Relational structures, Maltsev conditions, and CSP

Ross Willard

University of Waterloo, Canada

20AL, Kraków

9 June 2011

Outline

- 1. Motivating examples
- 2. Many definitions
- 3. A theorem
- 4. Applications
- 5. Problems

1. Motivating examples

Example #1: Structures supporting Maltsev conditions

(Barto, Kozik, Niven, SIAM J. Comput., 2009) - Smooth digraphs

Recall:

- **Digraph**: a set V with binary relation $E \subseteq V \times V$.
- Digraph (V, E) is **smooth** if $\forall y \in V \ \exists x, z \in V \ \text{with} \ (x, y), (y, z) \in E$.
- WNU operation: a k-ary function $f(k \ge 2)$ satisfying

$$f(y,x,x,\ldots,x) \approx f(x,y,x,\ldots,x) \approx \cdots \approx f(x,x,x,\ldots,y)$$
 and $f(x,x,x,\ldots,x) \approx x$ ("idempotence").

Theorem (Barto, Kozik, Niven)

Every finite smooth digraph admitting a compatible WNU operation has "nice" structure.

Example #2: Structures realized in algebras

(Siggers, Alg. Univ., 2010) - Siggers terms

Definition

A **Siggers operation** is an idempotent 6-ary operation $s(x_1, \ldots, x_6)$ satisfying

$$s(x, x, x, x, y, y) \approx s(x, y, x, y, x, x)$$

 $s(y, y, x, x, x, x) \approx s(x, x, y, x, y, x).$

Siggers' Theorem: if algebra **A** is finite and $V(\mathbf{A})$ "omits type 1," then **A** has a Siggers term operation.

Key step (Siggers)

If **A** is idempotent, then **A** fails to have a Siggers term operation \Leftrightarrow there exists a (simple) graph $\mathbb G$ containing a triangle which can be "realized" in a member of $V(\mathbf A)$.

Example #3: Structures definable in other structures

(Nešetřil, Siggers, Zadorí, Euro. J. Combin 2010) – CSP Dichotomy

Background: Let \mathbb{H} be an arbitrary finite relational structure.

- $CSP(\mathbb{H})$ is a combinatorial decision problem, depending on \mathbb{H} .
- $core(\mathbb{H})$ is the unique (up to \cong) minimal retract of \mathbb{H} .
- \mathbb{H}^c is the structure which results from adding to \mathbb{H} all the singleton unary relations $\{a\}$ $(a \in H)$. (Called " \mathbb{H} with constants.")
- BJK is the class of $\mathbb H$ for which Bulatov, Jeavons and Krokhin conjecture $\mathrm{CSP}(\mathbb H)$ should be NP-complete.

Theorem (Nešetřil, Siggers, Zadorí)

Assume $core(\mathbb{H}) = \mathbb{H}$. Then $\mathbb{H} \in BJK \Leftrightarrow there \ exists \ a \ graph <math>\mathbb{G}$ whose core is \mathbb{K}_3 such that \mathbb{G} is "pp-definable" in \mathbb{H}^c .

In this lecture I propose a possible general framework for discussing finite relational structures from the point of view of:

- the (strong) Maltsev conditions they support,
- their realizations in algebras and varieties, and
- their definability within each other.

2. Many definitions

- 1. Finite relational structure: $\mathbb{H} = (H; R_1, R_2, ...)$ where
 - *H* is a finite set (the **domain**, or **universe**, or **underlying set**);
 - R_1, R_2, \ldots is a list (possibly infinite) of finitary relations on H.
 - Note: H and each R_i always assumed to be **nonempty**.
- 2. **Polymorphism** of \mathbb{H} : any finitary operation f on H which **preserves** (or **is compatible with**) each relation R_i .
 - Equivalently, any homomorphism $f: \mathbb{H}^k \to \mathbb{H} \ (k \geqslant 1)$.
- 3. The **polymorphism algebra of** \mathbb{H} , denoted $alg(\mathbb{H})$, is the algebra with universe H and set of operations = $Pol(\mathbb{H}) := \{all\ polymorphisms\ of\ \mathbb{H}\}.$

4. Strong Maltsev condition: any finite set of identities.

Example:

$$\Sigma_{maj} = \{ m(x, x, y) \approx x, \ m(x, y, x) \approx x, \ m(y, x, x) \approx x \}.$$

5. Let $\mathbb H$ be a finite relational structure. Let Σ be a strong Maltsev condition.

Definition

 \mathbb{H} supports Σ iff $V(\operatorname{alg}(\mathbb{H}))$ satisfies Σ in the usual way.

• Informally, iff there exist polymorphisms of $\mathbb H$ which make the identities in Σ true.

Example. \mathbb{H} supports Σ_{maj} iff \mathbb{H} has a majority polymorphism.

6. Realizations of structures in algebras

Let $\mathbb{H} = (H; R_1, R_2, ...)$ be a finite relational structure with arity $(R_i) = n_i$ for i = 1, 2, ...

Let **A** be a finite algebra.

Definition

 \mathbb{H} is **realized** in **A** iff for i = 1, 2, ... there exist $\mathbf{B}_i \leq \mathbf{A}^{n_i}$ such that

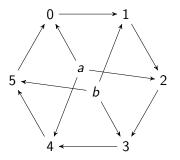
$$\mathbb{H} \cong (A; B_1, B_2, \ldots).$$

Example: Let $\mathbf{A}=(2;m)$ where $2=\{0,1\}$ and m is the (unique) majority operation on 2. Let \mathbb{H} be the graph $\mathbb{K}_2=(\bullet\rightleftarrows\bullet)$.

 \mathbb{K}_2 is realized in **A**, since **B** := $\{(0,1),(1,0)\} \leq \mathbf{A}^2$ and $\mathbb{K}_2 \cong (2;B)$.

7. **Pp-definability of structures** – first an example

Let $\mathbb{H} = (H; \rightarrow)$ be the following directed graph:



I want to "define" the graph \mathbb{K}_2 in \mathbb{H} .

In \mathbb{H} , the formula v(x) given by $\exists z[z \to x]$ defines the unary relation

$$U = \{0, 1, 2, 3, 4, 5\}.$$

Similarly, the formula $\vartheta(x,y)$ given by

$$\exists z_1,\ldots,z_5[z_1\to x \land z_1\to z_2\to z_3\to z_4\to z_5\to y]\}$$

defines the binary relation

$$\Theta = \{0, 2, 4\}^2 \cup \{1, 3, 5\}^2,$$

which is an equivalence relation on U with two classes.

Finally, the formula $\exists z [\vartheta(x,z) \land x \rightarrow y]$ defines the relation

$$E \ = \ (\{0,2,4\} \times \{1,3,5\}) \cup (\{1,3,5\} \times \{0,2,4\}).$$

As $(U/\Theta; E/\Theta) \cong \mathbb{K}_2$, we have "defined" \mathbb{K}_2 in \mathbb{H} .

In general, we will use formulas of the kind above ("pp-formulas"), allowing tuples in place of individual variables.

Definition

A **primitive positive** (or **pp-**) **formula** is a first-order formula built from atomic formulas (basic relations and =) using only \land and \exists .

Fix a finite relational structure $\mathbb{H} = (H; R_1, R_2, ...)$.

Definition

A relation $S \subseteq H^n$ is **pp-definable** in \mathbb{H} iff there exists a pp-formula in the language of \mathbb{H} , with n free variables, whose set of solutions in \mathbb{H} is S.

• (Equivalently, iff S belongs to the "relational clone" generated by $\{R_1, R_2, \ldots\}$.)

Let Θ be an equivalence relation on H. The **quotient** \mathbb{H}/Θ is

$$\mathbb{H}/\Theta = (H/\Theta; R_1/\Theta, R_2/\Theta, \ldots)$$

where $R_i/\Theta = \{(a_1/\Theta, ..., a_{n_i}/\Theta) : (a_1, ..., a_{n_i}) \in R_i\}.$

Finally, the general definition.

Let \mathbb{G}, \mathbb{H} be finite relational structures.

Write $\mathbb{G} = (G; R_1, R_2, ...)$ with arity $(R_i) = n_i$.

Definition

 \mathbb{G} is **pp-definable in** \mathbb{H} iff there exist:

- $k \geqslant 1$
- ullet Pp-definable relations of \mathbb{H} :
 - $U \subseteq H^k$
 - \bullet $\Theta \subseteq U^2$ $(\subseteq (H^k)^2 = H^{2k})$
 - $S_i \subseteq U^{n_i}$ $(\subseteq (H^k)^{n_i} = H^{n_i k})$ for i = 1, 2, ...

such that

- ullet Θ is an equivalence relation on U.
- $\mathbb{G} \cong (U; S_1, S_2, \ldots)/\Theta$.

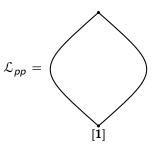
Notation: $\mathbb{G} \leq_{pp} \mathbb{H}$.

Remarks.

Let $\mathcal{R} := \{\text{all finite relational structures}\}.$

- \bullet \leq_{pp} is a quasi-order (reflexive and transitive) on \mathcal{R} ...
- ② ... so induces an equivalence relation on \mathbb{R} ... (Notation: $[\mathbb{H}] = \{\mathbb{G} : \mathbb{H} \leq_{pp} \mathbb{G} \leq_{pp} \mathbb{H}\}$)
- 3 ... and a partial ordering on the set of equivalence classes.

Notation: $\mathcal{L}_{pp} = \text{the poset } \{ [\mathbb{H}] : \mathbb{H} \in \mathcal{R} \}$ of equivalence classes ordered by \leq_{pp} .



3. A theorem

Connecting the pieces:

Theorem

Suppose \mathbb{G},\mathbb{H} are finite relational structures. The following are equivalent:

- lacksquare Supports every strong Maltsev condition supported by \mathbb{H} .
- ② \mathbb{G} is realized in some member of $V(\operatorname{alg}(\mathbb{H}))$.
- **③** \mathbb{G} ≤_{pp} \mathbb{H} .

Proof sketch: Write $\mathbb{G} = (G; R_1, R_2, \ldots)$. Let $\mathbf{G} = \operatorname{alg}(\mathbb{G})$, $\mathbf{H} = \operatorname{alg}(\mathbb{H})$.

- **1** \mathbb{G} supports every strong Maltsev condition supported by \mathbb{H} .
- **③** \mathbb{G} ≤_{pp} \mathbb{H} .
- (3) \Rightarrow (2). Assume \mathbb{G} is pp-defined in \mathbb{H} via $k \geqslant 1$ and $U, \Theta, S_1, S_2, \ldots$

 U, Θ pp-definable in \mathbb{H} implies $\mathbf{U} \leqslant \mathbf{H}^k$ and $\Theta \in \operatorname{Con}(\mathbf{U})$. Let $\mathbf{A} = \mathbf{U}/\Theta$.

The S_i can be similarly used to produce $\mathbf{B}_i \leqslant \mathbf{A}^{n_i}$ so that

$$(A; B_1, B_2, \ldots) = (U; S_1, S_2, \ldots)/\Theta \cong \mathbb{G}.$$

(2) \Rightarrow (1). Assume \mathbb{G} is realized in $\mathbf{A} \in V(\mathbf{H})$.

This implies **A** is isomorphic to a reduct of **G**.

Assume Σ is a strong Maltsev condition supported by \mathbb{H} , i.e., $V(\mathbf{H})$ satisfies Σ .

In particular, **A** satisfies Σ , hence so must **G**, i.e., \mathbb{G} supports Σ .

(Proof sketch continued.)

(Recall
$$\mathbb{G} = (G; R_1, R_2, \ldots), \mathbf{G} = \operatorname{alg}(\mathbb{G}), \mathbf{H} = \operatorname{alg}(\mathbb{H}).$$
)

 $(1) \Rightarrow (3)$. Requires more work.

Assume \mathbb{G} supports every strong Maltsev condition supported by \mathbb{H} . (Must show \mathbb{G} is pp-definable in \mathbb{H} .)

By a compactness argument, may assume that the signature of $\ensuremath{\mathbb{G}}$ is finite.

Let N be large enough.¹

Let $\Sigma_{\mathbb{H},N}$ denote the strong Maltsev condition which describes all compositions among $\operatorname{Pol}_{(\leqslant N)}(\mathbb{H})$, the at-most-N-ary fragment of $\operatorname{Pol}(\mathbb{H})$.

By assumption, \mathbb{G} supports $\Sigma_{\mathbb{H},N}$. This gives a clone homomorphism $\operatorname{Pol}_{(\leqslant N)}(\mathbb{H}) \to \operatorname{Pol}_{(\leqslant N)}(\mathbb{G})$, which I denote $s \mapsto s^{\alpha}$.

 $^{{}^{1}}N > |G|, N \geqslant |R_{i}|$ for all i.

(Proof of $(1) \Rightarrow (3)$, continued)

Let n = |G| and $\mathbf{F} = \mathbf{F}_{V(\mathbf{H})}(n)$, canonically with universe $F = \operatorname{Pol}_n(\mathbb{H})$.

Fix an enumeration $G = \{a_1, \ldots, a_n\}$.

Key: define $\beta: F \to G$ by $\beta(s) = s^{\alpha}(a_1, \ldots, a_n)$.

Show that $\Theta := \ker(\beta) \in \operatorname{Con}(\mathbf{F})$, and that each Θ -block contains exactly one projection.

Use β^{-1} to lift each $R_i \leq \mathbf{G}^{n_i}$ to $S_i \subseteq F^{n_i}$.

Show that each S_i is a subuniverse of \mathbf{F}^{n_i} (hence of $(\mathbf{H}^{H^n})^{n_i}$).

 $F, \Theta, S_1, S_2, \ldots$ witness \mathbb{G} being pp-definable in \mathbb{H} .

4. Applications

Application #1. $[\mathbb{K}_3]$ is the "top" element of \mathcal{L}_{pp} .

Equivalently, every finite relational structure is pp-definable in \mathbb{K}_3 .

Proof. It suffices by the previous theorem to show that every strong Maltsev condition supported by \mathbb{K}_3 is trivial (i.e., supported by all finite structures).

This can be proved directly (and easily), modulo the following fact:

 \mathbb{K}_3 is **projective**, i.e., core and every polymorphism depends on only one variable. $\hfill\Box$

Amusing exercise: find an explicit pp-definition of $(\mathbb{K}_3)^c$ in \mathbb{K}_3 .

Application #2. If \mathbb{T} is a finite simple graph which is *not* bipartite, then \mathbb{T} supports no nontrivial *idempotent* Maltsev condition.

Equivalently, $[\mathbb{T}^c]$ = "top" element of \mathcal{L}_{pp} .

What is the simplest proof?

Here is a proof based on Bulatov's re-proof of the Hell-Nešetřil theorem (*Theor. Comp. Sci.* 2005).

Bulatov starts by assuming $\mathbb T$ "to be the smallest [graph] amongst all non-bipartite graphs that can be derived from" $\mathbb T$.

From this assumption he argues that $\mathbb{T} = \mathbb{K}_3$.

By examining his argument carefully, one sees that it works assuming only that if \mathbb{G} is a finite graph and $\mathbb{G} \leqslant_{pp} \mathbb{T}^c$, then \mathbb{G} is "derivable" from \mathbb{T} . ²

 $^{^2} Though$ in the first step Bulatov assumes that $\mathbb T$ is core, this part of his argument never actually uses this assumption.

Thus Bulatov's argument establishes the following:

Fact: if \mathbb{T} is a finite non-bipartite graph, then there exists a sequence $\mathbb{G}_0, \mathbb{G}_1, \dots, \mathbb{G}_n$ of finite non-bipartite graphs such that

- $\mathbb{G}_0 = \mathbb{T}$.
- $\mathbb{G}_n = \mathbb{K}_3$.
- For each i < n, $\mathbb{G}_{i+1} \leq_{pp} (\mathbb{G}_i)^c$.

It is easy to check that $\mathbb{G} \leqslant_{pp} \mathbb{H}^c$ implies $\mathbb{G}^c \leqslant_{pp} \mathbb{H}^c$.

This, with transitivity of \leq_{pp} , gives $\mathbb{K}_3 \leq_{pp} \mathbb{T}^c$.

As
$$[\mathbb{K}_3] =$$
 "top," this implies $[\mathbb{T}^c] =$ "top."

Application #3: Proof of Siggers' theorem.

Recall the key construction:

If \mathbb{H} has no Siggers polymorphism, then there exists a graph \mathbb{T} containing a triangle such that $\mathbb{T} \leqslant_{pp} \mathbb{H}^c$.

Remaining step: Show that such \mathbb{T} cannot support any idempotent Maltsev condition. (Hence neither can \mathbb{H} .) How to show it?

Could cite Barto-Kozik-Niven. Siggers cited Bulatov's 2005 paper.

Now we see that his citation is correct(ed): if \mathbb{T} contains a triangle, then it is not bipartite. Hence $\mathbb{K}_3 \leq_{pp} \mathbb{T}^c$ (Application #2).

$$\mathbb{T} \leqslant_{pp} \mathbb{H}^c$$
 implies $\mathbb{T}^c \leqslant_{pp} \mathbb{H}^c$.

Hence $\mathbb{K}_3 \leq_{pp} \mathbb{H}^c$ by transitivity of \leq_{pp} .

Application #4: stating the Algebraic CSP Dichotomy Conjecture

Let
$$\mathbf{2}_{NAE} = (2; R)$$
 where $R = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}.$

 $\mathbf{2_{NAE}}$ is projective, so $[\mathbf{2_{NAE}}] = [\mathbf{2_{NAE}}^c] =$ "top" element of \mathcal{L}_{pp} .

The class BJK of those core \mathbb{H} (with finite signature) for which $\mathrm{CSP}(\mathbb{H})$ is conjectured to be NP-complete is normally characterized by either of the equivalent conditions:

- $oldsymbol{0}$ alg (\mathbb{H}^c) satisfies no nontrivial (idempotent) Maltsev condition.
- **2** $\mathbf{2}_{\mathsf{NAE}}^c$ is realized in $V(\mathrm{alg}(\mathbb{H}^c))$ [or in $\mathit{HS}(\mathrm{alg}(\mathbb{H}^c))$].

To these we can add

- **③** \mathbb{K}_3 ≤_{pp} \mathbb{H}^c .
- **4** (Nešetřil, Siggers, Zadorí) \mathbb{G} ≤_{pp} \mathbb{H}^c for some finite graph \mathbb{G} whose core is \mathbb{K}_3 . (" \mathbb{K}_3 -partitionability.")
- $[\mathbb{H}^c] = \text{"top" element of } \mathcal{L}_{pp}.$

5. Problems

- Suppose \mathbb{H} is core and $[\mathbb{H}^c]_{pp} = top$. Does this imply $[\mathbb{H}]_{pp} = top$? (Yes if \mathbb{H} is also projective.)
- ② Does there exist a strong Maltsev condition Σ such that, $\forall \mathbb{H} \in \mathcal{R}$, \mathbb{H} supports Σ iff $[\mathbb{H}]_{pp} \neq top$?
- **9** Find a "constructive" characterization of this binary relation on strong Maltsev conditions: " Γ is supported by all $\mathbb{H} \in \mathcal{R}$ which support Σ ."
- The relation " \mathbb{H} supports Σ " induces a Galois connection between the subsets of \mathbb{R} and the subsets of the set of all strong Maltsev conditions.
 - Characterize the closure operator on the relational structure side of this Galois connection.
- Ditto for the strong Maltsev condition side.