Testing expressibility is hard

Ross Willard

University of Waterloo, Canada

CP 2010 St. Andrews, Scotland September 7, 2010

Outline

- 0. Apology
- 1. The Definition
- 2. The Problem
- 3. Our Solution
- 4. The Proof (hints)
- 5. Open Questions

Part 0 - Apology

I'm sorry

Part 1 - The Definition

Let Γ be a constraint language (always finite, on a finite domain D).

Let R be a relation (on D), say of arity k > 0.

Definition

 Γ can **express** R if there exist a CSP $\mathfrak{P} = (X, D, \mathfrak{C})$ over Γ (the **gadget**) and $x_1, \ldots, x_k \in X$ such that

$$\operatorname{proj}_{(x_1,\dots,x_k)}(\operatorname{Sol}(\mathcal{P}))=R.$$

Example: $\Gamma = \{ \rightarrow, U \}$, where

$$D = \{0, 1, \dots, 5\}, \qquad \begin{matrix} 0 & \longleftarrow 1 & \longleftarrow 2 \\ \uparrow & \downarrow & \downarrow \\ 3 & \longleftarrow 1 & \longleftarrow 5 \end{matrix}$$

$$U = \{0, 3\}$$

Can Γ can express $R = \{3, 4, 5\}$?

Answer: Yes, via the gadget \mathcal{P} :

$$(a \rightarrow b) \ \& \ (b \rightarrow x) \ \& \ (x \rightarrow c) \ \& \ U(a) \ \& \ U(c).$$

Solutions to \mathcal{P} :

а	b	X	С
0	4	3	0
0	4	4	3
0	4	5	3
3	0	4	3

Part 2 - The Problem

Definition. Expr(Γ) is the set of all relations expressible by Γ .

Expressibility Problem

Input:

- a constraint language Γ.
- a relation R.

Question:

• Is $R \in \text{Expr}(\Gamma)$?

Basic question: How hard is this problem to answer? To witness?

(Jeavons, Cohen, Gyssens; CP 1996, Constraints 1999):

Polymorphisms and 'Indicator problems'

- **1** If $R \notin \text{Expr}(\Gamma)$, then this is witnessed by a **polymorphism** of Γ of a specified arity which does not preserve R.
- ② If $R \in Expr(\Gamma)$, then R is expressed by a canonical gadget called an indicator problem.

Hence we can (in principle) test whether $R \in Expr(\Gamma)$ by either:

- Searching among all operations on D of a specified arity for one which witnesses $R \notin \text{Expr}(\Gamma)$, or
- Building the indicator problem for (Γ, R) , finding all of its solutions, and comparing the solution set to R.

How **practical** is this algorithm?

Answer: it's crap.

- If $R \notin \text{Expr}(\Gamma)$: general theory promises a witnessing polymorphism, but of arity |R| (and hence table size $|D|^{|R|}$).
- ② If $R \in \text{Expr}(\Gamma)$: general theory offers the indicator problem for (Γ, R) , but it has
 - $|D|^{|R|}$ variables
 - For each $S \in \Gamma$, $|S|^{|R|}$ constraints using S.

The size of the witness (polymorphism or gadget) guaranteed by theory is exponential in |R|. In particular, the JCG algorithm is co-*NEXPTIME*.

However: Practice does not always match theory.

Consider again $\Gamma = \{ \rightarrow, U \}$:

$$D = \{0, 1, \dots, 5\}, \qquad \begin{matrix} 0 & \longleftarrow 1 & \longleftarrow 2 \\ \uparrow & \downarrow & \downarrow \\ 3 & \longleftarrow 1 & \longleftarrow 5 \end{matrix}$$

$$U = \{0, 3\}$$

- **①** The relation $R = \{3, 4, 5\}$ can be expressed by Γ . Witnessing gadget:
 - Theory: $6^3 = 216$ variables and $10^3 + 2^3 = 1008$ constraints.
 - Practice: 4 variables and 5 constraints.
- **②** The relation $\Rightarrow := D^2 \setminus \Rightarrow$ cannot be expressed by Γ . Witnessing polymorphism:
 - Theory: arity 26 (and thus table size $6^{26} \approx 1.7 \times 10^{20}$).
 - Practice: arity 1.

This is our problem:

- General theory seems to require witnesses of size $\exp(|R|)$.
- The Jeavons/Cohen/Gyssen algorithm is co-NEXPTIME.

But:

- Examples suggest that much smaller witnesses might suffice.
- Perhaps there is a better (polynomial-time?) algorithm for testing expressibility.

Positive evidence for better theory: boolean case $(D = \{0, 1\})$

Theorem (Dalmau, 2000)

For each **fixed** constraint language Γ over $D = \{0, 1\}$, testing membership in $\operatorname{Expr}(\Gamma)$ is in P.

Theorem (Creignou, Kolaitis & Zanuttini, 2008)

There is a uniform polynomial-time algorithm for testing expressibility over the boolean domain.

Consequences (boolean domain):

- Polynomial-sized gadgets if $R \in Expr(\Gamma)$;
- (Conjecture) $O(\log |R|)$ -arity polymorphisms if $R \notin Expr(\Gamma)$.

What about the non-boolean case?

Conjecture (Vardi, AIM 2008): It's VERY VERY BAD. To wit,

 The general expressibility problem is co-NEXPTIME-complete, even on domain size 3.

(If true: no poly-sized witnesses in general; JCG algorithm can't be improved.)

Part 3 - Our solution

We confirm most of the AIM conjecture:

Theorem 1 (Exponential witnesses are unavoidable)

For infinitely many n there exist constraint languages Γ_0 , Γ_1 and relation R, all over a <u>22-element domain</u>, such that:

- |R| = n, and arity $(R) = O(\log n)$;
- $R \in \mathrm{Expr}(\Gamma_0)$, yet every witnessing gadget has $\geq 2^{n/3}$ variables;
- $R \notin \text{Expr}(\Gamma_1)$, yet every witnessing polymorphism has arity $\geq n/3$.

Fine print: $|\Gamma_0| = |\Gamma_1| = O(n)$ and each $S \in \Gamma_0 \cup \Gamma_1$ has arity $O(\log n)$.

Theorem 2 (The JCG algorithm is essentially best possible)

There exists d > 3 such that testing expressibility on d-element domains is co-NEXPTIME-complete.

Part 4 - The Proof (hints)

- 1. Warning: it's complicated.
- 2. Following a suggestion of Vardi, we encode a class of **tiling problems** into the **complement** of the expressibility problem.
- 3. Did I mention that it's complicated?

Definition. A **tiling problem** is a special, succinctly presented CSP whose specification includes:

- A finite set Δ of **tile types**.
- A positive integer N, which determines an $N \times N$ grid.

E.g.:
$$\Delta = \{1, 2, \dots, 9\}$$

Constraints:

$$H: \llbracket s \rrbracket t \implies t - s \in \{-2, 3\}$$

$$V: \quad \boxed{t} \Rightarrow s < t$$

• Constraints on horizontally and vertically adjacent tile types.

Question: Can one cover the grid with tiles subject to the constraints?

• Optional input: An initial condition (prescribed tiles on first row).

Some Jargon and Notation

Fix
$$\mathcal{D} = (\Delta, H, V)$$
.

• D is called a domino system.

"Exponential Tiling-by- ${\mathbb D}$ Problem," or ${\rm ExpTile}({\mathbb D})$

Input:

initial condition $\mathbf{w} \in \Delta^+$.

Question:

Can \mathcal{D} tile the $2^m \times 2^m$ grid satisfying \mathbf{w} , where m = |w|?

Two facts about exponential tiling.

1 (Amusing exercise): there exists a domino system \mathcal{D}_0 such that:

For all $m \geq m_0$ there exists $\mathbf{w}_m \in \Delta^m$ such that \mathcal{D}_0 can almost tile the $2^m \times 2^m$ grid satisfying initial condition \mathbf{w}_m (i.e., cannot tile it, but can tile $N \times N$ for any $N < 2^m$).

and

For all $m \ge m_0$ there exists $\mathbf{x}_m \in \Delta^m$ such that \mathcal{D}_0 can tile the $2^m \times 2^m$ grid satisfying initial condition \mathbf{x}_m , but cannot tile it with a repeated row.

② (Cf. Grädel *et al*) There exists a **universal** domino system \mathcal{D}_1 for *NEXPTIME*, i.e., such that $\text{ExpTILE}(\mathcal{D}_1)$ is *NEXPTIME*-complete.

Key Construction of our paper

For every domino system $\mathfrak{D}=(\Delta,H,V)$ there exists a finite set D and a log-space construction

$$\mathbf{w} \in \Delta^+$$
 $(|\mathbf{w}| = m)$ \mapsto
$$\begin{cases} \Gamma - \text{constraint language with domain } D \\ R - \text{relation on } D \text{ of arity } k = O(\log m) \\ \mathbf{a} - \text{element in } D^k \setminus R \end{cases}$$

such that the **smallest** relation expressible from Γ and containing R ...

- is either R or $R \cup \{a\}$;
- is $R \cup \{a\} \Leftrightarrow \mathcal{D}$ can tile $2^m \times 2^m$ with initial condition \mathbf{w} .

Hence $R \in \text{Expr}(\Gamma) \Leftrightarrow \mathcal{D}$ cannot tile $2^m \times 2^m$ with initial condition \mathbf{w} .

We also connect properties of tilings ('almost,' 'repeated rows') to possible sizes of witnesses to expressibility. (Theorems $1\ \&\ 2$ follow.)

Part 5 - Questions we have not answered

- Can non-existence of sub-exponential-sized witnesses be pushed down to smaller domains? To 3-element domains?
- ② Can co-NEXPTIME-completeness be pushed down to small domains? To 3-element domains?
- **3** Does there exist a **fixed** constraint language Γ such that deciding membership in $\text{Expr}(\Gamma)$:
 - Requires exponential-sized witnesses?
 - Is co-*NEXPTIME*-complete?

(Our construction $\mathbf{w} \mapsto (\Gamma, R, \mathbf{a})$ has Γ depending on \mathbf{w} .)

Thank you!