GENERATING MULTISTATE DATA WITH INTERMITTENT OBSERVATION

Here we consider a reversible 3-state model with state-space diagram below.

We consider a time-homogeneous process with transition intensity matrix Q(t) = Q of the form

$$Q = \begin{bmatrix} -(\lambda_{12} + \lambda_{13}) & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & -(\lambda_{21} + \lambda_{23}) & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & -(\lambda_{31} + \lambda_{32}) \end{bmatrix}$$

To generate data when such a process is under intermittent observation over $(0, C_A]$ we proceed as follows.

1. We generate the assessment times according to a time homogeneous Poisson process with rate ρ ; Let A_{ir} denote the random (potentially latent) time of the *r*th assessment for individual *i*. The waiting times $\Delta A_{ir} = A_{ir} - A_{i,r-1}$, $r = 1, \ldots$, are independent and identically exponentially distributed and so given $a_{i0} = 0$ we generate a_{i1}, a_{i2}, \ldots as follows. For r = 1 we generate

$$\Delta A_{ir} \sim \text{EXP}(\text{rate} = \rho)$$
.

If Δa_{ir} is the realization, given $a_{i,r-1}$ we set $a_{ir} = \Delta a_{ir} + a_{i,r-1}$. If $a_{ir} > C_A$, then we stop and assessment r-1 is the last occuring at time $a_{i,r-1}$. Otherwise increment r = r+1 and repeat this step. If we let $\{A_i(s), s > 0\}$ denote the counting process for the visits for individual *i* then $A_i(C_A)$ is the number of assessments over $(0, C_A]$.

2. At $a_{i0} = 0$, we generate $Z_i(0)$ based on an initial distribution where

$$Z_i(0) \sim \text{Multi}(1, (\pi_1, \pi_2, \pi_3))$$

where $\pi_k = P(Z_i(0) = k)$ for k = 1, 2, 3 and $\pi_1 + \pi_2 + \pi_3 = 1$.

3. Given $(Z_i(a_{i,r-1}), a_{i,r-1})$ and a_{ir} we generate $Z_i(a_{ir})$ as multinomial with

$$Z_{i}(a_{ir})|Z_{i}(a_{i,r-1}), a_{i,r-1}, a_{ir} \sim \text{Multi}(1, (P_{Z_{i}(a_{i,r-1}),1}(a_{i,r-1}, a_{ir}), P_{Z_{i}(a_{i,r-1}),2}(a_{i,r-1}, a_{ir}), P_{Z_{i}(a_{i,r-1}),3}(a_{i,r-1}, a_{ir})))$$

for $r = 1, 2, \dots, A_{i}(C_{A}),$

4. We repeat these steps for each individual i, i = 1, ..., m.

In the accompanying R code, the input parameters for the functions are

- m = 1000
- $C_A = 1$
- $(\pi_1, \pi_2, \pi_3) = (0.4, 0.3, 0.3)$
- $\lambda_{12} = 0.6, \ \lambda_{13} = 0.4, \ \lambda_{21} = 0.3, \ \lambda_{23} = 0.2, \ \lambda_{31} = 0.2 \text{ and } \lambda_{32} = 0.1$
- $\rho = 5$

The output dataframe consists of columns id, times and states where

times =
$$(a_{i0} = 0, a_{i1}, \ldots, a_{i,A_i(C_A)}, C_A)$$

and

states =
$$(Z_i(0), Z_i(a_{i1}), \ldots, Z_i(a_{i,A_i(C_A)}), 999)$$
.

Let 999 indicate a censoring state.