Generating Multistate Data with Intermittent Observation

Here we consider a reversible 3 -state model with state-space diagram below.

We consider a time-homogeneous process with transition intensity matrix $Q(t)=Q$ of the form

$$
Q=\left[\begin{array}{ccc}
-\left(\lambda_{12}+\lambda_{13}\right) & \lambda_{12} & \lambda_{13} \\
\lambda_{21} & -\left(\lambda_{21}+\lambda_{23}\right) & \lambda_{23} \\
\lambda_{31} & \lambda_{32} & -\left(\lambda_{31}+\lambda_{32}\right)
\end{array}\right] .
$$

To generate data when such a process is under intermittent observation over $\left(0, C_{A}\right]$ we proceed as follows.

1. We generate the assessment times according to a time homogeneous Poisson process with rate ρ; Let $A_{i r}$ denote the random (potentially latent) time of the r th assessment for individual i. The waiting times $\Delta A_{i r}=A_{i r}-A_{i, r-1}, r=1, \ldots$, are independent and identically exponentially distributed and so given $a_{i 0}=0$ we generate $a_{i 1}, a_{i 2}, \ldots$ as follows. For $r=1$ we generate

$$
\Delta A_{i r} \sim \operatorname{EXP}(\text { rate }=\rho) .
$$

If $\Delta a_{i r}$ is the realization, given $a_{i, r-1}$ we set $a_{i r}=\Delta a_{i r}+a_{i, r-1}$. If $a_{i r}>C_{A}$, then we stop and assessment $r-1$ is the last occuring at time $a_{i, r-1}$. Otherwise increment $r=r+1$ and repeat this step. If we let $\left\{A_{i}(s), s>0\right\}$ denote the counting process for the visits for individual i then $A_{i}\left(C_{A}\right)$ is the number of assessments over $\left(0, C_{A}\right]$.

2. At $a_{i 0}=0$, we generate $Z_{i}(0)$ based on an initial distribution where

$$
Z_{i}(0) \sim \operatorname{Multi}\left(1,\left(\pi_{1}, \pi_{2}, \pi_{3}\right)\right)
$$

where $\pi_{k}=P\left(Z_{i}(0)=k\right)$ for $k=1,2,3$ and $\pi_{1}+\pi_{2}+\pi_{3}=1$.
3. Given $\left(Z_{i}\left(a_{i, r-1}\right), a_{i, r-1}\right)$ and $a_{i r}$ we generate $Z_{i}\left(a_{i r}\right)$ as multinomial with $Z_{i}\left(a_{i r}\right) \mid Z_{i}\left(a_{i, r-1}\right), a_{i, r-1}, a_{i r} \sim \operatorname{Multi}\left(1,\left(P_{Z_{i}\left(a_{i, r-1}\right), 1}\left(a_{i, r-1}, a_{i r}\right), P_{Z_{i}\left(a_{i, r-1}\right), 2}\left(a_{i, r-1}, a_{i r}\right), P_{Z_{i}\left(a_{i, r-1}\right), 3}\left(a_{i, r-1}, a_{i r}\right)\right)\right)$ for $r=1,2, \ldots, A_{i}\left(C_{A}\right)$,
4. We repeat these steps for each individual $i, i=1, \ldots, m$.

In the accompanying R code, the input parameters for the functions are

- $m=1000$
- $C_{A}=1$
- $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=(0.4,0.3,0.3)$
- $\lambda_{12}=0.6, \lambda_{13}=0.4, \lambda_{21}=0.3, \lambda_{23}=0.2, \lambda_{31}=0.2$ and $\lambda_{32}=0.1$
- $\rho=5$

The output dataframe consists of columns id, times and states where

$$
\text { times }=\left(a_{i 0}=0, a_{i 1}, \ldots, a_{i, A_{i}\left(C_{A}\right)}, C_{A}\right)
$$

and

$$
\text { states }=\left(Z_{i}(0), Z_{i}\left(a_{i 1}\right), \ldots, Z_{i}\left(a_{i, A_{i}\left(C_{A}\right)}\right), 999\right)
$$

Let 999 indicate a censoring state.

