Proving inconsistency: Towards a better Maltsev CSP algorithm

Ross Willard

Univ Waterloo

Universal Algebra and Lattice Theory Szeged, Hungary June 24, 2012 Question: What makes an algorithm (for a yes/no problem) "good"?

- It should be <u>efficient</u> (e.g., polynomial-time).
- It should be <u>correct</u>, i.e., always give correct answers.
- It should be informative:
 - ▶ Provide a transparent "proof" of the correctness of the answer.

In this lecture I will

- discuss the two main polynomial-time CSP algorithms,
- argue that one fails to meet the above criteria,
- offer a framework for a possible alternative.

Motivating example

Fix a finite field F.

Decision Problem: 3-LIN(F)

Inputs:

- a finite list $X = \{x_1, \dots, x_n\}$ of variables
- a finite list $\Sigma = \{ \varepsilon_1, \dots, \varepsilon_m \}$ of linear equations in X over F
 - each equation involving at most 3 variables

Question: Does Σ have a solution (in F)?

Motivating example (continued)

Algorithm: Gaussian elimination

Given a set Σ of 3-variable linear equations in n variables over F:

- Methodically deduce new linear equations (satisfied by any solution).
- If the inconsistent equation 0 = 1 is deduced, then
 - \triangleright Σ is inconsistent, and
 - the deductions producing 0 = 1 give a "short proof" of inconsistency.
- Else.
 - \triangleright Σ is consistent, and
 - "backtracking" produces an explicit solution of Σ , which is itself a (very) "short proof" of consistency.
- Running time: essentially $O(|\Sigma|n^2)$ arithmetic operations in F.

This is a good algorithm.

Transition to CSP

Recall: an input to 3-LIN(F) is a pair (X, Σ) where

- $X = \{x_1, \dots, x_n\}$ is a finite list of variables.
- $\Sigma = \{\varepsilon_1, \dots, \varepsilon_m\}$ is a finite list of 3-variable equations over F.

Define

$$\mathbf{F} = (F, \{x - y + z\} \cup \{\lambda x + (1 - \lambda)y : \lambda \in F\}),$$

the idempotent reduct of the vector space $_FF$.

Observation: if S is the set of solutions to a 3-variable linear equation ε over F, then S is a subuniverse of \mathbf{F}^3 .

Hence: each equation $ax_i + bx_j + cx_k = d$ can be expressed by the statement " $(x_i, x_j, x_k) \in S$ " for some $S \leq \mathbf{F}^3$.

The (fixed template) constraint satisfaction problem generalizes 3-LIN(F) by permitting $\bf F$ to be replaced by any idempotent algebra, equations by membership in named subpowers, and 3 by any fixed $d \geq 2$.

Constraint Satisfaction Problem (CSP) definition

Formally, fix:

$$\mathbf{A} = (A, \mathcal{F})$$
 – a finite *idempotent* algebra $d \geq 2$

 $CSP(\mathbf{A}, d)$ is the following decision problem:

Inputs:

a finite list $X = \{x_1, \dots, x_n\}$ of variables [ranging over A] a finite list $\Sigma = \{C_1, \dots, C_m\}$ of constraints on the variables:

Each constraint is a pair C = (J, R) where

- $J \subseteq X$ with $1 \le |J| \le d$;
- $R \leq \mathbf{A}^J$.

Question: Does Σ have a *solution*?

(I.e., a map $\alpha: X \to A$ such that $\alpha {\restriction}_{J_t} \in R_t$ for all $1 \le t \le m$)

CSP Algebraic Dichotomy Conjecture

Conjecture (Bulatov, Jeavons, Krokhin)

Let **A** be a finite idempotent algebra and $d \ge 2$.

If $V(\mathbf{A})$ satisfies a nontrivial Maltsev condition, then $CSP(\mathbf{A}, d)$ is in P.

Of course, every $CSP(\mathbf{A}, d)$ is in NP:

Any solution (when Σ is satisfiable) is a "short proof" of satisfiability.

What is wanted (when $V(\mathbf{A})$ satisfies a nontrivial Maltsev condition):

- "Short proofs" witnessing <u>un</u>satisfiability (when Σ is unsatisfiable); they will put $\mathrm{CSP}(\mathbf{A},d)$ in co-NP.
- Polynomial-time algorithm which decides $CSP(\mathbf{A}, d)$ AND provides a solution or a short proof of unsatisfiability.

The two main CSP algorithms

Local consistency (bounded width) algorithm

- ▶ Rather simple
- ▶ Works whenever $V(\mathbf{A})$ is congruence $SD(\land)$ [Barto & Kozik]

Few subpowers algorithm

- Rather more complicated
- Works whenever $V(\mathbf{A})$ is congruence modular [Barto? + IMMVW]
- ▶ The case when **A** has a Maltsev operation is representative.

Algorithm #1: Local consistency

Recall that constraints in an input to $CSP(\mathbf{A}, d)$ have the form (J, R):

- J is a "small" subset of the set X of variables $(|J| \leq d)$.
- $R (\leq \mathbf{A}^J)$ restricts the values a solution may take on J.

The local consistency algorithm can be viewed as built upon a **formal system** for **reasoning** about such constraints.

Intuition:

For some fixed j < k, the system will permit deducing a $\leq j$ -ary constraint from a collection of other $\leq j$ -ary constraints, as long as:

- the deduction is correct (of course!), and
- the number of variables altogether is at most k.

Example: if $(\mathbf{A}, d) = (\mathbf{F}, 3)$ and (j, k) = (3, 6), then the system permits deductions of the following kind:

From
$$x + y - u = 0$$
 i.e., $(\{x, y, u\}, graph(+))$
 $y + z - v = 0$ $(\{y, z, v\}, graph(+))$
 $u + z - w = 0$ $(\{u, z, w\}, graph(+))$
deduce $x + v - w = 0$ $(\{x, v, w\}, graph(+))$

Formally, the rules are (for some fixed j < k):

Intersect

$$\frac{(J,R) \quad (J,S)}{\therefore \quad (J,R\cap S)}$$

2 FictVar $_k$ – add fictitious variables, up to k in total

$$\frac{(J,R)}{\cdots (K,(\operatorname{pr}_{K\to J})^{-1}(R))}$$

for any $J \subseteq K \subseteq X$, provided $|K| \le k$.

3 Project_i – projection to $\leq j$ variables

$$\frac{(K,R)}{\therefore (J,\operatorname{pr}_{K\to J}(R))}$$

for any $J \subseteq K$, provided $|J| \le j$.

These rules give a formal notion of proof.

Definition

Given an input (X, Σ) to $\mathrm{CSP}(\mathbf{A}, d)$, a (j, k)-proof from (X, Σ) is a finite sequence (C_1, \ldots, C_p) of constraints over X such that for all $1 \leq i \leq p$,

- **2** C_i is the result of applying **Intersect** to two constraints from $\{C_1, \ldots, C_{i-1}\}$, or
- **3** C_i is the result of applying **FictVar**_k or **Project**_j to a constraint from $\{C_1, \ldots, C_{i-1}\}$.

I say that (C_1, \ldots, C_p) is a (j, k)-proof **of** C_p **from** (X, Σ) .

Note: every solution to Σ also satisfies all C_i in a (j, k)-proof from (X, Σ) .

Notation

Let's write $(X, \Sigma) \vdash_{j,k} \emptyset$ if there exists a (j, k)-proof from (X, Σ) whose last constraint is *empty* (i.e., has the form (J, \emptyset)).

Remark: if $(X, \Sigma) \vdash_{j,k} \emptyset$, then:

- Σ is unsatisfiable.
- There exists a witnessing (j, k)-proof of length at most $2^{|A|^k} \cdot |X|^k$. (This is a good "short proof" of unsatisfiability.)

Definition

 (\mathbf{A}, d) has width (\mathbf{j}, \mathbf{k}) if, for every instance (X, Σ) of $\mathrm{CSP}(\mathbf{A}, d)$,

 Σ unsatisfiable \Leftrightarrow $(X, \Sigma) \vdash_{i,k} \emptyset$.

In other words, (\mathbf{A}, d) has width (j, k) if the formal system of (j, k)-proofs provides short proofs for all unsatisfiable instances to $\mathrm{CSP}(\mathbf{A}, d)$.

Definition

 (\mathbf{A}, d) has **bounded width** if it has width (j, k) for some j < k.

Local consistency algorithm

Folklore: For each j < k there is an algorithm (the "(j, k)-consistency algorithm") which, given (\mathbf{A}, d) having width (j, k) and given an input (X, Σ) to $\mathrm{CSP}(\mathbf{A}, d)$,

- decides whether (X, Σ) has a solution.
- If satisfiable, produces a solution.
- If unsatisfiable, produces a (j, k)-proof witnessing $(X, \Sigma) \vdash_{j,k} \emptyset$.
- Runs in polynomial time.

This is a good algorithm.

The extent of the local consistency algorithm:

Theorem (Larose & Zádori (\Rightarrow); Barto & Kozik (\Leftarrow))

Let **A** be a finite idempotent algebra, $d \ge 2$, and assume the clone of **A** is determined by its d-ary invariant relations. Then

 (\mathbf{A}, d) has bounded width \Leftrightarrow $V(\mathbf{A})$ is congruence $SD(\wedge)$.

Unfortunately, if \mathbf{F} is the idempotent algebra corresponding to 3-LIN(F), then (\mathbf{F} , 3) does *not* have bounded width.

Conclusion: although Gaussian elimination is a form of "constraint" reasoning, it does not fall within the framework of local consistency proofs.

Algorithm #2: Few subpowers

Recall that each input to $CSP(\mathbf{A}, d)$ has the form (X, Σ) where

$$\Sigma = \{C_1, C_2, \dots, C_m\} \quad \text{with} \quad C_t = (J_t, R_t).$$

For $i \leq m$, define B_i to be the set of solutions to the <u>first i constraints</u>:

$$\mathbf{A}^X = \mathbf{B}_0 \ge \mathbf{B}_1 \ge \mathbf{B}_2 \ge \cdots \ge \mathbf{B}_m = \{\text{solutions to } (X, \Sigma)\}.$$

The few subpowers algorithm (BD + IMMVW):

- is not based on reasoning with equations/constraints.
- ullet instead, it successively computes *small generating sets* for each B_t .
 - ▶ (X, Σ) has a solution \Leftrightarrow the last generating set is nonempty.

Special case: when **A** is Maltsev

(I.e., when $V(\mathbf{A})$ is congruence permutable.)

Bulatov & Dalmau, A simple algorithm for Mal'tsev constraints, 2006.

Based on the notion of compact representations of subsets of powers.

Definition

Suppose A is a set and $B \subseteq A^n$.

Fork(B) =
$$\{(i, b, c) \in [n] \times A \times A : \exists \mathbf{u}, \mathbf{v} \in B \text{ with } u_j = v_j \text{ for all } 1 \leq j < i, \text{ and } (u_i, v_i) = (b, c)\}.$$

A subset $T \subseteq B$ is called a **compact representation of** B if $\operatorname{Fork}(T) = \operatorname{Fork}(B)$ and T is minimal with respect to this property.

Exercise: if T is a compact rep. for $B \subseteq A^n$, then $|T| \le n|A|^2$.

Key Fact (Bulatov, Dalmau)

If **A** has a Maltsev term, $\mathbf{B} \leq \mathbf{A}^n$, and T is a compact representation of B, then T generates \mathbf{B} .

Proof idea.

Suppose
$$\operatorname{pr}_{1,\dots,i-1}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\dots,i-1}(B)$$
. We will show $\operatorname{pr}_{1,\dots,i}(\langle T \rangle_{\mathbf{B}}) = \operatorname{pr}_{1,\dots,i}(B)$. Pick $\mathbf{a} = (a_1,\dots,a_{i-1},a_i,\dots) \in B$.

So
$$\exists \mathbf{a}' = (a_1, \dots, a_{i-1}, b, \dots) \in \langle T \rangle_{\mathbf{B}}$$
. (Thus also $\mathbf{a}' \in B$.)

Thus
$$(i, a_i, b) \in Fork(B) = Fork(T)$$
.

Pick $\mathbf{u}, \mathbf{v} \in T$ witnessing this.

We have

$$\mathbf{u} = (u_1, \dots, u_{i-1}, a_i, \dots) \in T$$

 $\mathbf{v} = (u_1, \dots, u_{i-1}, b, \dots) \in T$
 $\mathbf{a}' = (a_1, \dots, a_{i-1}, b, \dots) \in \langle T \rangle_{\mathbf{B}}.$

Applying the Maltsev term, we get $(a_1, \ldots, a_{i-1}, a_i, \ldots) \in \langle T \rangle_{\mathbf{B}}$.

The BD Algorithm: Let (X, Σ) with $\Sigma = (C_1, \ldots, C_m)$ be an input to $\mathrm{CSP}(\mathbf{A}, d)$ with \mathbf{A} Maltsev. Linearly order $X = \{x_1, \ldots, x_n\}$, identify A^X with A^n , and recall the descending chain of subpowers given by C_1, \ldots, C_m :

$$\mathbf{A}^n \geq \mathbf{B}_0 \geq \mathbf{B}_1 \geq \mathbf{B}_2 \geq \cdots \geq \mathbf{B}_m = \{\text{solutions to } (X, \Sigma)\} \cap \mathbf{B}_0.$$
 (†)

Recall: we want to compute compact representations for B_1, B_2, \ldots, B_m .

[Relaxation: $\mathbf{B}_0 \leq \mathbf{A}^n$; require a compact representation for B_0 as input.]

Special Case: Show that comp. rep's can be found in the case m < n and $\exists a_1, \ldots, a_m \in A$ such that $C_t = "x_t = a_t"$, i.e., $(x_t, \{a_t\})$, $\forall 1 \le t \le m$.

Now in general, we want to compute a compact representation for B_t , given a compact representation for B_{t-1} and the constraint C_t .

Key task: For each $(i, a, b) \in [n] \times A \times A$, we need to decide whether $(i, a, b) \in \text{Fork}(B_t)$ and, if "yes," we must find a witnessing pair $\mathbf{u}, \mathbf{v} \in B_t$.

Finding a candidate \mathbf{u} is not too hard. To find \mathbf{v} , construct a new chain (†) of subpowers in the special case, starting from \mathbf{B}_{t-1} , using u_1, \ldots, u_{n-1} .

The few subpowers algorithm and its extent

- A necessary feature of the BD algorithm is that \exists polynomial p(x) such that every $\mathbf{B} \leq \mathbf{A}^n$ has a generating set of size at most p(n).
- BIMMVW characterize such A; they are said to have few subpowers and are characterized by having a cube term (or edge term).
- An analogous notion of compact representation is given for such A.
- The Bulatov-Dalmau algorithm generalizes to algebras having a cube term (IMMVW); called the few subpowers algorithm.
- With Barto's recently announced result, we know that (assuming A is determined by its d-ary relations),
 - **A** has a cube term \Leftrightarrow $V(\mathbf{A})$ is congruence modular.

Confession

I have a love/hate relationship with the few subpowers algorithm.

Why I love it:

- It works (when **A** has a cube term).
- It runs in polynomial time.
- It gave me two publications (W = Willard).

Why I hate it:

- It cannot be executed in the absence of a cube term.
- It does not exploit structure theory of congruence modular varieties.
- It does not give "nice" short proofs of unsatisfiability.
 - ▶ (Local consistency is <u>so</u> much better!)

Problem: Are we stuck with it? Can we find a better algorithm?

An idea for a new type of "short proof" of unsatisfiability

Motivating example: again 3-LIN(F)

The sad fact: Unsatisfiable instances of 3-LIN(F) cannot be proved to be unsatisfiable by local consistency.

The happy fact: Unsatisfiable instances of 3-LIN(F) can be proved to be unsatisfiable by local consistency... provided one is permitted the introduction of new variables.

Suppose an instance (X, Σ) of 3-LIN(F) is given.

Suppose some new variables u_1, \ldots, u_L are "introduced" (i.e., defined) by \leq 3-variable equations, say

$$u_1 := ax_5 + 1$$

 $u_2 := bx_3 + cx_6$
 $u_3 := ru_1 + su_2 + 3$
 \vdots

Let U be the set of new variables and let Γ be the set of defining equations.

Clearly (X, Σ) is satisfiable if and only if $(X \cup U, \Sigma \cup \Gamma)$ is satisfiable.

Theorem

Suppose (X, Σ) is an instance of 3-LIN(F), with |X| = n and $|\Sigma| = m$. If Σ is unsatisfiable, then there exists

- $L \leq mn(m+n)$,
- a set $U = \{u_t : 1 \le t \le L\}$ of L new variables,
- a set $\Gamma = \{ \gamma_t : 1 \le t \le L \}$ of L linear equations where each γ_t defines u_t as a function of ≤ 2 variables from $X \cup \{u_1, \dots, u_{t-1}\}$,

such that $(X \cup U, \Sigma \cup \Gamma) \vdash_{3,6} \varnothing$.

Proof hint: Simulate Gaussian elimination.

Linearly order $X = \{x_1, x_2, \dots, x_n\}$; run GE. For each "complete" equation $a_1x_1 + \dots + a_nx_n = b$ occurring in the GE computation, introduce n new variables representing the partial sums of the left-hand side:

$$u_1 := a_1 x_1, \quad u_2 := u_1 + a_2 x_2, \quad \dots, \quad u_n = u_{n-1} + a_n x_n.$$
 (Gives U, Γ .)

Show that for each such equation, $(X \cup U, \Sigma \cup \Gamma) \vdash_{3.6} "u_n = b."$

Formalize and Generalize:

Fix j < k and **A**. Also fix ℓ_0, ℓ_1 satisfying $\ell_0 \le j$ and $\ell_0 + \ell_1 \le k$.

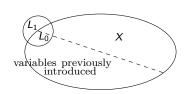
To the rules Intersect, $Project_i$ and $FictVar_k$ for (j, k)-proofs, add:

• VarIntro ℓ_0, ℓ_1

$$\frac{(L_0,R)}{\therefore (L_0 \cup L_1,S)}$$

provided

- ▶ The variables in L_1 are **new**. (This rule **introduces** them.)
- $R \subseteq \operatorname{pr}_{L_0 \cup L_1 \to L_0}(S).$
- ▶ $|L_i| \le \ell_i$ for i = 0, 1.
- \triangleright $S \leq \mathbf{A}^{L_0 \cup L_1}$.



Using these four rules, we get a notion of " $(j, k; \ell_0, \ell_1; \mathbf{A})$ -proof."

Notation

If (X, Σ) is an instance of $CSP(\mathbf{A}, d)$, let's write

$$(\mathbf{A},X,\Sigma)\Vdash^{N}_{j,k;\ell_{0},\ell_{1}}\varnothing$$

if there exists a $(j, k; \ell_0, \ell_1; \mathbf{A})$ -proof from (X, Σ) whose last constraint is empty, and which introduces at most N new variables.

Definition

(**A**, *d*) has **VI-width** $(j, k; \ell_0, \ell_1)$ if \exists polynomial p(x) such that for every instance (X, Σ) of $\mathrm{CSP}(\mathbf{A}, d)$ with |X| = n,

 (X,Σ) is unsatisfiable \Leftrightarrow $(\mathbf{A},X,\Sigma) \Vdash_{j,k;\ell_0,\ell_1}^{p(n)} \varnothing$.

Definition

(**A**, *d*) has **bounded VI-width** if it has VI-width (j, k, ℓ_0, ℓ_1) for some j, k, ℓ_0, ℓ_1 .

Fact: if (A, d) has bounded VI-width, then

- $CSP(\mathbf{A}, d)$ is in $NP \cap co-NP$.
- Unsatisfiable instances of $CSP(\mathbf{A}, d)$ have nice "short proofs" of unsatisfiability.

Definition

(**A**, *d*) has **strongly bounded VI-width** if for some j, k, ℓ_0, ℓ_1 :

- (**A**, d) has VI-width $(j, k; \ell_0, \ell_1)$, and
- there exists a polynomial-time algorithm solving $\mathrm{CSP}(\mathbf{A},d)$ and which, for unsatisfiable instances, returns a $(j,k;\ell_0,\ell_1,\mathbf{A})$ -proof of an empty constraint. (Such an algorithm is good.)

Thus: if (A, d) has strongly bounded VI-width then CSP(A, d) is in P.

Main Question:

• Which (A, d) have bounded VI-width? Strongly bounded VI-width?

What I know:

- If $V(\mathbf{A})$ is congruence $SD(\wedge)$, then (\mathbf{A}, d) has strongly bounded VI-width for all $d \geq 2$ (by Barto, Kozik).
- (Generalizing GE): If **A** is a finite affine space, then (\mathbf{A}, d) has strongly bounded VI-width for all $d \geq 2$.
- If $\mathbf{A} = (S_3, xy^{-1}z)$ then $(\mathbf{A}, 3)$ has strongly bounded VI-width.

More Questions:

- ② Is it true that if **G** is a finite group and $\mathbf{A} = (G, xy^{-1}z)$, then (\mathbf{A}, d) has strongly bounded VI-width for all $d \ge 2$?
- Same question for any finite idempotent Maltsev algebra A.

Speculations

- Is there a polynomial-time "strong bounded VI-width" algorithm for CSP(A, d), when A is Maltsev, which is "essentially" local consistency + Gaussian elimination?
- If **A** is the naked 2-element set, then $CSP(\mathbf{A},3) \equiv 3\text{-SAT}$. It can be shown that every unsatisfiable instance of $CSP(\mathbf{A},3)$ can $(3,6,2,1,\mathbf{A})$ -prove an empty constraint.

(Hint: simulate resolution.)

Is it true that for every finite idempotent **A** there exist j, k, ℓ_0, ℓ_1 such that every unsatisfiable instance of $\mathrm{CSP}(\mathbf{A},3)$ has a $(j,k;\ell_0,\ell_1;\mathbf{A})$ -proof of unsatisfiability? (Conjecture: NO)

Thank you!