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Abstract

We generalise results for differential rings to rings R with additive maps
∂1, . . . , ∂n : R → R satisfying a certain generalisation of the Leibniz rule,
namely (id, ∂1, . . . , ∂n) is a truncated Hasse derivation. We show that the
theory of integral domains of characteristic 0 with such maps admits a model
companion, and that this model companion admits quantifier elimination and
is stable but not ω-stable for n ≥ 2.
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1 Introduction

The model theory of integral differential rings of chraracteristic 0 and its
model companion, DCF0, are frequently studied. We wish to extend several
results to a more general setting.

We work in the language Ln := (+,×,−, 0, 1, ∂1, . . . , ∂n) extending the
language of rings with n unary function symbols ∂1, . . . , ∂n, and we consider
the theory Tn of integral domains of characteristic 0 together with the axioms

∀a∀b(∂m(a+ b) = ∂ma+ ∂mb)

∀a∀b(∂m(ab) = a(∂mb) +
m−1∑
j=1

(∂ja)(∂m−jb) + (∂ma)b)

for all m = 1, . . . , n.

This generalises the theory of integral differential rings in characteristic
0, which is the special case where n = 1. In fact, we see that ∂1 is always a
derivation, regardless of n.

On the other hand, this theory is a special case of the D-rings in charac-
teristic 0 discussed by Moosa and Scanlon [1]. That paper is highly technical,
and works in much greater generality. Our goal is to present this special case
in a more concrete and explicit way. In addition, we will address quanti-
fier elimination and stability of the model companion, something that is not
considered in [1] as it does not hold in that generality.

The same construction except in positive characteristic and positing an
additional iterativity condition, stating that ∂a∂b =

(
a+b
a

)
∂a+b, has been stud-

ied by Ziegler [3]. In characteristic 0, iterativity would imply that ∂m = 1
m!
∂m
1

for all m = 1, . . . , n, and hence the higher derivations would be completely
determined by the derivation ∂1.

Indeed, for any differential ring (R, ∂) where R is an integral domain of
characteristic 0, we have that (R, ∂, . . . , 1

n!
∂n) |= Tn. However, we do not

assume iterativity, and thus there are other examples.

For example, consider the ring Q[t] with ∂1, ∂2 : Q[t] → Q[t] given by

∂1f = df
dt

and ∂2f = df
dt
+ 1

2
d2f
dt2

. It is easily checked that (Q[t], ∂1, ∂2) |= T2.
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Indeed, we will see that we can define ∂1, . . . , ∂n by having them take t to
any arbitrarily chosen values in Q[t] to give a model of Tn. This essentially
follows from Proposition 4.5 below. In this case, we chose ∂1t = ∂2t = 1. If
we took ∂1t = 1 (so that ∂1f = df

dt
for all f ∈ Q[t]) and ∂2t = p(t) for an

arbitrary p ∈ Q[t], then we’d get ∂2f = pdf
dt
+ 1

2
d2f
dt2

.

In this paper, we show that Tn admits a model companion, DnCF0, and
that DnCF0 admits quantifier elimination, generalising the corresponding
results for differential rings. Moreover, we show DnCF0 is c-stable, where c
is the cardinality of the continuum, but for n ≥ 2, unlike DCF0, DnCF0 is
not ω-stable.

Throughout this paper, all rings are assumed to be commutative and
unital, and 0 is assumed to be a natural number. Moreover, irreducible
varieties are assumed to be nonempty.

2 ∇-rings

While we are primarily interested in models of Tn, it is useful to work in a
more flexible 2-sorted setting:

Definition 2.1. Let Sn denote the collection of triples (R, S,∇) where R
and S are rings and ∇ = (∂0, . . . , ∂n) is an (n + 1)-tuple of additive maps
∂m : R → S such that:

• ∂01R = 1S;

• for all m = 0, . . . , n, ∂m(ab) =
∑m

j=0(∂ja)(∂m−jb) for all a, b ∈ R.

Note that this forces ∂0 : R → S to be a ring homomorphism, giving S
the structure of an R-algebra. If (R, S,∇) ∈ Sn, we say that ∇ is an order
n S-valued derivation on R.

If (R, S,∇) ∈ Sn, R = S and ∂0 = idR, then we write (R,∇) instead
of (R, S,∇) and we say that (R,∇) is a ∇-ring and that ∇ is an order n
derivation on R. If moreover R is a field, we call (R,∇) a ∇-field.

So the models of Tn are precisely the ∇-rings (R,∇) such that R is an
integral domain of characteristic 0. (In this case, we ignore ∂0 = idR).
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Proposition 2.3. Let (R, S,∇) ∈ Sn. Then we have ∂m0 = 0 for all
m = 0, . . . , n and ∂m1 = 0 for all m = 1, . . . , n.

Proof. It’s clear that ∂m0 = ∂m(0 + 0) = ∂m0 + ∂m0, so ∂m0 = 0 for all
m = 0, . . . , n. Fix m = 1, . . . , n and suppose that ∂j1 = 0 for all 1 ≤ j < m.
Then

∂m1 = ∂m(1 · 1) =
m∑
j=0

(∂j1)(∂m−j1) = (∂01)(∂m1) + (∂m1)(∂01) = 2(∂m1)

so ∂m1 = 0. □

For a fixed ring S and n ∈ N, we’ll denote by ηS,n : Sn+1 → S[ε]/(εn+1)
the natural S-module isomorphism given by ηS,n(a0, . . . , an) =

∑n
m=0 amε

m.
We will write ηS when n is clear from context. Given (R, S,∇) ∈ Sn, we let
e := ηS,n ◦ ∇ : R → S[ε]/(εn+1).

Proposition 2.4. Let R, S be rings. Then

1. If (R, S,∇) ∈ Sn, then e = ηS ◦ ∇ is a ring homomorphism.

2. If e : R → S[ε]/(εn+1) is a ring homomorphism, then (R, S,∇) ∈ Sn

for ∇ = η−1
S ◦ e.

Proof. Additivity is clear since in one direction, ∇ and ηS are additive, and
in the other, η−1

S and e are additive. By Proposition 2.3, if (R, S,∇) ∈ Sn,
then e(1) = ∂01 + (∂11)ε+ · · ·+ (∂n1)ε

n = 1. And if e(1) = 1, then ∂01 = 1.
Moreover, for all a, b ∈ R,

e(a)e(b) = (
n∑

j=0

(∂ja)ε
j)(

n∑
k=0

(∂kb)ε
k)

=
n∑

j=0

n∑
k=0

(∂ja)(∂kb)ε
j+k

=
n∑

m=0

m∑
j=0

(∂ja)(∂m−jb)ε
m
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and e(ab) =
∑n

m=0 ∂m(ab)ε
m. Therefore, e(ab) = e(a)e(b) if and only if

∂m(ab) =
∑m

j=0(∂ja)(∂m−jb) for all m = 0, . . . , n. □

Definition 2.5. Let (R,∇) and (S,∇′) be ∇-rings, where ∇ = (∂0, . . . , ∂n)
and ∇′ = (∂′

0, . . . , ∂
′
n). A ∇-ring homomorphism is a ring homomorphism

φ : R → S such that φ ◦∂m = ∂′
m ◦φ for all m = 0, . . . , n. A bijective ∇-ring

homomorphism is called a ∇-ring isomorphism.

3 Prolongations

The goal of this section is to define the prolongation of polynomials and vari-
eties over a∇-field, by analogy with the case of differential rings. This will be
needed in the next section where we show that Tn admits a model companion,
by showing the existentially closed models of Tn can be axiomatised. Pro-
longations will feature in one of these axioms, the Geometric Axiom, which
will be introduced at the end of this section.

Let R, S be rings, g : R → S a function with g(0) = 0, x = (x1, . . . , xl)
be variables and f ∈ R[x]. We let f g ∈ S[x] denote the polynomial ob-
tained by applying g to the coefficients of f . Note that if e : R → S is
a ring homomorphism, then the map f 7→ f e : R[x] → S[x] is also a ring
homomorphism.

Definition 3.1. Let (R, S,∇) ∈ Sn. Fix variables x∂m = (x∂m
1 , . . . , x∂m

l ) for
all m = 0, . . . , n, and let x := x∂0 . Let S ′ := S[x∂0 , . . . , x∂n ]. We define the
prolongation map in l variables to be the map τ : R[x] → (S ′)n+1 given
by τf = η−1

S′ (f e(
∑n

m=0 x
∂mεm)), and we let τ = (τ0, . . . , τn).

That is, we apply e to the coefficients of f and we replace each variable xi

by
∑n

m=0 x
∂m
i εm. We then write this in S ′[ε]/(εn+1) as an S ′-linear combina-

tion of 1, ε, . . . , εn and take τf to be the tuple of coefficients in S ′. Explicitly,
in the case when l = 1, write f =

∑d
i=0 aix

i
1. Then we expand

d∑
i=0

((∂0ai) + (∂1ai)ε+ · · ·+ (∂nai)ε
n)(x∂0

1 + x∂1
1 ε+ · · ·+ x∂n

1 εn)i
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as a polynomial in ε. The coefficients of ε0, . . . , εn in the resulting polynomial
are then τ0, . . . , τn.

As an example, we’ll compute τ for a ∇-ring when n = 2 and l = 2.

We’ll let x∂0 = x = (x1, x2), x
∂1 = (y1, y2) and x∂2 = (z1, z2). Then

writing f =
∑d

i=0

∑d
j=0 ai,jx

i
1x

j
2, we have

τ0f + (τ1f)ε+ (τ2f)ε
2

=
d∑

i=0

d∑
j=0

(ai,j + (∂1ai,j)ε+ (∂2ai,j)ε
2)(x1 + y1ε+ z1ε

2)i(x2 + y2ε+ z2ε
2)j.

Matching terms which are order 0 in ε, we have

τ0f =
d∑

i=0

d∑
j=0

ai,jx
i
1x

j
2 = f.

It’s also clear that this will always hold for ∇-rings (and τ0f = f∂0 in
general). Matching terms which are order 1 in ε, we have

τ1f =
d∑

i=0

d∑
j=0

(∂1ai,j)x
i
1x

j
2

+
d∑

i=0

d∑
j=0

ai,j

(
i

1

)
xi−1
1 y1x

j
2 +

d∑
i=0

d∑
j=0

ai,jx
i
1

(
j

1

)
xj−1
2 y2

= f∂1 +
∂f

∂x1

y1 +
∂f

∂x2

y2.

Matching terms which are order 2 in ε, we have

τ2f =
d∑

i=0

d∑
j=0

(∂2ai,j)x
i
1x

j
2 +

d∑
i=0

d∑
j=0

(∂1ai,j)

(
i

1

)
xi−1
1 y1x

j
2
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+
d∑

i=0

d∑
j=0

(∂1ai,j)x
i
1

(
j

1

)
xj−1
2 y2 +

d∑
i=0

d∑
j=0

ai,j

(
i

1

)
xi−1
1 z1x

j
2

+
d∑

i=0

d∑
j=0

ai,jx
i
1

(
j

1

)
xj−1
2 z2 +

d∑
i=0

d∑
j=0

ai,j

(
i

2

)
xi−2
1 y21x

j
2

+
d∑

i=0

d∑
j=0

ai,jx
i
1

(
j

2

)
xj−2
2 y22 +

d∑
i=0

d∑
j=0

ai,j

(
i

1

)
xi−1
1 y1

(
j

1

)
xj−1
2 y2

= f∂2 +
∂f∂1

∂x1

y1 +
∂f∂2

∂x2

y2 +
∂f

∂x1

z1

+
∂f

∂x2

z2 +
1

2

∂2f

∂x2
1

y21 +
1

2

∂2f

∂x2
2

y22 +
∂2f

∂x1∂x2

y1y2.

As visible from this example, the explicit expression for τ can be com-
puted, but can quickly become unwieldy.

Let (R, S,∇) ∈ Sn and a ∈ Rl. Then we let ∂ma := (∂ma1, . . . , ∂mal)
and ∇a := (∂0a, . . . , ∂na). Moreover, if x = (x1, . . . , xl) are variables and
f = (f1, . . . , fr) ∈ (R[x])r, then we let τmf := (τmf1, . . . , τmfr) and
τf := (τ0f, . . . , τnf).

Similarly, if R, S are rings, e : R → S is a ring homomorphism and a ∈ Rl,
we let e(a) := (e(a1), . . . , e(al)).

Lemma 3.2.

1. Let (R, S,∇) ∈ Sn and x = (x1, . . . , xl) be variables. Then we have
τx = (x∂0 , . . . , x∂n) and τa = ∇a for all a ∈ R.

2. Let S be a ring, x = (x1, . . . , xl) be variables and f ∈ S[x, ε]/(εn+1).
Then for all a ∈ Sl, we have η−1

S (f(a)) = (η−1
S[x](f))(a). In particular,

for all b = (b∂0 , . . . , b∂n) = (b∂01 , . . . , b∂0l , . . . , b∂n1 , . . . , b∂nl ) ∈ S(n+1)l, we
have that (τf)(b) = η−1

S (f e(
∑n

m=0 b
∂mεm)).

3. Let R, S be rings, x = (x1, . . . , xl) be variables, e : R → S be a ring
homomorphism, f ∈ R[x] and a ∈ Rl. Then e(f(a)) = f e(e(a)).

Proof of 1. Fix j = 1, . . . , l. Let fj ∈ R[x] with fj(x) = xj. Then we have
f e
j = e(1)xj = xj, so f e

j (
∑n

m=0 x
∂mεm) =

∑n
m=0 x

∂m
j εm. Then τmxj = x∂m

j for

all m = 0, . . . , n and j = 1, . . . , l, so τx = (x∂0 , . . . , x∂n).
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Let a ∈ R and let g ∈ R[x] with g(x) = a. Then ge(
∑n

m=0 x
∂mεm) = e(a),

so τa = ∇a.

Proof of 2. Write f =
∑n

m=0 fmε
m for f0, . . . , fn ∈ S[x]. Then for all

a = (a1, . . . , al) ∈ Sl, we have

η−1
S (f(a)) = η−1

S (
n∑

m=0

fm(a)ε
m)

= (f0(a), . . . , fn(a))

= (f0, ..., fn)(a)

= (η−1
S[x](

n∑
m=0

fmε
m))(a)

= (η−1
S[x](f))(a)

so (τf)(b) = (η−1
S[x∂0 ,...,x∂n ]

(f e(
∑n

m=0 x
∂mεm)))(b) = η−1

S (f e(
∑n

m=0 b
∂mεm)).

Proof of 3. Write f =
∑d

i1=0 · · ·
∑d

il=0 bi1,...,ilx
i1
1 · · ·xil

l and a = (a1, . . . , al).
Then

e(f(a)) = e(
d∑

i1=0

· · ·
d∑

il=0

bi1,...,ila
i1
1 · · · aill )

=
d∑

i1=0

· · ·
d∑

il=0

e(bi1,...,il)e(a1)
i1 · · · e(al)il

= f e(e(a)).

□

Corollary 3.3. Let (R, S,∇) ∈ Sn, x = (x1, . . . , xl) be variables. Then
∇f(a) = τf(∇a) for all a ∈ Rl and f ∈ R[x].

Proof. We have

∇f(a) = η−1
S (e(f(a))) = η−1

S (f e(e(a))) = η−1
S (f e(

n∑
m=0

(∂ma)ε
m)) = τf(∇a).
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□

Proposition 3.4. Let (R, S,∇) ∈ Sn, x = (x1, . . . , xl) be variables and
b = (b∂0 , . . . , b∂n) = (b∂01 , . . . , b∂0l , . . . , b∂n1 , . . . , b∂nl ) ∈ S(n+1)l be arbitrary.
Then (R[x], S,∇b) ∈ Sn, where ∇b is given by ∇bf = τf(b). Moreover,
it is the unique S-valued order n derivation ∇′ on R[x] extending ∇ with
∇′x = b.

Proof. By Proposition 2.4, we only need to show the equivalent statement
holds for ηS ◦ ∇b : R[x] → S[ε]/(εn+1), i.e. the map f 7→ f e(

∑n
m=0 b

∂mεm).
That is, we need to show that this map is the unique ring homomorphism
extending e : R → S[ε]/(εn+1) such that e(x) =

∑n
m=0 b

∂mεm.

But this a composition of the map f 7→ f e : R[x] → S[x], which we noted
is a ring homomorphism, and the inclusion map S[x] → (S[ε]/(εn+1))[x] and
the evaluation map g 7→ g(

∑n
m=0 b

∂mεm) : (S[ε]/(εn+1))[x] → S[ε]/(εn+1),
which are clearly ring homomorphisms. Therefore, their composition is also a
ring homomorphism. Uniqueness is clear since the value of e is fixed on R and
x, which generate R[x]. By Lemma 3.2(1), we have that ∇ba = (τa)(b) = ∇a
for all a ∈ R, so ∇b extends ∇, and that ∇bx = (τx)(b) = b. □

Definition 3.5. If (k,∇) is a ∇-field and X is a subvariety of Al
k, we define

the prolongation of X to be the subvariety τX of A(n+1)l
k defined by τmf

for f ∈ I(X) and m = 0, . . . , n.

We define the map π : A(n+1)l
k → Al

k to be the projection on the first
l coordinates. Note that π restricts to a map π : τX → X since for all
f ∈ I(X), f = τ0f ∈ I(τX). Note also that if a ∈ X(K) for some field
extension K ⊇ k, then ∇a ∈ τX(K) since by Corollary 3.3, we have that
τmf(∇a) = ∂mf(a) = ∂m0 = 0.

Definition 3.6. Let (k,∇) be a ∇-field. We say (k,∇) satisfies the Geo-
metric Axiom (GA) if for every irreducible subvariety X ⊆ Al

k and every
irreducible subvariety Y ⊆ τX such that π(Y ) is Zariski dense in X, there
exists a ∈ X(k) such that ∇a ∈ Y (k).

The goal of the next section is to show that the existentially closed models
of Tn are precisely the algebraically closed ∇-fields of characteristic 0 satis-
fying GA, and to deduce from this the existence of a model companion for
Tn.
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4 Model Companion

First, we wish to show that existentially closed models of Tn are algebraically
closed fields. We do this by showing that if (R,∇) |= Tn, then ∇ extends to
algebraic extensions of the fraction field of R.

Lemma 4.1. Let R be a ring. Suppose a0, . . . , an ∈ R with a0 invertible.
Then a0 + a1ε+ · · ·+ anε

n is invertible in R[ε]/(εn+1).

Proof. Note that a1ε+· · ·+anε
n = (a1+· · ·+anε

n−1)ε is nilpotent, and hence
lies in the Jacobson radical of R[ε]/(εn+1). Thus, 1 + a−1

0 (a1ε + · · · + anε
n)

is a unit in R[ε]/(εn+1), and hence so is a0 + a1ε+ · · ·+ anε
n. □

Recall that if R is an integral domain, S is a ring and e : R → S is
a ring homomorphism such that e(b) is invertible in S for all 0 ̸= b ∈ R,
then e extends uniquely to ring homomorphism e : Frac(R) → S given by

e(a
b
) = e(a)

e(b)
.

Corollary 4.2. Let R, S be integral domains and (R, S,∇) ∈ Sn, and
suppose ker(∂0) = {0}. Then ∇ extends uniquely to a Frac(S)-valued order
n derivation on Frac(R). Moreover, if ∂0 : R → S is the inclusion map
(in which case the assumption that ker(∂0) = {0} comes for free), then
∂0 : Frac(R) → Frac(S) is also the inclusion map.

For the first part of the statement, it suffices to show e : R → S[ε]/(εn+1)
extends uniquely to a ring homomorphism e : Frac(R) → Frac(S)[ε]/(εn+1).
Consider e as a homomorphism R → Frac(S)[ε]/(εn+1). It suffices to show
e(b) is invertible for all b ̸= 0.

But ker(∂0) = {0}, so ∂0b ̸= 0 is invertible in Frac(S), and so by Lemma
4.1, e(b) = ∂0b+ (∂1b)ε+ · · ·+ (∂nb)ε

n is invertible in Frac(S)[ε]/(εn+1).

If ∂0 : R → S is the inclusion map, then ∂0(
a
b
) = ∂0a

∂0b
= a

b
, and therefore

∂0 : Frac(R) → Frac(S) is the inclusion map. □

Lemma 4.3. Let k ⊆ K be fields of characteristic 0 and let (k,K,∇) ∈ Sn

with ∂0 the inclusion map. Let α ∈ K be algebraic over k and let f ∈ k[t]
be its minimal polynomial. Then there exist unique b1, . . . , bn ∈ K such that
f e(α + b1ε+ · · ·+ bnε

n) = 0 in K[ε]/(εn+1).

Proof. We proceed by induction on n.
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Base case: n = 0. Note that e : k → K is ∂0, which is the inclusion map.
Thus, we have f e(α) = f(α) = 0. Uniqueness is immediate.

Induction step: Let n ≥ 1 and suppose b1, . . . , bn−1 ∈ K are the unique
elements satisfying f e(α + b1ε+ · · ·+ bn−1ε

n−1) = 0 in K[ε]/(εn).

Note that since k is a field of characteristic 0 and f is the minimal poly-
nomial of α over k, we have f ′(α) ̸= 0. Write f(t) = alt

l + · · · + a0 for
a0, . . . , al ∈ k. Then in K[ε]/(εn), we have

f e(α + b1ε+ · · ·+ bnε
n)

=
l∑

j=0

(aj + (∂1aj)ε+ · · ·+ (∂naj)ε
n)(α + b1ε+ · · ·+ bnε

n)j

=
l∑

j=0

(aj + (∂1aj)ε+ · · ·+ (∂naj)ε
n)(α + b1ε+ · · ·+ bn−1ε

n−1)j

+
l∑

j=0

aj

(
j

1

)
αj−1bnε

n

= τnf(α, b1, . . . , bn−1, 0) + f ′(α)bnε
n

which is 0 if and only if bn = − 1
f ′(α)

τnf(α, b1, . . . , bn−1, 0). □

Corollary 4.4. Let k ⊆ K be fields of characteristic 0 and (k,K,∇) ∈ Sn

with ∂0 the inclusion map. Let α ∈ K be algebraic over k. Then ∇ extends
uniquely to aK-valued order n derivation on k(α) such that ∂0 is the inclusion
map.

Proof. Let f ∈ k[t] be the minimal polynomial of α over k. By Lemma 4.3,
there exist unique b1, . . . , bn ∈ K such that f e(α + b1ε + · · · + bnε

n) = 0 in
K[ε]/(εn+1). By Proposition 3.4, ∇ extends to a K-valued order n derivation
on k[t] such that ∇t = (α, b1, . . . , bn). Then for e : k[t] → K[ε]/(εn+1), we
have

e(f(t)) = f e(e(t)) = f e(α + b1ε+ · · ·+ bnε
n) = 0.

Thus, e extends to a ring homomorphism e : k[t]/(f(t)) → K[ε]/(εn+1).
But k[t]/(f(t)) ∼= k(α), and so in fact e extends to a ring homomorphism
e : k(α) → K[ε]/(εn+1).
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Moreover, e(α) = e(t) = α + b1ε + · · · + bnε
n, so ∂0α = α. Since ∂0 is

a ring homomorphism and is the inclusion map on k and α, which generate
k(α), ∂0 is the inclusion map on k(α).

For uniqueness, suppose (k(α), K,∇′) ∈ Sn such that ∇′ extends ∇ and
∂′
0 : k(α) → K is the inclusion map. Then

0 = e(0) = e(f(α)) = f e(e(α)) = f e(α + (∂′
1α)ε+ · · ·+ (∂′

nα)ε
n)

so by the uniqueness of Lemma 4.3, the values of ∂′
1α, . . . , ∂

′
nα are fixed.

Hence, the value of e(α) = α + (∂′
1α)ε + · · · + (∂′

nα)ε
n is fixed. Thus, the

value of e is fixed on k and α, and hence on k(α). □

Proposition 4.5. Let F ⊆ L ⊆ K be fields of characteristic 0 and let
(F,K,∇) ∈ Sn with ∂0 the inclusion map. Let A be a transcendence basis
for L over F , and fix ba = (b∂0a , . . . , b∂na ) ∈ Kn+1 for each a ∈ A arbitrarily
such that b∂0a = a. Then ∇ extends to a unique K-valued order n derivation
on L such that ∇a = ba for all a ∈ A and ∂0 is the inclusion map.

Proof. Note that L = F (A)alg ∩ L. Thus, for all α ∈ L, α ∈ F (a)alg for
some a = (a1, . . . , ar) ∈ Ar. Let b∂m := (b∂ma1 , . . . , b

∂m
ar ) for all m = 0, . . . , n

and b := (b∂0 , . . . , b∂n). Let x = (x1, . . . , xr) be variables. By Proposi-
tion 3.4, ∇ extends uniquely to a K-valued order n derivation on F [x] with
∇x = b. Since a1, . . . , ar are transcendental over F , F [x] ∼= F [a], so ∇
extends uniquely to a K-valued order n derivation ∇a on F [a] with ∇aa = b.

Moreover, ∂0a = b∂0 = a by assumption. Since ∂0 : F [a] → K is a
ring homomorphism and is the inclusion map on F and a, it is the inclusion
map on F [a]. By Corollary 4.2, ∇a extends uniquely to a K-valued order n
derivation on F (a) with ∂0 the inclusion map. By Corollary 4.4, it further
extends uniquely to a K-valued order n derivation on F (a, α) with ∂0 the
inclusion map.

This demonstrates uniqueness. If α ∈ F (a)alg ∩ F (b)alg for a ∈ Ar and
b ∈ As, then by uniqueness, ∇(a,b)|F (a,α) = ∇a and ∇(a,b)|F (b,α) = ∇b. Thus,
∇aα = ∇(a,b)α = ∇bα. Thus, we get a well-defined map ∇ : L → Kn+1

where ∇α = ∇aα for some a ∈ Ar such that α ∈ F (a)alg.

If α, β ∈ L, then α ∈ F (a)alg and β ∈ F (b)alg for some a ∈ Ar and
b ∈ As, so α, β, α + β, αβ ∈ F (a, b)alg. Therefore, ∂m(α + β) = ∂mα + ∂mβ
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and ∂m(αβ) =
∑m

j=0(∂jα)(∂m−jβ) for all j = 0, . . . , n, and ∂0α = α, so ∂0 is
the inclusion map. □

Corollary 4.6. Let (R,∇) be an existentially closed model of Tn. Then R
is an algebraically closed field.

Proof. Let 0 ̸= a ∈ R. Since R is an integral domain, by Corollary 4.2, ∇
extends to an order n derivation on Frac(R). Note that (Frac(R),∇) |= Tn

and extends (R,∇). Moreover, since a ̸= 0, (Frac(R),∇) |= ∃b(ab = 1),
hence by existential closure, so does (R,∇).

Thus, R = k is a field. Let f ∈ k[t] be a nonconstant polynomial and let
α ∈ kalg be a root. Then ∇ extends by inclusion to a k(α)-valued order n
derivation on k, where ∂0 is the inclusion map, and since k is of characteristic
0, by Corollary 4.4, ∇ extends further to an order n derivation on k(α).
Note that (k(α),∇) |= Tn and extends (k,∇). Moreover, since f(α) = 0,
(k(α),∇) |= ∃a(f(a) = 0), hence by existential closure, so does (k,∇). Thus,
R = k is an algebraically closed field. □

Next, we show existentially closed models of Tn have GA. In fact, we can
prove a slightly stronger statement.

Proposition 4.7. Let (K,∇) be an existentially closed model of Tn. Let
X ⊆ Al

K and Y ⊆ τX be irreducible subvarieties such that π(Y ) is Zariski
dense in X, and let Z ⊊ Y be a proper subvariety. Then there is a ∈ X(K)
such that ∇a ∈ Y (K) \ Z(K).

Proof. Let K[X] := K[x]/I(X) and K[Y ] := K[x∂0 , . . . , x∂n ]/I(Y ). We
know K[X] and K[Y ] are integral domains since X and Y are irreducible
subvarieties. Thus, let K(X) and K(Y ) be their respective fraction fields.

Since Y is irreducible, it is nonempty, so I(Y ) ∩ K = {0}. Therefore,
K ⊆ K[Y ] and ∇ extends by inclusion to a K[Y ]-valued order n derivation
on K.

By Proposition 3.4,∇ extends further to aK[Y ]-valued order n derivation
on K[x] with ∇f = τf((x∂0 , . . . , x∂n) + I(Y )) = τf + I(Y ) for all f ∈ K[x].

Since for all f ∈ I(X), τmf ∈ I(τX) ⊆ I(Y ) for all m = 0, . . . , n, we
have e(f) = τ0f+(τ1f)ε+ · · ·+(τnf)ε

n+I(Y ) = 0+I(Y ), so I(X) ⊆ ker(e).
Therefore, e extends to K[X] → (K[Y ])[ε]/(εn+1).

Claim: I(X) = I(Y ) ∩K[x].
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It’s clear I(X) ⊆ I(Y ) ∩ K[x] since for every f ∈ I(X), f ∈ K[x] and
f = τ0f ∈ I(τX) ⊆ I(Y ).

Let f ∈ I(Y ) ∩K[x]. Suppose f /∈ I(X). Let X0 ⊆ X be the subvariety
defined by adding f to the polynomials defining X. Then π(Y ) ⊆ X0 ⊊ X,
which is a contradiction since π(Y ) is Zariski dense in X. Thus, f ∈ I(X),
so I(Y )∩K[x] ⊆ I(X), and thus I(X) = I(Y )∩K[x]. This proves the claim.

In particular, φ : K[X] → K[Y ] given by φ(f + I(X)) = f + I(Y ) is
a well-defined injective ring homomorphism, so we may identify K[X] as a
subring of K[Y ]. And ∂0(f +I(X)) = τ0f +I(Y ) = f +I(Y ) = φ(f +I(X)),
so ∂0 is the inclusion map under this identification.

Note that by Corollary 4.2, ∇ extends to a K(Y )-valued order n deriva-
tion on K(X), with ∂0 the inclusion map, and by Proposition 4.5, ∇ extends
further to an order n derivation on K(Y ). Let a := x+ I(Y ) ∈ K(Y ).

Note that ∇a = τx+ I(Y ) = (x∂0 , . . . , x∂n) + I(Y ) by Lemma 3.2(1). In
particular, for all f ∈ K[x∂0 , . . . , x∂n ], we have f(∇a) = f + I(Y ).

Thus, for all f ∈ I(Y ), f(∇a) = 0 + I(Y ), so ∇a ∈ Y (K(Y )). And
since I(X) ⊆ I(Y ), we have ∇a ∈ X(K(Y )). Furthermore, since Z ⊊ Y , fix
f ∈ I(Z) \ I(Y ). Then f(∇a) = f + I(Y ) ̸= 0 + I(Y ), so ∇a /∈ Z(K(Y )).

Moreover, K ⊆ K(Y ) with ∇(b+ I(Y )) = τb+ I(Y ) = ∇b+ I(Y ) for all
b = b+ I(Y ) ∈ K by Lemma 3.2(1), so this ∇ extends the original ∇.

By existential closure, there is b ∈ X(K) such that ∇b ∈ Y (K) \ Z(K).

□

Now, we work on the converse. That is, we wish to show that all al-
gebraically closed ∇-fields of characteristic 0 satisfying GA are existentially
closed models of Tn.

Let (R,∇) be a ∇-ring and x = (x1, . . . , xl). Let {∂1, . . . , ∂n}∗ denote the
set of all words in the alphabet ∂1, . . . , ∂n, and let λ denote the empty word.
For each w ∈ {∂1, . . . , ∂n}∗, we introduce a variable xw = (xw

1 , . . . , x
w
l ) with

xλ = x. Then we let R{x} := R[xw : w ∈ {∂1, . . . , ∂n}∗], and call R{x} the
ring of n-differential polynomials or ∇-polynomials.

Although we won’t need it below, we make R{x} into a ∇-ring by taking
∂mx

w = x∂mw for all m = 0, .., n and w ∈ {∂1, . . . , ∂n}∗. That this defines a
unique order n derivation is left as an exercise.
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We can evaluate elements of R{x} at l-tuples from R, or from ∇-ring
extensions of R. Indeed, for w ∈ {∂1, . . . , ∂n}∗ and a ∈ Rl, we write wa for
the result of applying the operators ∂1, . . . , ∂n to a in the order specified by
w. For f ∈ R{x} and a ∈ Rl, we write f(a) for f(wa : w ∈ {∂1, . . . , ∂n}∗).
For instance, if f(x) = x∂2∂3

2 x∂1
3 − 4x1 and a = (a1, a2, a3), then we have

f(a) = (∂2∂3a2)(∂1a3)− 4a1.

Proposition 4.8. Let (K,∇) ⊆ (L,∇) be an algebraically closed ∇-fields
of characteristic 0 where (K,∇) has GA. Let x = (x1, . . . , xl) and suppose
f1, . . . , fr ∈ K{x} are such that there exists b ∈ Ll with fj(b) = 0 for all
j = 1, . . . , r. Then there exists c ∈ K l such that fj(c) = 0 for all j = 1, . . . , r.

Proof. Let W be the set of all suffixes of words in {∂1, . . . , ∂n}∗ appearing
in f1, .., fr. For instance, if r = 2, f1 = x∂1∂2 + 3x∂3 and f2 = 2x∂1∂4∂5 + 1,
then W = {∂1∂2, ∂2, ∂3, ∂1∂4∂5, ∂4∂5, ∂5, λ}. Note that W is finite since the
expressions f1, . . . , fr are finite, and there are finitely many of them, so they
contain only finitely many variables between them, and each word has only
finitely many suffixes. Let N := |W |.

Let g1, . . . , gr be f1, . . . , fr considered as elements of K[xw : w ∈ W ].
That is, g1, . . . , gr are the same polynomials as f1, . . . , fr, but in our notation
for evaluation, we treat them as polynomials in Nl variables, rather than ∇-
polynomials in l variables.

Let bW := (wb : w ∈ W ) ∈ LNl. Then gj(bW ) = fj(b) = 0 for all

j = 1, . . . , r. Let X := loc(bW/K) ⊆ ANl
K and Y := loc(∇bW/K) ⊆ A(n+1)Nl

K ,
where for c ∈ Ls, loc(c/K) denotes the Zariski locus of c over K.

Note that X and Y are irreducible since they are each the Zariski locus of
a point. Note that since bW = π(∇bW ) ∈ π(Y )(L) ⊆ X(L) and bW is generic
in X, π(Y ) is Zariski dense in X. By GA, there exists a ∈ X(K) such that
∇a ∈ Y (K). Write a = (aw : w ∈ W ).

Let the variables of A(n+1)Nl
K be x∂m,w = (x∂m,w

1 , . . . , x∂m,w
l ) for each

m = 0, . . . , n and w ∈ W . Write ∇bW =: (b∂m,w : m = 0, . . . , n, w ∈ W ),
where we have b∂m,w = ∂mwb for m = 0, . . . , n and w ∈ W .

Claim: Suppose ∂mw ∈ W for some m = 0, . . . , n and w ∈ W . Then we have
a∂mw = ∂ma

w.

Note that b∂0,∂mw = ∂mwb = b∂m,w. Thus, ∇bW satisfies x∂0,∂mw = x∂m,w,
and since ∇bW is generic in Y , so does everything in Y . Since ∇a ∈ Y , we
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have a∂mw = ∂0a
∂mw = ∂ma

w.

By induction, aw = waλ for all w ∈ W . And for all j = 1, . . . , r, we have
fj(a

λ) = gj(a) = 0, since gj(bW ) = 0, a ∈ X and bW is generic in X. Thus,
aλ ∈ K l works. □

Note that every atomic formula in Ln in the variables x = (x1, . . . , xl)
and parameters from a ring R is of the form f = g for f, g ∈ R{x}, where
xw
j represents the string wxj for j = 1, . . . , l and w ∈ {∂1, . . . , ∂n}∗. In Tn,

this is equivalent to the atomic formula f − g = 0, so every atomic formula
is equivalent to one of the form f = 0 for f ∈ R{x}.

Theorem 4.9. The existentially closed models of Tn are precisely the alge-
braically closed ∇-fields of characteristic 0 satisfying GA.

Proof. Let (K,∇) be an existentially closed model of Tn. We know K
is an algebraically closed field of characteristic 0. Moreover, by applying
Proposition 4.7 with Z = ∅ ⊊ Y since Y is irreducible, we get GA.

Conversely, let (K,∇) be an algebraically closed ∇-field of characteristic
0 satisfying GA.

Suppose (K,∇) ⊆ (R,∇) |= Tn. Let x = (x1, . . . , xl) be variables and
φ(x) be a finite conjunction of atomic and negated atomic formulas for which
there exists a ∈ Rl such that (R,∇) |= φ(a).

Then ∇ extends to an order n derivation on L := (Frac(R))alg. And
a ∈ Ll with (L,∇) |= φ(a). Let f1, . . . , fr, g1, . . . , gs ∈ K{x} such that

φ(x) = f1 = 0 ∧ · · · ∧ fr = 0 ∧ g1 ̸= 0 ∧ · · · ∧ gs ̸= 0.

Let bj :=
1

gj(a)
for all j = 1, . . . , s and b = (b1, . . . , bs). Let y = (y1, . . . , ys).

Let hj(x, y) := gj(x)yj − 1 for all j = 1, . . . , s. Then (a, b) satisfies fj = 0
for all j = 1, . . . , r and hj = 0 for all j = 1, . . . , s. By Proposition 4.8, there
exists (c, d) ∈ K l+s such that fj(c, d) = 0 for all j = 1, . . . , r and hj(c, d) = 0
for all j = 1, . . . , s. In particular, fj(c) = 0 for all j = 1, . . . , r and gj(c) ̸= 0
for all j = 1, . . . , s, so (K,∇) |= φ(c). Thus, (K,∇) is an existentially closed
model of Tn. □

Corollary 4.10. Tn admits a model companion.
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Proof. Since Tn is a universal theory, it suffices that existentially closed mod-
els of Tn are axiomatisable.

Being an algebraically closed ∇-field of characteristic 0 is clearly elemen-
tary. It remains therefore to verify that GA is first-order axiomatisable.
This is somewhat subtle, though no subtler than the axiomatisability of the
geometric axiom for DCF0, and we sketch a proof in the appendix. □

Definition 4.11. An n-differentially closed field is an algebraically closed
∇-field of characteristic 0 satisfying GA. The theory of n-differentially closed
fields, as axiomatised in the appendix, is denoted DnCF0.

5 Quantifier Elimination

In this section, we will show that DnCF0 admits Quantifier Elimination.
Note that this is not a consequence of the results in [1].

Lemma 5.1. Let U be an algebraically closed field of characteristic 0 and let
K,L ⊆ U be subfields which are algebraically disjoint over a common further
subfield F ⊆ K ∩L. Suppose (K,∇K) and (L,∇L) are ∇-fields and ∇K and
∇L agree on F . Then ∇K and ∇L jointly extend to an order n derivation on
(KL)alg.

Proof. Fix a transcendence basis A forK over F . SinceK,L are algebraically
disjoint over F , A is also a transcendence basis for (KL)alg over L, and so by
Proposition 4.5, ∇L extends uniquely to an order n derivation ∇ on (KL)alg

with ∇a = ∇Ka for all a ∈ A. Moreover, ∇K |F = ∇L|F = ∇|F extends
uniquely to an order n derivation ∇′ on K with ∇′a = ∇Ka for all a ∈ A, so
∇|K = ∇K . □

Proposition 5.2. Suppose (K,∇), (L,∇) |= DnCF0 with a common sub-
structure (R,∇) |= Tn. Then there are embeddings f : (K,∇) → (M,∇)
and g : (L,∇) → (M,∇) where (M,∇) |= DnCF0 with f |R = g|R.

Proof. Note that by Corollary 4.2 and Proposition 4.5, ∇ extends uniquely
to an order n derivation on F = (Frac(R))alg, so (F,∇) is also a common
substructure, and obviously f |F = g|F implies f |R = g|R. Thus, without loss
of generality, we may assume R = F = F alg.
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Let A be a transcendence basis for K over F and B := {xa : a ∈ A} be a
set of distinct variables. Let U := L(B)alg andK ′ := F (B)alg. There is a ring
isomorphism ρ : K → K ′ preserving F , since K,K ′ are algebraically closed
fields extending F of the same transcendence degree. B is a transcendence
basis for K ′ over F which is algebraically independent over L in U . Thus,
K ′ and L are algebraically disjoint over F .

Define ∇′ := (ρ ◦ ∂0 ◦ ρ−1, . . . , ρ ◦ ∂n ◦ ρ−1). It is easily checked that this
makes (K ′,∇′) into a ∇-field isomorphic to (K,∇) via ρ. By Lemma 5.1,
(K ′,∇′) and (L,∇) extend to a∇-field (U,∇) where U = L(B)alg = (K ′L)alg.
Since DnCF0 is a model companion of Tn, every model of Tn embeds into
a model of DnCF0. Thus, extend (U,∇) further to (M,∇) |= DnCF0. Let
f := ιK′ ◦ ρ and g := ιL, where ιK′ : K ′ → M and ιL : L → M are
the inclusion maps. Then f : K → M, g : L → M are injective ∇-ring
homomorphisms satisfying f |F = g|F since ρ, ιK′ and ιL all fix F . □

Corollary 5.3. DnCF0 admits Quantifier Elimination.

Proof. To show DnCF0 admits quantifier elimination, it suffices to check
that if (K,∇), (L,∇) |= DnCF0 with a common substructure (R,∇), φ(x)
is a conjunction of atomic and negated atomic Ln-formulas with parameters
from R, where x is a single variable, and there exists a ∈ K realising φ(x),
then there also exists b ∈ L realising φ(x).

Let (K,∇), (L,∇) |= DnCF0 with a common substructure (R,∇), and
let φ(x) be a conjunction of atomic and negated atomic Ln-formulas with pa-
rameters from R with a ∈ K realising φ(x). By Proposition 5.2, amalgamate
(K,∇), (L,∇) |= DnCF0 into (M,∇) |= DnCF0. Then (M,∇) |= Tn extends
(L,∇) |= DnCF0 and a ∈ M realises φ(x), hence by existential closure,
there exists b ∈ L realising φ(x). It follows that DnCF0 admits quantifier
elimination. □

6 Stability

We may ask whether or not DnCF0 is stable or ω-stable. Note that D1CF0

corresponds toDCF0, which is known to be ω-stable, and in particular stable.
However, we will show that for n ≥ 2, DnCF0 is stable but not ω-stable.
Specifically, it is c-stable, where c is the cardinality of the continuum.
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Recall that if (K,∇) |= DnCF0, A ⊆ K and c ∈ K l, then tp(c/A) denotes
the type of c over A, i.e. the set of Ln-formulas φ(x) with parameters from
A, where x = (x1, ..., xl), such that (K,∇) |= φ(c).

Proposition 6.1. DnCF0 is not ω-stable for all n ≥ 2.

Proof. Consider the field F := Q(x
(j)
S : S ⊆ N, j ∈ N), where x

(j)
S are

variables for all S ⊆ N and j ∈ N. Let ∂0 : Q → F be the inclusion map
and ∂m : Q → F be the zero map for m = 1, . . . , n. Then (Q, F,∇) ∈ Sn.
By Proposition 4.5, we can extend ∇ to an order n derivation on F in such
a way that for all S ⊆ N,

• ∂1x
j
S = xj+1

S for all j

• ∂2x
j
S =

{
1 if j ∈ S

0 else

• ∂mx
j
S = 0 for all m > 2 and all j

Since DnCF0 is a model companion of Tn, (F,∇) |= Tn embeds into
(M,∇) |= DnCF0.

Let S, S ′ ⊆ N with S ̸= S ′. Without loss of generality, supposem ∈ S\S ′.

Then ∂2∂
m
1 x

(0)
S = 1 ̸= 0 = ∂2∂

m
1 x

(0)
S′ , so tp(x

(0)
S /Q) ̸= tp(x

(0)
S′ /Q).

But then DnCF0 is not ω-stable because there are uncountably many
complete types over Q. □

Note that for all (K,∇) |= DnCF0 and parameters A ⊆ K, it can
be shown that dcl(A) = Q(wa : w ∈ {∂1, . . . , ∂n}∗, a ∈ A) and that
acl(A) = (dcl(A))alg, using quantifier elimination. We leave this to the reader
to verify as it isn’t strictly necessary for the proof below. However, it may
aid in intuition.

Proposition 6.2. DnCF0 is c-stable for all n ∈ N.

Proof. List the countably many words {∂1, . . . , ∂n}∗ as w0, w1, . . . and let
(K,∇) |= DnCF0 and A ⊆ K with |A| = c.

Let k := dcl(A) = Q(wa : w ∈ {∂1, . . . , ∂n}∗, a ∈ A). Note that
|k| = c since elements of k are of the form f(w′

1a1, . . . , w
′
lal) for some rational
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function f ∈ Q(x1, . . . , xl), w
′
1, . . . , w

′
l ∈ {∂1, . . . , ∂n}∗ and a1, . . . , al ∈ A,

where |
∐

l∈NQ(x1, . . . , xl)× ({∂1, . . . , ∂n}∗)l × Al| = c.

For each l ∈ N and b ∈ K, let kb
l := k(w0b, . . . , wl−1b). Either wlb is

algebraic over kb
l , in which case let f b

l be its minimal polynomial over kb
l , or

it is transcendental over kb
l , in which case let f b

l be the zero polynomial. Fix
gbl ∈ k(xw0 , . . . , xwl−1)[xl] such that gbl (w0b, . . . , wl−1b) = f b

l .

Claim: Suppose b, c ∈ K such that gbl = gcl for all l ∈ N. Then we have
tp(b/A) = tp(c/A).

By quantifier elimination, it suffices to show b, c agree on all atomic formu-
las with parameters from A, that is that for all f ∈ k{x}, f(b) = 0 if and only
if f(c) = 0. So if f ∈ k[xw0 , . . . , xwl ] for some l ∈ N, then f(w0b, . . . , wlb) = 0
if and only if f(w0c, . . . , wlc) = 0.

Suppose tp(b/A) ̸= tp(c/A), and without loss of generality, suppose there
is f ∈ k[xw0 , . . . , xwl ] for some minimal l ∈ N with f(w0b, . . . , wlb) = 0 but
f(w0c, . . . , wlc) ̸= 0.

Let f b := f(w0b, . . . , wl−1b) ∈ kb
l [x

wl ]. Then f b(wlb) = 0. Suppose f b = 0.
Then f doesn’t depend on xwl , contradicting the minimality of l. Thus,
f b ̸= 0, so wlb is algebraic over kb

l .

Since f b
l is the minimal polynomial of wlb over k

b
l , we have that f

b
l divides

f b. So there exists g ∈ k(xw0 , . . . , xwl−1)[xwl ] such that

gbl (w0b, . . . , wl−1b)g(w0b, . . . , wl−1b) = f(w0b, . . . , wl−1b).

Suppose that gbl (w0c, . . . , wl−1c)g(w0c, . . . , wl−1c) ̸= f(w0c, . . . , wl−1c).
Then by clearing denominators and moving everything to one side, we get
that h(w0c, . . . , wl−1c) ̸= 0 but that h(w0b, . . . , wl−1b) = 0 for some
h =

∑r
j=0 hj(x

wl)j ∈ k[xw0 , . . . , xwl−1 ][xwl ]. Then for some j = 0, . . . , r,
hj(w0c, . . . , wl−1c) ̸= 0 but hj(w0b, . . . , wl−1b) = 0, contradicting the mini-
mality of l.

So gbl (w0c, . . . , wl−1c)h(w0c, . . . , wl−1c) = f(w0c, . . . , wl−1c), where we
have that gbl (w0c, . . . , wl−1c) = gcl (w0c, . . . , wl−1c) = f c

l , by definition.

Then 0 ̸= f(w0c, . . . , wlc) = f c
l (wlc)h(w0c, . . . , wl−1c, wlc) = 0, where

the last equality is because f c
l is the minimal polynomial of wlc. This is a

contradiction, proving that tp(b/A) = tp(c/A).
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So tp(b/A) is fully specified by an element of
∏

l∈N k(x
w0 , . . . , xwl−1)[xl].

Since |k(xw0 , . . . , xwl−1)[xl]| = c for all l ∈ N, we have that

|
∏
l∈N

k(xw0 , . . . , xwl−1)[xl]| = cℵ0 = c

so DnCF0 is c-stable. □

Appendix

In this appendix, we’re going to sketch the proof that GA can be expressed
in 1st order, and thus DnCF0 can be axiomatised.

The difficulty in showing that GA is axiomatisable arises mainly from
expressing Zariski density and irreducibility. Ultimately, these are statements
about polynomials. It is possible to quantify over polynomials of bounded
degree, but not polynomials of arbitrary degree, so we will need several results
giving us bounds on the degrees of polynomials.

Lemma A1. Given fixed r, d ∈ N, there exists N ∈ N such that for every
field k, variables x = (x1, . . . , xl) and a single variable t, if f1, .., fr ∈ k[x, t]
are of (total) degree at most d and I ⊆ (f1, . . . , fr) ∩ k[x] is a prime ideal of
k[x] containing every element of (f1, . . . , fr)∩ k[x] of degree at most N , then
we have I = (f1, . . . , fr) ∩ k[x].

Sketch of proof. Note that k[x]/I is an integral domain since I is a prime
ideal. Let K := Frac(k[x]/I). Using the Euclidean algorithm in K[t] and
clearing denominators, we get that there exist g1, . . . , gr, p1, . . . , pr ∈ k[x, t]
and a1, . . . , ar ∈ k[x] \ I such that for g := g1f1 + · · · + grfr, we have that
ajfj − pjg ∈ I for all j = 1, . . . , r. By careful analysis of the Euclidean
algorithm, we can obtain a bound N on the degree of g depending only on
r, d.

Let h = h1f1 + · · · + hrfr ∈ (f1, . . . , fr) ∩ k[x]. If h /∈ I, then we have
a1 · · · arh ∈ k[x] \ I since I is a prime ideal. But

a1 · · · arh+ I = a1 · · · arh1f1 + · · ·+ a1 · · · arhrfr + I
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= (a2 · · · arh1p1 + · · ·+ a1 · · · ar−1hrpr)g + I

so pg = a1 · · · arh + b ∈ R \ I for some p ∈ k[x, t] and b ∈ I. Thus, g /∈ I.
Furthermore, p ̸= 0 and since pg is independent of t, so is g. Therefore,
g ∈ (f1, . . . , fr)∩k[x] is of degree at most N , so g ∈ I. This is a contradiction.
Thus, h ∈ I, so I = (f1, . . . , fr) ∩ k[x]. □

We can use this lemma to deal with Zariski denseness in GA. We’ll also
need to make use of the following two facts from Schmidt and van den Dries
[2]:

1. Given fixed l, d ∈ N, there exists N ∈ N such that for every field k,
variables x = (x1, . . . , xl) and all f1, . . . , fr, f ∈ k[x] of degree at most
d with f ∈ (f1, . . . , fr), f = g1f1 + . . .+ grfr for some g1, . . . , gr ∈ k[x]
of degree at most N .

2. Given fixed l, d ∈ N, there exists N ∈ N such that for every field k,
variables x = (x1, . . . , xl) and all f1, . . . , fr ∈ k[x] of degree at most d,
if for all f, g ∈ k[x] of degree at most N with fg ∈ (f1, . . . , fr), we have
f ∈ (f1, . . . , fr) or g ∈ (f1, . . . , fr), then (f1, . . . , fr) is a prime ideal of
k[x] or 1 ∈ (f1, . . . , fr).

Fact 1 tells us that it is possible to express in 1st order that a particular
polynomial lies in an ideal, given bounds on its degree and the degree of the
generators of the ideal. Facts 1 and 2 together tell us that it is possible to
express in 1st order that an ideal is prime, given bounds on the degree of the
generators of that ideal.

With that, we may now define DnCF0 as a set of axioms. These will
consist of the axioms of algebraically closed ∇-fields of characteristic 0, plus
one additional axiom for every fixed l, d, r0, . . . , rln ∈ N, stating the following,
where N is some bound dependent on d, r1, . . . , rln given by Lemma A1:

Let y = (y1, . . . , yln) := (x∂1
1 , . . . , x∂1

l , . . . , x∂n
1 , . . . , x∂n

l ). For every
j = 0, . . . , ln, fix fj,1, . . . , fj,rj ∈ k[x, y1, . . . , yj] of (total) degree at most
d, and let Ij := (fj,1, . . . , fj,rj) ⊆ k[x, y1, . . . , yj]. Suppose that fi,j ∈ Ii+1

for all i = 0, . . . , ln − 1 and j = 1, . . . , ri and that τmf0,j ∈ Iln for all
m = 0, . . . , n and j = 0, . . . , r0. Suppose moreover that Ij is a prime ideal
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of k[x, y1, . . . , yj] for all j = 0, . . . , ln, and for all j = 0, . . . , ln − 1, every
element of Ij+1 ∩ k[x, y1, . . . , yj] of degree at most N lies in Ij. Then there
exists a ∈ kl such that fln,j(∇a) = 0 for all j = 1, . . . , rln.

We’ve justified that this can be phrased in first order. It remains to show
thatDnCF0 indeed axiomatises the algebraically closed fields of characteristic
0 satisfying GA.

Proposition A2. (k,∇) |= DnCF0 if and only if (k,∇) is an algebraically
closed field of characteristic 0 satisfying GA.

Proof. Suppose (k,∇) is an algebraically closed ∇-field of characteristic 0
satisfying GA, and fix l, d, r0, . . . , rln ∈ N and fj,1, . . . , fj,rj ∈ k[x, y1, . . . , yj]
for all j = 0, . . . , ln as above.

Let X ⊆ Al
k be the subvariety defined by f0,1, . . . , f0,r0 and Y ⊆ Al(n+1)

k

be the subvariety defined by fln,1, . . . , fln,rln .

Since I0 = (f0,1, . . . , f0,r0) and Iln = (fln,1, . . . , fln,rln) are prime ideals, X
and Y are irreducible subvarieties with I(X) = I0 and I(Y ) = Iln.

Note that for all f ∈ I(X), we have f = h1f0,1 + · · · + hr0f0,r0 for some
h1, . . . , hr0 ∈ k[x]. It follows from Proposition 3.4, evaluating at (x, y), that
(k[x], k[x, y], τ) ∈ Sn, so for all m = 0, . . . , n, we have

τmf =
m∑
j=0

(τjh1)(τm−jf0,1) + · · ·+
m∑
j=0

(τjhr0)(τm−jf0,r0) ∈ Iln

since τmf0,j ∈ Iln for allm = 0, . . . , n and j = 1, . . . , r0. Thus, I(τX) ⊆ I(Y ),
so Y ⊆ τX.

By Lemma A1, we have Ij = Ij+1∩k[x, y1, . . . , yj] for all j = 0, . . . , ln−1,
and thus I(Y ) ∩ k[x] = Iln ∩ k[x] = I0 = I(X). Thus, π(Y ) is Zariski dense
in X, so by the geometric axiom, there exists a ∈ X(k) ⊆ K l such that
∇a ∈ Y (k). Then fln,j(∇a) = 0 for all j = 1, . . . , rln. Since (k,∇) is an
algebraically closed ∇-field of characteristic 0, (k,∇) |= DnCF0.

Conversely, let (k,∇) |= DnCF0. We know (k,∇) is an algebraically
closed ∇-field of characteristic 0. We wish to show it has GA.
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Let X ⊆ Al
k and Y ⊆ τX be irreducible subvarieties such that π(Y ) is

Zariski dense in X.

Note that Ij := I(Y ) ∩ k[x, y1, . . . , yj] is a prime ideal of k[x, y1, . . . , yj]
for all j = 0, . . . , ln, and I(X) = I(Y ) ∩ k[x] = I0. For all j = 0, . . . , ln, fix
fj,1, . . . , fj,rj ∈ k[x, y1, . . . , yj] such that I(Y )∩k[y1, . . . , yj] = (fj,1, . . . , fj,rj).

We have fi,j ∈ Ij ⊆ Ij+1 for all i = 0, . . . , ln − 1 and j = 1, . . . , ri, and
τmf0,j ∈ I(τX) ⊆ I(Y ) for all m = 0, . . . , n and j = 0, . . . , r0. And we have
Ij+1 ∩ k[x, y1, . . . , yj] = Ij.

Fix d ∈ N such that deg(fi,j) ≤ d for all i = 0, . . . , ln and j = 1, . . . , ri.
By the axiom with l, d, r0, . . . , rln, we have that there exists a ∈ kl such that
fln,j(∇a) = 0 for all j = 1, . . . , rln. But then ∇a ∈ Y (k), and therefore
a = π(∇a) ∈ π(Y )(k) ⊆ π(τX)(k) = X(k), so GA holds. □
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