THE MORDELL-LANG CONJECTURE IN POSITIVE
CHARACTERISTIC REVISITED

RAHIM MOOSA AND THOMAS SCANLON

ABSTRACT. We prove versions of the Mordell-Lang conjecture for semiabelian
varieties defined over fields of positive characteristic.

INTRODUCTION

Faltings proved the Mordell-Lang conjecture (itself a generalization of the Mordell
conjecture) in the following form [2].

Theorem 0.1 (Faltings). Let G be a semiabelian variety defined over the field of
complex numbers C. Let X C G be a closed subvariety and ' < G(C) a finitely
generated subgroup of the group of C-points on G. Then X(C)NT is a finite union
of cosets of subgroups of T'.

Theorem 0.1 has been generalized in various ways. The reader may consult [6]
for a discussion of the history of this problem and some of its generalizations. In
attempting to generalize the Mordell-Lang conjecture to positive characteristic one
encounters obstructions in even the simplest cases.

Let K = F,(t) be the field of rational functions over the field of size p. Consider
the square of the multiplicative group G := G2, regarded as the complement of
the coordinate axes in the plane, X the subvariety defined by x +y = 1, and T’
the subgroup of G(K) generated by (t,1 — ). One checks easily that X (K)NT =
{(t*",1 —t*"") : m € N}. Visibly, this set cannot be expressed as a finite union of
cosets of subgroups of T'.

The situation was salvaged when Hrushovski [3] proved a version of the Mordell-
Lang conjecture in positive characteristic that had been formulated — and in cer-
tain special cases established — by Abramovich and Voloch in [1]. This version
treats varieties defined over finite fields as exceptional. The present authors dealt
with the exceptional case in [7], proving a form of the Mordell-Lang conjecture for
semiabelian varieties defined over finite fields. Moreover, they extracted its model
theoretic content in analogy to Pillay’s analysis of Theorem 0.1. That is, the orig-
inal Mordell-Lang conjecture may be rephrased as if G is a semiabelian variety
defined over C and I' < G(C) is a finitely generated subgroup of its C-points, then
the induced structure on T is stable and weakly normal [8]. The bulk of the work
in [7] is directed at a quantifier elimination theorem for the induced structure on
the R-rational points of semiabelian schemes over finite fields where R is a finitely
generated domain extending the field of definition.
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In this current paper we survey the methods and results of [7] while extend-
ing them to obtain, among other things, an absolute version of the Mordell-Lang
conjecture in positive characteristic.

The structure of this paper is as follows. In Section 1 we survey the main methods
and results of [7]. In Section 2 we prove a version of the Mordell-Lang conjecture
for groups of the form G(R) where G is a semiabelian variety over a finite field Fy
and R is the ring of regular functions of some irreducible affine variety over Fglg .
While the group G(R) is not finitely generated, the methods of [7] apply directly
to this problem. In Section 3 we prove an absolute version of the Mordell-Lang
conjecture.

We thank Luc Bélair for inviting us to write this paper for these proceedings.
We are grateful to the organizers (especially Paola D’Aquino) of the Ravello Eu-
roconference on Model Theory for putting together and running such a wonderful
meeting. We thank the anonymous referee for suggesting many useful improve-
ments to this paper. The second author thanks Dragos Ghioca for discussing some
problems related to this paper. As mentioned below, some extensions of theorems
proved here will appear in Ghioca’s thesis.

1. F-SETS AND VARIETIES DEFINED OVER FINITE FIELDS

The counter-example to an immediate translation of the Mordell-Lang conjec-
ture to positive characteristic described in the introduction comes close to being
paradigmatic. Frobenius orbits give the primary obstruction to finiteness while
sums of such orbits and sums with groups give the others. This is the main content
of [7], whose methods and results we now survey. All definitions and results are
taken from [7] unless explicitly stated otherwise.

Let us consider a few examples before delving into a technical discussion. Before
we can say much about these examples, we need to recall the notion of a Frobenius
morphism.

Let k = F, be the field of ¢ elements. If R is any k-algebra, then the function
Tq : R — R defined by x +— 29 is a morphism of k-algebras which we call the
q-power Frobenius or just the Frobenius if ¢q is clear from the context. If K is an
algebraically closed field extending k£ and X C A”™ is an affine variety over K, then
X (@) is the Zariski closure of the set {(af,...,ad): (ai1,...,a,) € X(K)}, and the
g-power Frobenius defined co-ordinatewise on A™ maps X (K) to X (9 (K). Visibly,
the function (z1,...,z,) — (z{,...,2%) is a regular morphism of algebraic varieties.
We denote the induced morphism on X by F : X — X(@ and refer to F as the
Frobenius morphism of X induced by the the q-power Frobenius. This construction
can be carried out in a co-ordinate free manner that extends to arbitrary algebraic
varieties (not just affine ones). Moreover, it is not hard to see that if G is an
algebraic group, then the Frobenius morphism F : G — G@ is a morphism of
algebraic groups.

Notice that if X is defined over k = IFy, then X(@ = X and F is a morphism from
X to itself. We shall use this construction mostly in the case of G a commutative
algebraic group over k.

Example 1.1. Let C C G be a smooth curve of genus g > 3 over a finite field k =
F, embedded as a subvariety of its Jacobian G (also defined over k). Let F : G — G
be the Frobenius morphism coming from the g-power Frobenius. Let K := k(C)
be the function field of C and set I' := G(K). Note that C(K?*8)NT = C(K), and
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the latter can be identified with the set of rational maps from C to C over k. As C
is smooth, every rational map is regular. Every regular morphism over k is of the
form F"™ o~ where v : C' — C is a separable morphism over k. But the only such
separable morphisms are the constant maps and the automorphisms of C'. That is,

C(K8)NT = C(K) = C(k)U{F"y:neN,y € Aut(C)}.

Since the automorphism group of C'is finite (as C has genus greater than 1), this
set is a union of finitely many points and finitely many Frobenius orbits.
Now consider X := C + C. Visibly, X(K*#)NT' = X(K) contains

{a+F"y:a € C(k),y € Aut(C),n € NfU{F"v+F"§: 7,0 € Aut(C),m,n € N}.

As the genus of C is at least three, the variety X is not a subgroup of G. If C
is chosen sufficiently generally, then X does not even contain translates of infinite
subgroups of G. It follows from our main theorem in this case that the set X (K)
consists of the above displayed set and possibly finitely more points, Frobenius
orbits, or sums of Frobenius orbits.

Finally, to obtain the most general example we should take a sum with a group.
For instance, we could think of G as an algebraic subgroup of G x G via x — (z,0).
If we set Y := X + (0 x G), then Y(K) = X(K) + (0 x G)(K).

In order to give a precise statement about the induced structure on the groups
of integral points on semiabelian schemes over finite fields, we abstract from this
Diophantine context to a certain general class of modules.

Definition 1.2. A Frobenius ring is a commutative ring Z[F] satisfying the fol-
lowing conditions:

e As the notation suggests, Z[F] is a simple extension of the ring of integers

generated by a distinguished element F'.

e 7[F] is a finite integral extension of Z.

e F' is not a zero divisor in Z[F].

e The ideal F>®Z[F] := (| F"Z[F] is trivial.

n>0
Example 1.3. We verify that these conditions hold for our intended example.
Fix G a semiabelian variety over a finite field F, of characteristic p > 0. This

means that G is a commutative algebraic group which, over Fgl% is an extension of
an abelian variety by a cartesian power of the multiplicative group:

0—Gh —G—A—0

Let F : G — G be the g-power Frobenius morphism. Let R = Z[F] be the
(commutative) subring of the endomorphism ring of G, End(G), generated by F.
We verify that R is a Frobenius ring.

Using the fact that there are no non-trivial algebraic homomorphisms from G, to
A, nor from A to G¥ , End(G) embeds into End(G# ) x End(A). As both End(G%)
and End(A) are finite extensions of Z (see VIL.1 of [4] for the latter), it follows that
End(G) is also. Hence F is integral over Z.

Since F is injective on G (Fglg ), it is not a zero-divisor. Finally, the only infinitely
F-divisible element of R is the zero map. To see this, choose a finitely generated
field extending F,, L, such that G(L) is Zariski-dense in G. If o € F*R, then
aG(L) C ﬂ F"G(L) = G(k), where k := ﬂ L9" is a finite field. Hence o takes a

n>0 n>0
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Zariski-dense subgroup of G to a finite group. It follows that the kernel of « is of
finite index in G, and as G is connected, o must be the zero map.

From now on, when we write Z[F| we mean that this ring is a Frobenius ring.

We are almost in a position to define F-sets. Unfortunately, for technical rea-
sons which will be explained later, the natural candidate for this definition is not
adequate. We therefore only define cycle-free F-sets for the moment, and later
describe what the more general class of F-sets should be.

Definition 1.4. If M is a Z[F]-module, a € M, and 6 € Z, is a positive integer,
then we denote the F? orbit of a by S(a;0) := {F°"a : n € N}. If ay,...,a, €
M is a sequence of elements of M and d1,...,d0,, € Z4 is a sequence of positive
integers of the same length, then we denote the sum of the F% orbits of the a;s
by S(a@;6) = S S(ad) = {0 F%™ia; : (mq,...,m,) € N"}. A set of the
form b+ S(a@;6) + H with b € M and H < M a Z[F*]-submodule of M for some £
is called a cycle-free F'-set. If H is the trivial group, then we refer to such a set as
a groupless cycle-free F-set.

Remark 1.5. Definition 1.4 differs from the definition of cycle-free F-set as used
in [7] in three respects. First, in [7], M is taken to be finitely generated. Secondly,
the groups H were required to be Z[F]-modules rather than merely Z[F*]-modules
for some ¢. Thirdly, in [7] a finite union of cycle-free F-sets was considered to be a
cycle-free F-set itself.

With these definitions in place we can state a version of the main Mordell-Lang
theorem of [7].

Theorem 1.6. Let G be a semiabelian variety defined over a finite field, F : G — G
the corresponding Frobenius morphism, and K an algebraically closed field extending
the field of definition of G. If T' < G(K) is a finitely generated Z[F]-submodule of
G(K) and X C G is a closed subvariety, then X (K)NT is a finite union of (cycle-
free) F-sets.

Remark 1.7. Comparing the hypotheses of Theorem 1.6 with those of the Mordell-
Lang statement for characteristic 0 (Theorem 0.1), notice that finitely generated
subgroups have been replaced by finitely generated Z[F]-submodules (that is, we
require I" to be closed under F'). Nevertheless, some of the natural cases are included
in this statement. For example, if R/F, is a finitely generated domain, then G(R) is
closed under F', and our theorem does solve the problem of describing the R-rational
points of subvarieties of semiabelian varieties over finite fields.

In the statement of Theorem 1.6 we have been a bit loose with the meaning of
“F-set”. In our definition of cycle-free F-set we take parameters b,aq,...,a, from
the module M. In Theorem 1.6 there are two reasonable interpretations of M: I’
and G(K). The theorem is correct as written with M = G(K), but it is false with
I" unless we drop the parenthetical “cycle-free” and give a more intrinsic notion of
F-set. Before doing so we consider yet another example.

Example 1.8. Let C C G be a smooth curve of genus at least two defined over a
finite field k&, embedded in its Jacobian G, and having a trivial automorphism group.
Let F : G — G be the Frobenius morphism corresponding to k. Let K := k(C)
be the function field of C. Then C(K) = C(k) U S(v;1) where v € C(K) is the
identity automorphism of C' viewed as an element of G(K). Let I' := Z[F]y be
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the Z[F]-submodule of G(K) generated by ~. It is an easy matter to see that
C(K¥8)NT = S(v;1).

Now let v/ := —y 4+ Fy € G(K) and I" := Z[F]y' < T the Z[F]-submodule
generated by 7. Let Y := C — . Thus, Y(K*8)NT = S(v;1) — v. However,

S(i1) =7 ={0}U{Y F ineN} C T
1=0

so that we have Y(K?®8) NI/ = S(y;1) — v as well. However, S(y;1) — v is a
cycle-free F-set in the sense of I, but not in the sense of I".

We refer to sets of the form appearing in the intrinsic description of Y (K) N T
above as cycles. Taking them as a the basis of our definition for F-sets we obtain
an intrinsic description of the induced structure. More precisely,

Definition 1.9. If M is a Z[F]-module, a € M, and 0 € Z, is a positive integer,
then the F° cycle of a is the set C(a;6) := {>_1_ F®a:n € N}. Ifay,...,am € M
is a sequence of elements of M and é1,...,0,, € Zy is a sequence of positive
integers of the same length, then we denote the sum of the F% cycles of the a;s by

C(@0) == Y1, Clagi6;) = {1 Xy F%a; : (na,...,nm) € N™}. An F-set

in a Z[F]-module M is a set of the form b+ C(@;d) + H where b,ay,...,aym € M
are elements of M and H < M is a Z[F']-submodule of M for some .

Remark 1.10. If ¢ € Z, is a positive integer, then any F'-set is automatically an
F-set. Conversely, any F-set may be expressed as a finite union of F*-sets.

It turns out that every cycle-free F-set may be expressed as a finite union of
F-sets. For the sake of illustration, we note that the single orbit S(a;d) may be
expressed as {a} Ua+ C(F%a — a;8) = (a + C(0;1)) U (a + C(F°a — a;6). Thus,
we do not lose any structure by working with cycles instead of orbits.

Moreover, if X C M is an F-set in some module M, then there is an embedding
of M into some other module M’ so that X is a finite union of cycle-free F-sets
in the sense of M’. In this case, it is a matter of reversing the operations of the
previous paragraph. That is, if F°b — b = a, then we may express C(a;d) as
—b+ S(F°b;0). One checks (using properties of Frobenius rings) that if M’ is the
quotient of M @ Z[F] by the submodule generated by (—a, F® — 1), then there is a
natural embedding of M into M’ and one may take b to be the image of (0,1) in M.
In the case that M arises as a submodule of G(K), the K-points of a semiabelian
variety G over a finite field with K algebraically closed, then one can find b € G(K)
since the map (F? — 1) : G(K) — G(K) is surjective.

If one passes from a module to an extension, then while the class of cycle-free F-
sets might change, the class of finite unions of F-sets does not. That is, if M < M’
is an extension of Z[F]-modules and X is a subset of M which is an F-set in the
sense of M’, then X is already a union of F-sets in the sense of M. So, to say that
a set is a union of F-sets is the same as to say that it is a union of cycle-free F-sets
in the sense of some extension module.

The conclusion of Theorem 1.6 should be that X (K)NT is a finite union of F-sets.
Our proof of Theorem 1.6 is (mostly) an exercise in elementary algebraic geometry.
There is a point in the proof at which a detailed analysis of the combinatorics of
F-sets plays a decisive role. We sketch the proof in a more general situation in
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Section 2. For the remainder of this section we discuss the combinatorics of F-sets
and their consequences for the model theory of these structures.

Suppose S :=b+ S(a1,...,am;01,...,0m) and T :=d+S(c1,...,¢n; V153 Yn)
are two groupless cycle-free F-sets. How does one study their intersection? For
simplicity let us consider the case when all the §;’s and ~;’s are 1. Trivially, we can
express SNT as the set of all b+ F™ay +- - -+ F"™a,, such that for some s1, ... sy,

Fay+ -+ F™ay + F**(—c1)+ -+ F*"(—cp,) =d—b
We are thus lead to consider “logarithmic sets” of tuples of natural numbers.
Definition 1.11. Given T = (1,...,2¢) € M* and Y C M, we define
logz Y := {(r1,...,7) e N*: Fligy - + Fg, € Y}

The logarithmic set logz Y describes the ways that elements of ¥ may be ex-
pressed as a sum of iterates of F' applied to the z;’s.
Going in the other direction we have a notion of exponentiation as well.

Definition 1.12. Let B C N¢ be a set of {-tuples of natural numbers. We define
FB .= {(F",... F%) € Z[F)*: (by,...,b)) € B}
If7 = (21,...,2¢) € M, then

P4
FP%:={> Fx;: (b,...,b) € B}
=1

The key technical observation in [7] is that

Fact 1.13. If M is a Z[F]-module, T € M*, and y € M, then there is a positive
integer 0 such that log={y} is the projection of a positive quantifier-free definable
set in the structure (N, 0,0, Ps) on the natural numbers, where o is the successor
function and Ps(x) is a predicate that is interpreted as x = 0mod .

Now a projection of a positive quantifier-free definable set in (N, 0, o, Ps) is called
§-closed and is a finite union of sets of the form £ + V where € N¢ and V ¢ N*
is given by a conjunction of finitely many equations of the form = = gmodJ, for
some 0 < ¢ < J; x = 0°(y), for some s € N; or z = p, for some p € N. Returning
to our description of the intersection of groupless cycle-free F-sets S and T above,
and using Fact 1.13, we see that there is a d-closed set B C N™ such that

SNT =b+ FPa.

It is then not hard to see that SN T is a finite union of groupless cycle-free F-sets
in M. Using this technique, one shows:

Fact 1.14. Suppose M is a Z[F]-module.

(a) An intersection of two groupless F'-sets is a finite union of groupless F-sets.

(b) If N < M is a submodule and U is a groupless F-set in M, then U NN s
a finite union of groupless F-sets in N.

(¢) The class of finite unions of F-sets is preserved under finite intersections.

The consequences of Fact 1.13 go beyond an understanding of intersections of
F-sets. For example, given @ = (ay,...a;) € M, we can define an equivalence
relation, ~g, on N, by 7 ~3 5 <= F"a; +---+ Fay = F¥ay + --- + F%ay.
It follows from Fact 1.13 that Ez is a definable equivalence relation in (N, 0, o, Py)
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for some 0 > 0. In this way, one can study the cycle-free groupless F-sets that are
based on @ by considering sets interpretable in the structures (N, 0, o, Py).

These structures on N, which are naturally bi-interpretable with (N, 0, o) itself,
are structurally extremely simple. For example, they are of Morley rank 1, ad-
mit elimination of quantifiers and weak elimination of imaginaries, have definable
Skolem functions, and are of trivial geometry. Via the “logarithmic” equivalence re-
lations described above, these properties impose heavy restrictions on the behaviour
of F-sets in Z[F]-modules.

Let us say a word about the combinatorics behind Fact 1.13. First we reduce to
the case that M is finitely generated by working in the Z[F]-submodule generated
by {z1,...,ze,y}. Let K =|J, ker F". As M is finitely generated, K = ker F** for

o0
some Nj > 0. It follows that F' is injective on F>°M := ﬂ F"M. A consequence
n=0

of the fact that Z[F] is a Frobenius ring is that F°*°M is a finite set. (In fact, this
consequence was one of the motivating factors behind the definition of a Frobenius
ring, see Proposition 2.1 of [7] for a proof.) It follows that some positive power of F’
must fix F°*°M pointwise. The § that appears in Fact 1.13 is this positive integer.

For each i > 0, let M; = K + F*M. These are the points that are F' divisible
modulo K. We obtain a filtration of M, and define M, to be the intersection of
this descending chain of Z[F]-submodules: My = M > My > My > - > M, =

oo
ﬂ M,,. This in turn induces a valuation on M, v: M — w+ 1, given by v(z) > n
n=0
if and only if x € M,,. Properties of the valuation are then used to describe the

shape that the logarithmic sets can take.
This analysis eventually leads to a quantifier elimination and stability theorem
for Z[F]-modules with F-sets.

Theorem 1.15 (Theorems 5.13 and 6.11 of [7]). Let M be a Z[F]-module. Consider
M as a structure in the language L having a predicate for each F-set in each
Cartesian power of M. Then, M admits elimination of quantifiers in L and is
stable.

Theorem 1.15 together with Theorem 1.6 implies the stability of the induced
structure on a finitely generated submodule of a semiabelian variety defined over
a finite field. This in turn implies a uniform version of Theorem 1.6 where one
obtains a uniform description of X,(K)NT as X, varies in an algebraic family of
closed subvarieties of G (Corollary 7.15 of [7]).

2. A GEOMETRIC VERSION

In this section we prove a geometric version of Theorem 1.6. While this version
generalizes our previous theorem, the proof follows a similar scheme.

We consider the case of G a semiabelian variety defined over a finite field k,
F : G — G the corresponding Frobenius morphism, K > k an algebraically closed
extension field of k, and I' = © + G(k*8) where © < G(K) is a finitely generated
Z[F)-module. We obtain an example of such a situation by taking R an integral
domain that is finitely generated as an algebra over k&, and letting I' := G(R) be
the group of R-points on G. Indeed, by the Lang-Néron theorem I'/G(k#) is a
finitely generated group (see Theorem 6.1 and Corollary 2.7.3 of [5]). Let S < R



8 RAHIM MOOSA AND THOMAS SCANLON

be a finitely generated k-algebra such that G(S) surjects onto I'/G(k®#). Then
[ = O + G(k¥8) where © := G(S) is a finitely generated Z[F]-module.

Of course, we cannot expect X (K) NI to be a finite union of F-sets for X C G
a general algebraic subvariety. For example, if X is itself defined over a finite
field, then X (K) NT contains X (k*&). However, this is essentially the only extra
complication.

Theorem 2.1. If X C G is a closed subvariety of G, then X(K)NT is a finite
union of sets of the form S + Y (k&) where S C T is an F-set and Y C G is a
closed subvariety over k8.

Proof. For certain details, we will refer the reader to arguments in [7].

We work by induction on dim X. Replacing X with the Zariski closure of X (K)N
I' we may assume that X(K) NT is Zariski dense in X. Taking finite unions, we
may assume that X is irreducible. Passing to a quotient, we may assume that the
stabilizer of X is trivial.

Note that the natural maps ©/F"© — I'/F™T, are surjective for every n € Z;
since G(k*&) C F"I'. From Lemma 7.5 of [7] it follows that ©/F"© is finite for
each n € Z so that the same is true of I'/F"T.

We claim that for each n € Zy there is some v, € T' with (v, + F"T) N X (K)
Zariski dense in X. Indeed, let A C I' be a finite set of coset representatives for
FrT'in I'. For each a € A let Y, := X(K) N (a+ F"I'). We have reduced to the
case that X (K)NT is Zariski dense in X so that

X = X(K)NT
= Jxw)n(+Fr)
acA

= JXE)n(@a+FT)
acA

U

a€A

As X is irreducible and A is finite, we have X =Y, for some a € A, as desired.

Let L be the separable closure of a finitely generated extension of k& with
G(L) > T. Let U be a nonprincipal ultrafilter on w and v := [(7,)]y be the limit
of (Vn)new with respect to U. Let *K be the ultrapower of K with respect to U,
*L C *K the corresponding ultrapower of L, and *I' < G(*L) the corresponding
ultrapower of T'. Note that F>°*T' < G((*L)?™).

To say that a particular type definable set (in some expansion of the language
of rings) is Zariski dense in a variety is a type definable condition on the canonical
parameter of the variety. Thus, X (*K) N (y+ F>°*T") is Zariski dense in X. That
is, X —v meets G((*L)P") in a Zariski dense set. So X — ~ is defined over (*L)P™

Working in the model (*K,(*L)P") of the first order theory of pairs of alge-
braically closed fields, notice that -y realises a formula which witnesses the fact that
v € G(*K) and that X —~ is defined over (*L)?" . But (*K, (*L)?" ) is an elemen-
tary extension of the pair (K, k8). Indeed, it suffices to observe that K is linearly
disjoint from (*L)?” over k!, the details of which can be found in Proposition 7.7
of [7]. Thus, we find 7/ € G(K) with X — ' defined over k8.
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Let I be the module generated by T and 4. If we show that X (K)NT” has the
correct form, then the result follows for X (K)NT. Indeed, suppose X (K)NT' =
US,- + Y;(k8), where S; C T is an F-set and Y; C G is a subvariety over k2,
Fix ¢ < ¢ and notice that S; NI = UTi’j for appropriate F-sets T; ; C I' as

J
the intersection of an F-set with a submodule is a union of F-sets. As Y;(k¥8) C

G(k*'8) <T we have that [S; +Y;(k*®)]NT = (5;NT) +Y;(k*8) = | T3, + Vi (k™).
J
Thus, X(K) NI = | JT;; + Yi(k™®).
0.

Thus, we may assume that I' = I'V. Replacing X with X —+ and F' with some
power of itself, we may assume that X is defined over k.

We note for the sequel that there is a natural number n such that if a € (I'\ FT'),
then X — a is not defined over L9 .The proof of this assertion is given during
the course of the proof of Theorem 7.8 of [7] and follows along the lines of our
reduction to the case that X is defined over k. It follows that if a € '\ FT', then
(X —a)(K)NF"T is not equal to X — a and therefore has lower dimension than
X. As F"T has finite index in FT', one obtains from this that (X —a)(K)NFT
has lower dimension than X for all a € T'\ FT.

Let A C T be a finite set of coset representatives for the non-zero cosets of FT'
inT. Let Z, := (X —a)(K)N FT as above.

By induction we have that

X(E)n(T\FT) = |JX(K)n(a+FT)
a€A
= Ja+[(X-a)(K)nFT]
a€A
= Ja+2zZ.(K)nFr
a€A
= 0 Si+ Yi(k™)

where each S; is an F-set and Y; is an algebraic variety defined over k*8. Let m
be sufficiently divisible so that each Y; is defined over the extension of k of degree
m. We compute.
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X(K)N (F'T\ F*'1)

(@

X(K)N(D\ F*T) =

&+
I
o
3|
iy

X(K) N [ij—l-ZF \ ij+l+1l—1]

I
3

§=0 =0

= U Fm FUXE) A (@ FL))]
=0 =0
oo m—1 n

_ U Fi U UFKSi-l-Y;(qZ)(kalg)]
=0 =0 i=1

m—1 n oo

= U UUF s+ )

¢=0 i=1;=0

By Corollary 7.3 of [7], the set U;‘;o F™(F*S;) is a subset of a finite union of
F-sets that are themselves contained in X. Thus, X(K) N[\ F*T] is a finite
union of sets of the requisite form.

Finally, observe that F>TI' = G(k*#). Indeed that G(k*8) C F>T is clear, and
it remains to show that F>*© C G(k*2). But as © is a finitely generated Z[F]-
module, F*°0O is a finite group (see Proposition 2.1 of [7]) and hence made up of
torsion points of G. As G is over k%2, all torsion points are contained in G(k#).
We thus have that X (K) N F>T = X (k*#), which completes the proof. O

Further Eztensions

Dragos Ghioca has extended this argument to some other cases. Ghioca has
considered the case of t-adic closures of finitely generated groups. That is, if k is a
finite field and G is a semiabelian variety over k((t)), then the group G(k((t))) is
naturally a topological group with the topology inherited from the ¢-adic topology
on k((t)). If T < G(k((t))) is a finitely generated group, then one can consider T,
the closure of I' with respect to this topology. Ghioca has shown that when G is
defined over a finite field, I' < G(k((t))) is a finitely generated Z[F]-module, and
X C G is a closed subvariety, then X (k((¢)))NT is a finite union of sets of the form
a+S+[H(k((t))) NT] where S is a groupless F-set, a is a point, and H < G is an
algebraic subgroup.

Ghioca has also extended this study to purely inseparable extensions.

Theorem 2.2 (Ghioca). Let G be a semiabelian variety over a finite field Fq and let
F : G — G be the corresponding Frobenius morphism. Let R be a finitely generated
integral domain extending F,. Let K be the algebraic closure of the fraction field
of R and let R' := {x € K : (In € Z,)z9" € R} be the perfect closure of R in
K. [Note that F : G(R') — G(R') is an automorphism of this group.] Then, if
X C G is a subvariety of G the set X(R') is a finite union of sets of the form
a+ H(R)+ {3, Fo™ib; : i € Z"} for some a,by,...,b, € G(K), 1,...,0, €
Zy, and H < G an algebraic subgroup.

Theorem 2.2 follows from the uniform version of Theorem 1.6 given in [7]. The
above results will appear as parts of Ghioca’s doctoral dissertation.
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3. ABSOLUTE MORDELL-LANG

In the introduction we said that Hrushovski salvaged the Mordell-Lang conjec-
ture in positive characteristic by treating the case of varieties defined over finite
fields as exceptions [3]. It would be fairer to say that he reduced the general problem
to the case of varieties defined over finite fields. Let us recall what Hrushovski actu-
ally showed. We begin by fixing some notation. Let p be a prime number, k := ]F;lg
be the algebraic closure of the prime field, and let K be any algebraically closed field
extending k. If G is a semiabelian variety over K, then a closed subvariety X C G
is said to be special if it is of the form ¢+ h™1(X,), where c € G(K), h: G; — G,
is a surjective morphism from an algebraic subgroup G; C G to a group variety G,
over k, and X, C G, is a closed subvariety also over k. Note, for instance, that
translates of algebraic subgroups of G are special in this sense. Hrushovski’s theo-
rem (restricted to the case of finitely generated subgroups of semiabelian varieties
in characteristic p) then states:

Theorem 3.1 (Relative Mordell-Lang — Characteristic p). Suppose G is a semi-
abelian variety over K, X C G is a closed subvariety, and I' < G(K) is a finitely
generated subgroup of the K-points. Then there are special closed subvarieties

4
X1,.... Xy C X such that X(K)NT = | J X;(K)nT.
i=1

It is instructive to consider what happens in two extreme cases. Suppose G is
an abelian variety such that no subabelian variety of G admits a nontrivial map to
an abelian variety over k. We say that G is of k-trace zero. It follows that the only
special subvarieties of G are the translates of abelian subvarieties. Hence in this
case Theorem 3.1 says that X (K)NT is a finite union of cosets of T — that is, the
conclusion of the characteristic 0 Mordell-Lang conjecture holds in charateristic p
for abelian varieties of k-trace zero.

The other extreme case is exactly what we considered in [7] (and have been
discussing here); it is when G is itself defined over k. In this case Theorem 3.1
says that X(K) NT is a finite union of sets of the form X'(K) NI where X' is
a translate of a subvariety of G over k. However, it does not describe what these
latter intersections look like. Under the additional assumption that I' is preserved
by a Frobenius morphism, we have described X(K) N T (in Theorem 1.6 of the
current paper) as a finite union of F-sets.

For all intermediate cases, Hrushovski’s theorem says (loosely speaking) that
the failure of the conclusion of the characteristic 0 Mordell-Lang conjecture in
characteristic p comes from semiabelian varieties over finite fields. This being the
case, our results should give a general solution to the Mordell-Lang problem in
positive characteristic. As there are several possible interpretations of the problem,
we cannot rightly claim to have a complete solution. Nevertheless, in this section
we describe one such solution.

To pass from the case of semiabelian varieties defined over a finite field to the
general case, we must first consider weakly isotrivial varieties.

In what follows k := F;lg is the algebraic closure of the prime field and U is
an uncountable algebraically closed field of characteristic p. All varieties and mor-
phisms, unless otherwise stated, will be defined over U. All fields will be contained
in U. Also, defined over will be meant in the algebraic geometric sense (as opposed
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to the model-theoretic sense). Moreover, we restrict attention to the case of abelian
varieties.
We begin with some generalities on the notion of isotriviality and trace.

Definition 3.2. Suppose X is a variety.
(a) X is strongly isotrivial if it is defined over k.
(b) X is isotrivial if there is a variety Y over k, and an isomorphism f : Y — X.
(¢) X is weakly isotrivial if there exists a variety Y over k, and a purely insep-
arable surjective morphism f:Y — X.

Note that in both parts (b) and (c) of the definition, the morphism f need not
be over the field of definition of X. That is, additional parameters may be required
to witness (weak) isotriviality. Also, recall that at the level of U-rational points,
a purely inseparable morphism is just a morphism that is a bijection between its
domain and its image.

Definition 3.3. Let K/k be any field extension, and G an abelian variety over
K. A K/k-trace of G is a pair (G, h) where G, is an abelian variety over k and
h: G, — G is a homomorphism over K with finite kernel; such that the following
universal property holds:

Given any abelian variety G' over k and a homomorphism b/ : G’ — G over K,
there exists a unique homomorphism g : G' — G, over k such that h' = hg.

Remark 3.4. As K/k is primary, a K/k-trace of G exists.! Moreover, by the
universal property, if (G, k') is another K/k-trace of G then there is a (unique)
isomorphism g : G/, — G, over k with b/ = hg.

Lemma 3.5. Suppose K/k is an extension of fields and G is an abelian variety
over K. Assume that G is weakly isotrivial, and let (Go,h) be a K5 /k-trace of
G. Then h is purely inseparable and surjective. In particular, there is a witness for
the weak isotriviality of G over K®°P.

Proof. By weak isotriviality, there is L/K®°P a finitely generated field extension, H
an abelian variety over k, and f : H — G a purely inseparable surjective morphism
over L. Translating by — f(Og) € G(L), we may assume that f is a homomorphism
of algebraic groups. Let (GL,h') be any L/k-trace of G. By the universal property
we have a homomorphism ¢ : H — G over k such that the following commutes:

H—1-q

|

G/
As R/ has finite kernel and f is a purely inseparable surjection, we obtain
dim(G,) = dim G = dim H = dim g(H).

Hence, g(H) = G.. It follows that A’ is purely inseparable and surjective.

Now G is over K®*°P, K®°P is a primary extension of k, and L is a primary
extension of K*P. Hence by VIIL3.7 of [4], (Go,h) is also an L/k-trace of G. By
the above observation h is purely separable and surjective. O

ISee Lang [4].
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Until further notice, we fix G a weakly isotrivial abelian variety, and K the
minimal field of definition for G. Note that K/F), is finitely generated, and if G is
strongly isotrivial then K is a finite field.

We wish to construct, in as canonical a manner as possible, an endomorphism
of G that is “induced by the Frobenius automorphism of U”.

Definition 3.6. A pseudo-Frobenius endomorphism of G, F:G— G, is a purely
inseparable surjective endomorphism over KF, of the form hFh~!, where
o (Go,h) is a K% /k-trace of Gj
e ¢ is a power of p such that G, is over [Fy; and,
e F': G, — G, is the algebraic endomorphism induced by the g-power Frobe-
nius map.

Lemma 3.7. A pseudo-Frobenius endomorphism of G exists.

Proof. Let (Go, h) be any K¢ /k-trace of G. As G is weakly isotrivial, Lemma 3.5
tells us that h : G, — G is a purely inseparable surjective homomorphism over
K*°P. Now let ¢ be a power of p such that:

1. G, is over Fy;

2. every algebraic automorphism of G, is over Fg; and,

3. Fh~! is an algebraic morphism, where F' : G, — G, is the morphism

induced by the g-power Frobenius map.

That such a power of p exists follows from the following facts: G, is over k = ]Fglg;
every algebraic automorphism of G, is over k and the group of algebraic automor-
phisms of G, (which is the multiplicative group of units in the endomorphism ring
of G,) is finitely generated; and h~! : G — G, is a definable endomorphism, which
means that after composing with a suifficiently high power of the Frobenius it is
an algebraic morphism. Let F': G — G be the algebraic morphism F' := hFh~1.
It remains to show that F' is over KTF,.

If T(F) C Go X G, is the graph of F, then (h x h)[T(F)(K%P)] C (G x G)(K>P)
is Zariski dense in the graph of F , and hence F is over KP. Tt suffices, therefore,
to show that F is model-theoretically definable over KT,. Indeed, this would
imply that F is over (KF,)? ~, and hence over (KF,)? ~ N (KF,)*® = KF,, as
desired. To verify model-theoretic definability over KF,, it suffices to show that
every automorphism of the universe which fixes KIF, pointwise fixes F.

Let o be an automorphism of the universe which fixes K, pointwise. Then o
fixes G, and G setwise, and

F® = (hFh™")* = ahFh~'a™" = (aha ") F(aha ")~ = h*F(h*) 1,
where the penultimate equality is by the fact that o commutes with F' (on G, ). Now
(Go, h®) is another K®°P /k-trace of G. Hence, there is an algebraic automorphism
g of G, over k, such that h* = hg. Moreover, by our choice of ¢, g is over F,.
Hence F® = hgFg~'h~! = hFh~! = }~7, where the penultimate equality is by the
fact that F' commutes with g. This proves the lemma. O

A pseudo-Frobenius endomorphism on a weakly isotrivial abelian variety is only
unique up to iterations:

Lemma 3.8. Suppose ﬁ’~: G — G is another pseudo-Frobenius endomorphism.
Then for some n,n’ >0, F" = (F')".
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Proof. Let (GL,h'),q’, F' be data that witnesses the pseudo-Frobenius nature of F’
(see Definition 3.6). Note that (Go,h) and (GL,h') are both K5 /k traces of G,
and hence there is an isomorphism g : G, — G, over k, with A’ = hg. Let N > 0
be such that [~ contains F, and F,/, and such that g is over F~. Let n,n’ > 0 be
such that ¢" = p& = (¢ )"/. Then the p"-power Frobenius automorphism induces
F"on G, and (F’)”/ on G7,. Moreover, as g is over F;,x and the pN -power Frobenius
automorphism fixes F,~-pointwise, we have that g(F’ )”/ g~ ! = F™. Hence,

(ﬁ/)n’ — [th/(h/)fl]n’ _ hg(F/)n/gflhfl _ thh71 — ﬁn’
as desired. [

Recall from Definition 1.2 that a Frobenius ring is the abstract counterpart of the
subring of the endomorphism ring of a strongly isotrivial abelian variety generated
by a Frobenius.

Lemma 3.9. Ifﬁ is a pseudo-Frobenius endomorphism of G, then the subring of
the endomorphism of G generated by F, R = Z[F), is a Frobenius ring.

Proof. Let R, = Z[F] be the subring of the endomorphism ring of G, generated by

F. As G, is over F, and F' is induced by the g-power Frobenius, R, is a Frobenius
ring. Hence it suffices to show that the map a : R — R over Z induced by F' — F

is an isomorphism of R and R,. But this map is just P(F) — hP(F)h~' = P(F).
As h is bijective, « is an isomorphism of rings. O

Question 3.10. Suppose A is an abelian variety and P : A — A is a purely
inseparable surjective endomorphism such that the subring of the endomorphism
ring of A generated by P is a Frobenius ring. Does it follow that A is weakly
isotrivial and aP is a pseudo-Frobenius endomorphism for some o € Aut(A)?

In any case, from the strongly isotrivial case we deduce a version of the Mordell-
Lang conjecture for weakly isotrivial groups.

Theorem 3.11 (Absolute Mordell—Lar}g — Weakly Isotrivial Case). Suppose G is
a weakly isotrivial abelian variety and F : G — G 1is a pseudo-Frobenius endomor-
phism. Suppose I' < G(U) is a finitely generated Z[F|-submodule. Then for X C G

a closed subvariety, X (U) N T is a finite union of F-sets.

Proof. Let (Go,h),q, F' be data that witnesses the pseudo-Frobenius nature of F.
Let R, = Z[F] be the subring of the endomorphism ring of G, generated by F. Let
[, = h () < Go(U) and X, = h™*(X) C Go. As F = hFh~', T, is a finitely
generated Ro-submodule of G,(U). Now h is a bijective group homomorphism
from G, (U) to G(U) that takes the action of F to the action of F, and restricts
to a bijection between X,(U) NIy and X(U) NT. The theorem thus follows from
Theorem 1.6 applied to Go, s, F, Xo. g

Remark 3.12. If L is a finitely generated field over which G and F are defined, then
I' := G(L) is a finitely generated Z[ﬁ ]-submodule; and so Theorem 3.11 describes
the L-points on subvarieties of weakly isotrivial abelian varieties. Note that while L
may not always be taken to be the minimal field of definition for G, it can be taken
to be the extension of such by a finite field (see Definition 3.6 of a pseudo-Frobenius

morphism).
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A general case of the Mordell-Lang conjecture follows.

Theorem 3.13. Let G be an abelian variety over U, X C G be a closed subvariety,
and T' < G(U) a finitely generated subgroup. Let G' < G be the mazimal connected
weakly isotrivial algebraic subgroup of G and set T’ :=T NG’ (U). We assume that
I’ is a Z[F]-submodule for some pseudo-Frobenius F on G'. Then X(U)NT is a
finite union of sets of the form a + S + (H(U) NT) where a € G(U), S C G'(U) is
a groupless F-set in G’, and H < G is an algebraic subgroup.

Proof. We work by induction on dim X. Taking finite unions, we may assume
that X is irreducible. Passing to a quotient, we may assume that X has a trivial
stabilizer. Replacing X with the Zariski closure of X (U) N T, we may assume that
X(U)NT is Zariski dense in X.

By Hrushovski’s theorem (3.1) there is a connected algebraic subgroup G; < G,
an abelian variety G, defined over k, an algebraic variety X, C G,, and a surjective
morphism of algebraic groups h : G1 — G, for which X is a translate of h=1X,. As
X has no stabilizer, h has no kernel, and hence is in particular an isogeny. As the
relation of two abelian varieties being isogenous is symmetric, we have a surjective
morphism h:Go — Gi. Then G, / ker h is again an abelian variety over k, and h
induces a purely inseparable surjective morphism G,/ kerh — G;. That i is, G is
weakly isotrivial.

It follows that G; is a subgroup of G’. Hence X C a+ G’ for some o € G(U).
Since X (U) NI is nonempty (in fact Zariski-dense in X) there must be a point in
T of the form « + g for some g € G'(U). Let y = —a—g € I'. Then v+ X C G';
and so X(U)NT = -+ [(vy+ X)(U)NT] = =y + [(v + X)(U) NT]. We are now
in the case of Theorem 3.11. O

Remark 3.14. Suppose L is a finitely generated field over which G, G’, and F are
defined. Then I' := G(L) satisfies the assumptions of Theorem 3.13.
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