A new property of finite NU(4) algebras

Marcin Kozik¹ Ross Willard²

¹ Jagiellonian University, Poland

²University of Waterloo, Canada

AMS Sectional Meeting, Iowa City

March 19, 2011

Definition

Suppose

- B, C are algebras with $B \leq C$.
- $t(x_1,\ldots,x_k)$ is a term.

Say ${\bf B}$ is an absorbing subalgebra of ${\bf C}$ (with respect to t) if

$$\forall i = 1, \ldots, k$$
,

$$t(B,\ldots,B,C,B,\ldots,B)\subseteq B$$
 \uparrow

Notation: $\mathbf{B} \triangleleft_t \mathbf{C}$

 $\mathbf{B} \leq \mathbf{C}$ and $t(B, \dots, B, C, B, \dots, B) \subseteq B$ for all positions of C.

Examples.

- **1 C** = $(C, +, -, 0, \cdot)$ a ring without 1. Let $t(x, y) := x \cdot y$.
 - $\mathbf{B} \triangleleft_t \mathbf{C}$ iff B is a two-sided ideal of \mathbf{C} .
- **2 C** an algebra with Maltsev term p(x, y, z).
 - $\mathbf{B} \triangleleft_p \mathbf{C}$ iff B = C.
- 3 t a constant-valued term on C.
 - $\mathbf{B} \lhd_t \mathbf{C}$ iff $\mathbf{B} < \mathbf{C}$.

Absorbing subalgebras play a key role in recent CSP results.

- A. Bulatov, Combinatorial problems raised from 2-semilattices, 2006.
- E. Kiss and M. Valeriote, Tractability and congruence distributivity, 2007.
- L. Barto and M. Kozik, CSPs of bounded width, 2008.
- L. Barto and M. Kozik, Absorbing subalgebras, cyclic terms and the constraint satisfaction problem, 2010.

Lots of basic questions about absorbing subalgebras remain open.

Absorption in idempotent NU algebras.

Recall: a term $t(x_1,...,x_k)$ is a **near-unanimity** (NU) term for **C** if it satisfies

$$t(x,\ldots,x,y,x,\ldots,x)=x$$

$$\uparrow$$

$$i$$

for all i and all $x, y \in C$.

(Recall: **C** is **idempotent** if $\{x\} \leq \mathbf{C} \quad \forall x \in C$.)

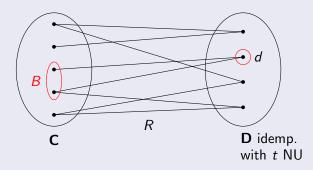
Observation: If ${\bf C}$ is idempotent, the definition of NU term can be expressed as

$$\{x\} \lhd_t \mathbf{C} \quad \forall x \in C.$$

"Propagation" in idempotent NU algebras

Lemma

Suppose **C**, **D** are algebras with **D** idempotent, t is an NU term for **D**, and $\mathbf{R} \leq_{sd} \mathbf{C} \times \mathbf{D}$. Fix $d \in D$ and define $B = \{x \in C : (x, d) \in R\}$.



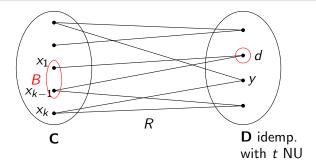
Then $\mathbf{B} \triangleleft_t \mathbf{C}$.

Proof.

(Must show $B \triangleleft_t C$.) $B \leq C$ because $\{d\} \leq D$.

Suppose $x_1, \ldots, x_{k-1} \in B$ and $x_k \in C$. $\exists y \in D$ with columns in R:

Apply t. Produces $(t(\mathbf{x}), d) \in R$, hence $t(\mathbf{x}) \in B$.



Here is a strange new property involving absorption.

Notation: if
$$x \in A$$
, then $\hat{x} = (x, x, ..., x) \in A^n$.
 $\hat{A} = {\hat{x} : x \in A}$.

Definition

Suppose A is an algebra and t is a term.

Say that $a \in A$ is an **absorption-forced constant** for **A** with respect to t if the following holds: $\forall n \geq 1, \forall \mathbf{B} \leq \mathbf{C} \leq \mathbf{A}^n$, if

- \bullet $\widehat{A} \subseteq C$,
- $\mathbf{B} \lhd_t \mathbf{C}$, and
- $\mathbf{B} \leq_{sd} \mathbf{A}^n$,

then $\hat{a} \in B$.

 $a \in A$ is an absorption-forced constant for **A** with respect to t if . . .

[
$$\mathbf{C} \leq \mathbf{A}^n$$
 and $\widehat{A} \subseteq C$ and $\mathbf{B} \triangleleft_t \mathbf{C}$ and $\mathbf{B} \leq_{sd} \mathbf{A}^n$] imply $\widehat{a} \in B$.

Examples

Example 1: Suppose 0 is an absorbing element for t in **A** in classical sense, i.e., t(...,0,...) = 0.

Then 0 is the unique absorption-forced constant for $\bf A$ with respect to t.

• To prove uniqueness, use $\mathbf{B} = \{(x, y) \in A^2 : x = 0 \text{ or } y = 0\}.$

Example 2: Suppose t is a majority term for A.

Then every $a \in A$ is an absorption-forced constant for **A** with respect to t.

• Proof: $\mathbf{B} \triangleleft_t \mathbf{C} \leq \mathbf{A}^n$ and $\mathbf{B} \leq_{sd} \mathbf{A}^n$ implies $\mathbf{B} = \mathbf{C}$.

Last year, while working on the "NU $\stackrel{\checkmark}{\Rightarrow}$ linear datalog" conjecture, Marcin Kozik realized he could prove the conjecture, **provided**

Every finite NU algebra has an absorption-forced constant with respect to its NU term.

Call the above statement the **Kozik conjecture**.

In December I proved:

Theorem (W)

The Kozik conjecture is true for NU terms of arity 4.

I have a marvelous proof of this, which this talk is too short to contain.

Last month Kozik visited McMaster University. During the visit, he and Libor Barto proved:

Theorem (Barto, Kozik)

Kozik's conjecture is true for NU terms of all arities.

Corollary

The "NU \Rightarrow linear datalog" conjecture is true.

In fact:

Theorem (Barto, Kozik)

Every finite algebra has a universal absorption-forced constant, i.e., an element $a \in A$ which is an absorption-forced constant with respect to every idempotent term of the algebra!

Sketch of Barto-Kozik result

Fix **A**. Must show that $\exists a \in A$ such that \forall idempotent t, $\forall n \geq 1$,

[
$$\mathbf{C} \leq \mathbf{A}^n$$
 and $\widehat{A} \subseteq C$ and $\mathbf{B} \triangleleft_t \mathbf{C}$ and $\mathbf{B} \leq_{sd} \mathbf{A}^n$] imply $\widehat{a} \in B$.

- WLOG, can assume **A** is idempotent.
- For each $n \ge 1$, let Ab(n) denote the set of elements $a \in A$ which work for subalgebras of \mathbf{A}^n .
 - Since $Ab(n) \supseteq Ab(n+1)$, suffices to show $Ab(n) \neq \emptyset$ for all $n \ge 1$.
- Fix n. Let $\mathbf{B}_1, \mathbf{B}_2, \dots, \mathbf{B}_q$ be a list of all the subalgebras $\mathbf{B} \leq_{sd} \mathbf{A}^n$ for which there exist \mathbf{C} and t satisfying the hypotheses above.
- Main Claim: $\exists \mathbf{S} < \mathbf{A}$ such that $\mathbf{B}_i \cap \mathbf{S}^n \leq_{sd} \mathbf{S}^n$ for all i.
- Induct.

In conclusion: given a finite algebra A, define

 $Ab(\mathbf{A}) = \{a \in A : a \text{ is a universal absorption-forced constant for } \mathbf{A}\}.$

Easy to show that $Ab(\mathbf{A}) \leq \mathbf{A}$.

Some questions:

- What characterizes this subalgebra?
- 2 How can we easily determine it?
- What is it good for?

Thank you