n-torsion for all n. Conditions (1)
through (4) all follow from this. □

Theorem 6.2. Suppose T is a complete totally transcendental theory admitting
elimination of imaginaries, and with a pure 0-definable algebraically closed field C,
such that every non-locally-modular minimal type is nonorthogonal to C. Then
Theorem D of the Introduction holds in T .

In particular, this holds of DCF0,m and CCM.

Proof. Again, we leave to the reader the verification that these were the only prop-
erties of DCF0 used in the proof of Theorem D (namely, 5.2). That they hold of
DCF0,m and CCM is well known. □
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groups. Journal of Algebra, 328(1):190–217, 2011.

[9] Phyllis Joan Cassidy. The classification of the semisimple differential algebraic groups and
the linear semisimple differential algebraic Lie algebras. Journal of Algebra, 121(1):169–238,

1989.

[10] Matthew DeVilbiss and James Freitag. Generic differential equations are strongly minimal.
Compositio Mathematica, 159(7):1387–1412, 2023.

[11] James Freitag. Model Theory and Differential Algebraic Geometry. ProQuest LLC, Ann Ar-
bor, MI, 2012. Thesis (Ph.D.)–University of Illinois at Chicago.
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